scispace - formally typeset
Search or ask a question

Showing papers on "Reynolds number published in 2014"


Journal ArticleDOI
TL;DR: This work reports a symmetric ‘micro-scallop’, a single-hinge microswimmer that can propel in shear thickening and shear thinning fluids by reciprocal motion at low Re, and indicates that the net propulsion is caused by modulation of the fluid viscosity upon varying the shear rate.
Abstract: Biological microorganisms swim with flagella and cilia that execute nonreciprocal motions for low Reynolds number (Re) propulsion in viscous fluids. This symmetry requirement is a consequence of Purcell's scallop theorem, which complicates the actuation scheme needed by microswimmers. However, most biomedically important fluids are non-Newtonian where the scallop theorem no longer holds. It should therefore be possible to realize a microswimmer that moves with reciprocal periodic body-shape changes in non-Newtonian fluids. Here we report a symmetric 'micro-scallop', a single-hinge microswimmer that can propel in shear thickening and shear thinning (non-Newtonian) fluids by reciprocal motion at low Re. Excellent agreement between our measurements and both numerical and analytical theoretical predictions indicates that the net propulsion is caused by modulation of the fluid viscosity upon varying the shear rate. This reciprocal swimming mechanism opens new possibilities in designing biomedical microdevices that can propel by a simple actuation scheme in non-Newtonian biological fluids.

360 citations


Journal ArticleDOI
TL;DR: In this article, the effects of the nanoparticle volume fraction, Reynolds number, expansion ratio and power law index on Hydrothermal behavior of nanofluid fluid between two parallel plates is studied.

336 citations


Journal ArticleDOI
TL;DR: In this article, the effects of different values of the cavity inclination angle and nanoparticles volume fraction at three states of free, force and mixed convection domination are investigated while the Reynolds number is kept fixed as Re = 100 and Re = 10.
Abstract: The goal of this work is to study the laminar mixed convection of water–Cu nanofluid in an inclined shallow driven cavity using the lattice Boltzmann method. The upper lid of the cavity moves with constant velocity, U 0 , and its temperature is higher than that of the lower wall. The side walls are assumed to be adiabatic. The effects of different values of the cavity inclination angle and nanoparticles volume fraction at three states of free, force and mixed convection domination are investigated while the Reynolds number is kept fixed as Re = 100 and Re = 10 . Validation of present results with those of other available ones shows a suitable agreement. Streamlines, isotherms, Nusselt numbers, and velocity and temperature profiles are presented. More Nusselt numbers can be achieved at larger values of the inclination angle and nanoparticles volume fraction at free convection domination. Results imply the appropriate ability of LBM to simulate the mixed convection of nanofluid in a shallow inclined cavity.

272 citations


Journal ArticleDOI
TL;DR: In this paper, the effect of Brownian motion on the effective thermal conductivity is considered and the basic partial differential equations are reduced to ordinary differential equations which are solved numerically using the fourth-order Runge-Kutta method.

248 citations


Journal ArticleDOI
TL;DR: In this paper, the peristaltic flow of nanofluids through a two-dimensional channel is analyzed based on the long wavelength and low Reynolds number approximations.

241 citations


Journal ArticleDOI
TL;DR: In this article, three-dimensional spatial correlations are investigated in very long domains to educe the average structure of the velocity and pressure fluctuations in the zero-pressure-gradient turbulent boundary layer in the range Re θ = 2780-6680.
Abstract: Two-point statistics are presented for a new direct simulation of the zero-pressure-gradient turbulent boundary layer in the range Re θ = 2780–6680, and compared with channels in the same range of Reynolds numbers, δ+ ≈ 1000–2000. Three-dimensional spatial correlations are investigated in very long domains to educe the average structure of the velocity and pressure fluctuations. The streamwise velocity component is found to be coherent over longer distances in channels than in boundary layers, especially in the direction of the flow. For weakly correlated structures, the maximum streamwise length is O ( 7 δ ) for boundary layers and O ( 18 δ ) for channels, attained at the logarithmic and outer regions, respectively. The corresponding lengths for the spanwise and wall-normal velocities and for the pressure are shorter, O ( δ -2δ). The correlations are shown to be inclined to the wall at angles that depend on the distance from the wall, on the variable being considered, and on the correlation level used to define them. All these features change little between the two types of flows. Most the above features are also approximately independent of the Reynolds number, except for the pressure, and for the streamwise velocity structures in the channel. Further insight into the flow is provided by correlations conditioned on the intensity of the perturbations at the reference point, or on their sign. The statistics of the new simulation are available in our website.

238 citations


Journal ArticleDOI
TL;DR: In this article, the authors investigated the high Reynolds number behavior of the canonical incompressible turbulent channel flow through large-scale direct numerical simulation (DNS) and found that the mean velocity profile never achieves a truly logarithmic profile, and the log-linear diagnostic function instead exhibits a linear variation in the outer layer whose slope decreases with the Reynolds number.
Abstract: The high-Reynolds-number behaviour of the canonical incompressible turbulent channel flow is investigated through large-scale direct numerical simulation (DNS). A Reynolds number is achieved ( , where is the channel half-height, and is the viscous length scale) at which theory predicts the onset of phenomena typical of the asymptotic Reynolds number regime, namely a sensible layer with logarithmic variation of the mean velocity profile, and Kolmogorov scaling of the velocity spectra. Although higher Reynolds numbers can be achieved in experiments, the main advantage of the present DNS study is access to the full three-dimensional flow field. Consistent with refined overlap arguments (Afzal & Yajnik, J. Fluid Mech. vol. 61, 1973, pp. 23–31; Jimenez & Moser, Phil. Trans. R. Soc. Lond. A, vol. 365, 2007, pp. 715–732), our results suggest that the mean velocity profile never achieves a truly logarithmic profile, and the logarithmic diagnostic function instead exhibits a linear variation in the outer layer whose slope decreases with the Reynolds number. The extrapolated value of the von Karman constant is . A near logarithmic layer is observed in the spanwise velocity variance, as predicted by Townsend’s attached eddy hypothesis, whereas the streamwise variance seems to exhibit a shoulder, perhaps being still affected by low-Reynolds-number effects. Comparison with previous DNS data at lower Reynolds number suggests enhancement of the imprinting effect of outer-layer eddies onto the near-wall region. This mechanisms is associated with excess turbulence kinetic energy production in the outer layer, and it reflects in flow visualizations and in the streamwise velocity spectra, which exhibit sharp peaks in the outer layer. Associated with the outer energy production site, we find evidence of a Kolmogorov-like inertial range, limited to the spanwise spectral density of , whereas power laws with different exponents are found for the other spectra. Finally, arguments are given to explain the ‘odd’ scaling of the streamwise velocity variances, based on the analysis of the kinetic energy production term.

227 citations


Journal ArticleDOI
TL;DR: In this article, a discrete-time, arbitrary-motion, unsteady thin aerofoil theory with discrete-vortex shedding from the leading edge governed by the instantaneous leading-edge suction parameter (LESP) was proposed.
Abstract: Unsteady aerofoil flows are often characterized by leading-edge vortex (LEV) shedding. While experiments and high-order computations have contributed to our understanding of these flows, fast low-order methods are needed for engineering tasks. Classical unsteady aerofoil theories are limited to small amplitudes and attached leading-edge flows. Discrete-vortex methods that model vortex shedding from leading edges assume continuous shedding, valid only for sharp leading edges, or shedding governed by ad-hoc criteria such as a critical angle of attack, valid only for a restricted set of kinematics. We present a criterion for intermittent vortex shedding from rounded leading edges that is governed by a maximum allowable leading-edge suction. We show that, when using unsteady thin aerofoil theory, this leading-edge suction parameter (LESP) is related to the term in the Fourier series representing the chordwise variation of bound vorticity. Furthermore, for any aerofoil and Reynolds number, there is a critical value of the LESP, which is independent of the motion kinematics. When the instantaneous LESP value exceeds the critical value, vortex shedding occurs at the leading edge. We have augmented a discrete-time, arbitrary-motion, unsteady thin aerofoil theory with discrete-vortex shedding from the leading edge governed by the instantaneous LESP. Thus, the use of a single empirical parameter, the critical-LESP value, allows us to determine the onset, growth, and termination of LEVs. We show, by comparison with experimental and computational results for several aerofoils, motions and Reynolds numbers, that this computationally inexpensive method is successful in predicting the complex flows and forces resulting from intermittent LEV shedding, thus validating the LESP concept.

226 citations


Journal ArticleDOI
TL;DR: In this article, the turbulent forced convection heat transfer of water/functionalized multi-walled carbon nanotube (FMWCNT) nanofluids over a forward-facing step was studied.
Abstract: The turbulent forced convection heat transfer of water/functionalized multi-walled carbon nanotube (FMWCNT) nanofluids over a forward-facing step was studied in this work. Turbulence was modeled using the shear stress transport K-ω model. Simulations were performed for Reynolds numbers ranging from 10,000 to 40,000, heat fluxes from 1,000 to 10,000 W/m2, and nanoparticle volume fractions of 0.00% to 0.25%. The two-dimensional governing equations were discretized with the finite volume method. The effects of nanoparticle concentration, shear force, heat flux, contraction, and turbulence on the hydraulics and thermal behavior of nanofluid flow were studied. The model predictions were found to be in good agreement with previous experimental and numerical studies. The results indicate that the Reynolds number and FMWCNT volume fraction considerably affect the heat transfer coefficient; a rise in local heat transfer coefficient was noted when both Reynolds number and FMWCNT volume fraction were increased for a...

221 citations


Journal ArticleDOI
TL;DR: In this paper, a hierarchy of eddy-viscosity terms in proper orthogonal decomposition (POD) Galerkin models is investigated to account for a large fraction of unresolved fluctuation energy.
Abstract: We investigate a hierarchy of eddy-viscosity terms in proper orthogonal decomposition (POD) Galerkin models to account for a large fraction of unresolved fluctuation energy. These Galerkin methods are applied to large eddy simulation (LES) data for a flow around a vehicle-like bluff body called an Ahmed body. This flow has three challenges for any reduced-order model: a high Reynolds number, coherent structures with broadband frequency dynamics, and meta-stable asymmetric base flow states. The Galerkin models are found to be most accurate with modal eddy viscosities as proposed by Rempfer & Fasel (J. Fluid Mech., vol. 260, 1994a, pp. 351–375; J. Fluid Mech. vol. 275, 1994b, pp. 257–283). Robustness of the model solution with respect to initial conditions, eddy-viscosity values and model order is achieved only for state-dependent eddy viscosities as proposed by Noack, Morzynski & Tadmor (Reduced-Order Modelling for Flow Control, CISM Courses and Lectures, vol. 528, 2011). Only the POD system with state-dependent modal eddy viscosities can address all challenges of the flow characteristics. All parameters are analytically derived from the Navier–Stokes-based balance equations with the available data. We arrive at simple general guidelines for robust and accurate POD models which can be expected to hold for a large class of turbulent flows.

201 citations


Journal ArticleDOI
TL;DR: In this article, a quantitative criterion was developed to quantify the onset of nonlinear flow by comprehensive combination of Forchheimer's law and Reynolds number, and several high-precision water flow tests were carried out with different hydraulic gradients then the critical Reynolds number was determined based on the developed criterion.
Abstract: This paper experimentally investigates the role of shear processes on the variation of critical Reynolds number and nonlinear flow through rough-walled rock fractures. A quantitative criterion was developed to quantify the onset of nonlinear flow by comprehensive combination of Forchheimer's law and Reynolds number. At each shear displacement, several high-precision water flow tests were carried out with different hydraulic gradients then the critical Reynolds number was determined based on the developed criterion. The results show that (i) the Forchheimer's law was fitted very well to experimental results of nonlinear fluid flow through rough-walled fractures, (ii) the coefficients of viscous and inertial pressure drops experience 4 and 7 orders of magnitude reduction during shear displacement, respectively, and (iii) the critical Reynolds number varies from 0.001 to 25 and experiences 4 orders of magnitude enlargement by increasing shear displacement from 0 to 20 mm. These findings may prove useful in proper understanding of fluid flow through rock fractures, or inclusions in computational studies of large-scale nonlinear flow in fractured rocks.

Journal ArticleDOI
TL;DR: In this paper, a numerical investigation is conducted to analyze the two-dimensional incompressible Navier-Stokes flows through the artificially roughened solar air heater for relevant Reynolds number ranges from 3800 to 18,000.

Journal ArticleDOI
TL;DR: In this paper, the effects of Brownian motion and thermophoresis have been included in the model of nanofluid and the basic partial differential equations are reduced to ordinary differential equations which are solved numerically using the fourth-order Runge-Kutta method.

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the accuracy and efficiency of discontinuous Galerkin spectral method simulations of under-resolved transitional and turbulent flows at moderate Reynolds numbers, where the accurate prediction of closely coupled laminar regions, transition and developed turbulence presents a great challenge to large eddy simulation modelling.
Abstract: SUMMARY In this paper, we investigate the accuracy and efficiency of discontinuous Galerkin spectral method simulations of under-resolved transitional and turbulent flows at moderate Reynolds numbers, where the accurate prediction of closely coupled laminar regions, transition and developed turbulence presents a great challenge to large eddy simulation modelling. We take full advantage of the low numerical errors and associated superior scale resolving capabilities of high-order spectral methods by using high-order ansatz functions up to 12th order. We employ polynomial de-aliasing techniques to prevent instabilities arising from inexact quadrature of nonlinearities. Without the need for any additional filtering, explicit or implicit modelling, or artificial dissipation, our high-order schemes capture the turbulent flow at the considered Reynolds number range very well. Three classical large eddy simulation benchmark problems are considered: a circular cylinder flow at ReD=3900, a confined periodic hill flow at Reh=2800 and the transitional flow over a SD7003 airfoil at Rec=60,000. For all computations, the total number of degrees of freedom used for the discontinuous Galerkin spectral method simulations is chosen to be equal or considerably less than the reported data in literature. In all three cases, we achieve an equal or better match to direct numerical simulation results, compared with other schemes of lower order with explicitly or implicitly added subgrid scale models. Copyright © 2014 John Wiley & Sons, Ltd.

Journal ArticleDOI
TL;DR: A hydrodynamic approach is reported that enables deterministic focusing of beads, mammalian cells and anisotropic hydrogel particles in a microchannel at extremely high flow rates and demonstrates bioparticle focusing at flow rates that are the highest yet achieved.
Abstract: Controlled manipulation of particles from very large volumes of fluid at high throughput is critical for many biomedical, environmental and industrial applications. One promising approach is to use microfluidic technologies that rely on fluid inertia or elasticity to drive lateral migration of particles to stable equilibrium positions in a microchannel. Here, we report on a hydrodynamic approach that enables deterministic focusing of beads, mammalian cells and anisotropic hydrogel particles in a microchannel at extremely high flow rates. We show that on addition of micromolar concentrations of hyaluronic acid, the resulting fluid viscoelasticity can be used to control the focal position of particles at Reynolds numbers up to Re≈10,000 with corresponding flow rates and particle velocities up to 50 ml min−1 and 130 m s−1. This study explores a previously unattained regime of inertio-elastic fluid flow and demonstrates bioparticle focusing at flow rates that are the highest yet achieved. Controlled manipulation of particles from very large volumes of fluid at high throughput is critical for many real-world applications. Here, the authors show bioparticle focusing in a microchannel for a previously unattained regime of inertio-elastic flow at Reynolds numbers up to 10,000.

Journal ArticleDOI
TL;DR: In this article, the authors investigated the behavior of dense particle suspensions in the turbulent/inertial regime of a Newtonian fluid with solid neutrally buoyant spheres at relatively high volume fractions in a plane channel.
Abstract: Dense particle suspensions are widely encountered in many applications and in environmental flows. While many previous studies investigate their rheological properties in laminar flows, little is known on the behaviour of these suspensions in the turbulent/inertial regime. The present study aims to fill this gap by investigating the turbulent flow of a Newtonian fluid laden with solid neutrally-buoyant spheres at relatively high volume fractions in a plane channel. Direct Numerical Simulation are performed in the range of volume fractions Phi=0-0.2 with an Immersed Boundary Method used to account for the dispersed phase. The results show that the mean velocity profiles are significantly altered by the presence of a solid phase with a decrease of the von Karman constant in the log-law. The overall drag is found to increase with the volume fraction, more than one would expect just considering the increase of the system viscosity due to the presence of the particles. At the highest volume fraction here investigated, Phi=0.2, the velocity fluctuation intensities and the Reynolds shear stress are found to decrease. The analysis of the mean momentum balance shows that the particle-induced stresses govern the dynamics at high Phi and are the main responsible of the overall drag increase. In the dense limit, we therefore find a decrease of the turbulence activity and a growth of the particle induced stress, where the latter dominates for the Reynolds numbers considered here.

Journal ArticleDOI
TL;DR: In this article, the authors compared the friction factor and forced convection heat transfer of SiO2 nanoparticles dispersed in water as a base fluid conducted in a car radiator experimentally and numerically.

Journal ArticleDOI
TL;DR: In this article, a mixed convection peristaltic flow of magnetohydrodynamic (MHD) nanofluid is analyzed in the presence of velocity, thermal, and concentration slip effects.

Journal ArticleDOI
TL;DR: In this article, the effects of significant parameters such as Reynolds number, micro rotation/angular velocity and Peclet number on the flow, heat transfer and concentration characteristics are discussed.

Journal ArticleDOI
TL;DR: In this article, the effect of the nanoparticle volume fraction, rotational Reynolds number, injection Reynolds number and expansion ratio on flow and heat transfer in an asymmetric laminar flow between contracting rotating disks is investigated.

Journal ArticleDOI
TL;DR: The results of a finely resolved large-eddy simulation (LES) of a spatially developing zero-pressure-gradient turbulent boundary layer up to a Reynolds number of Re θ = 8300 are presented in this article.

Journal ArticleDOI
TL;DR: In this article, a numerical investigation on the heat transfer and fluid flow characteristics of fully developed turbulent flow in a rectangular duct having repeated transverse square sectioned rib roughness on the absorber plate has been carried out.

Journal ArticleDOI
TL;DR: In this paper, a numerical analysis of the thermal and thermodynamic performance of a parabolic trough solar collector with perforated plate inserts is presented, where the porosity of the plate was fixed at 0.65.

Journal ArticleDOI
TL;DR: In this paper, a non-equilibrium wall model based on unsteady 3D Reynolds-averaged Navier-Stokes (RANS) equations has been implemented in an unstructured mesh environment.
Abstract: A non-equilibrium wall-model based on unsteady 3D Reynolds-averaged Navier-Stokes (RANS) equations has been implemented in an unstructured mesh environment. The method is similar to that of the wall-model for structured mesh described by Wang and Moin [Phys. Fluids 14, 2043–2051 (2002)], but is supplemented by a new dynamic eddy viscosity/conductivity model that corrects the effect of the resolved Reynolds stress (resolved turbulent heat flux) on the skin friction (wall heat flux). This correction is crucial in predicting the correct level of the skin friction. Unlike earlier models, this eddy viscosity/conductivity model does not have a stress-matching procedure or a tunable free parameter, and it shows consistent performance over a wide range of Reynolds numbers. The wall-model is validated against canonical (attached) transitional and fully turbulent flows at moderate to very high Reynolds numbers: a turbulent channel flow at Reτ = 2000, an H-type transitional boundary layer up to Reθ = 3300, and a hig...

Journal ArticleDOI
TL;DR: In this article, the authors presented new equations for a flow pattern independent drift flux model based void fraction correlation applicable to gas-liquid two-phase flow covering a wide range of fluid combinations and pipe diameters.

Journal ArticleDOI
TL;DR: In this article, it is shown that the hydraulic roughness length scale is related to the root-mean-square height (krms) and skewness (sk) of the surface elevation probability density function.
Abstract: This paper outlines the authors' experimental research in rough-wall-bounded turbulent flows that has spanned the past 15 years. The results show that, in general, roughness effects are confined to the inner layer. In accordance with Townsend's Reynolds number similarity hypothesis, the outer layer is insensitive to surface condition except in the role it plays in setting the length and velocity scales for the outer flow. An exception to this can be two-dimensional roughness which has been observed in some cases to suffer roughness effects far from the wall. However, recent results indicate that similarity also holds for two-dimensional roughness provided the Reynolds number is large, and there is sufficient scale separation between the roughness length scale and the boundary layer thickness. The concept of similarity between smooth- and rough-wall flows is of great practical importance as most computational and analytical modeling tools rely on it either explicitly or implicitly in predicting flows over rough walls. Because of the observed similarity, the roughness function (ΔU+), or shift in the log layer, is a useful way of characterizing the roughness effect on the mean flow and the frictional drag. In the fully rough regime, it is shown that the hydraulic roughness length scale is related to the root-mean-square height (krms) and skewness (sk) of the surface elevation probability density function. On the other hand, the onset of roughness effects is seen to be associated with the largest surface features which are typified by the peak-to-trough height (kt). Roughness function behavior in the transitionally rough regime varies significantly between roughness types. Since no “universal” roughness function exists, no single roughness length scale can characterize all roughness types in all the flow regimes. Despite this, research using roughness with a systematic variation in texture is ongoing in an effort to uncover surface parameters that lead to the variation in the frictional drag behavior witnessed in the transitionally rough regime.

Journal ArticleDOI
TL;DR: The results show that, compared with the previous models, the present model is more stable and achieves an overall improvement in the accuracy of the capturing interface and can effectively reduce the spurious velocity and fluctuation of the kinetic energy.
Abstract: In this paper, a phase-field-based multiple-relaxation-time lattice Boltzmann (LB) model is proposed for incompressible multiphase flow systems. In this model, one distribution function is used to solve the Chan-Hilliard equation and the other is adopted to solve the Navier-Stokes equations. Unlike previous phase-field-based LB models, a proper source term is incorporated in the interfacial evolution equation such that the Chan-Hilliard equation can be derived exactly and also a pressure distribution is designed to recover the correct hydrodynamic equations. Furthermore, the pressure and velocity fields can be calculated explicitly. A series of numerical tests, including Zalesak's disk rotation, a single vortex, a deformation field, and a static droplet, have been performed to test the accuracy and stability of the present model. The results show that, compared with the previous models, the present model is more stable and achieves an overall improvement in the accuracy of the capturing interface. In addition, compared to the single-relaxation-time LB model, the present model can effectively reduce the spurious velocity and fluctuation of the kinetic energy. Finally, as an application, the Rayleigh-Taylor instability at high Reynolds numbers is investigated.

Journal ArticleDOI
TL;DR: This result verifies the notion that bifurcations can occur in high-dimensional flows (that is, very large Re) and questions Kolmogorov's paradigm.
Abstract: The ubiquity of turbulent flows in nature and technology makes it of utmost importance to fundamentally understand turbulence. Kolmogorov’s 1941 paradigm suggests that for strongly turbulent flows with many degrees of freedom and large fluctuations, there would only be one turbulent state as the large fluctuations would explore the entire higher dimensional phase space. Here we report the first conclusive evidence of multiple turbulent states for large Reynolds number, Re (106) (Taylor number Ta (1012)) Taylor–Couette flow in the regime of ultimate turbulence, by probing the phase space spanned by the rotation rates of the inner and outer cylinder. The manifestation of multiple turbulent states is exemplified by providing combined global torque- and local-velocity measurements. This result verifies the notion that bifurcations can occur in high-dimensional flows (that is, very large Re) and questions Kolmogorov’s paradigm.

Journal ArticleDOI
TL;DR: In this paper, the turbulent/non-turbulent interface in a zero-pressure-gradient turbulent boundary layer at high Reynolds number (Re = 14500) was examined using particle image velocimetry.
Abstract: The turbulent/non-turbulent interface in a zero-pressure-gradient turbulent boundary layer at high Reynolds number (Re = 14500) is examined using particle image velocimetry. An experimental set-up is utilized that employs multiple high-resolution cameras to capture a large field of view that extends 2δ× 1:1δ in the streamwise/wallnormal plane with an unprecedented dynamic range. The interface is detected using a criteria of local turbulent kinetic energy and proves to be an effective method for boundary layers. The presence of a turbulent/non-turbulent superlayer is corroborated by the presence of a jump for the conditionally averaged streamwise velocity across the interface. The steep change in velocity is accompanied by a discontinuity in vorticity and a sharp rise in the Reynolds shear stress. The conditional statistics at the interface are in quantitative agreement with the superlayer equations outlined by Reynolds (J. Fluid Mech., vol. 54, 1972, pp. 481-488). Further analysis introduces the mass flux as a physically relevant parameter that provides a direct quantitative insight into the entrainment. Consistency of this approach is first established via the equality of mean entrainment calculations obtained using three different methods, namely, conditional, instantaneous and mean equations of motion. By means of 'mass-flux spectra' it is shown that the boundary-layer entrainment is characterized by two distinctive length scales which appear to be associated with a two-stage entrainment process and have a substantial scale separation. © 2014 Cambridge University Press. ;

Journal ArticleDOI
TL;DR: In this paper, a simulation of non-Brownian concentrated suspensions in a Couette flow at zero Reynolds number using a fictitious domain method is presented, which emphasizes the effect of friction between particles and its role on rheological properties, especially on normal stress differences.
Abstract: This paper presents three-dimensional numerical simulations of non-Brownian concentrated suspensions in a Couette flow at zero Reynolds number using a fictitious domain method. Contacts between particles are modelled using a discrete element method (DEM)-like approach, which allows for a more physical description, including roughness and friction. This work emphasizes the effect of friction between particles and its role on rheological properties, especially on normal stress differences. Friction is shown to notably increase viscosity and second normal stress difference and decrease , in better agreement with experiments. The hydrodynamic and contact contributions to the overall particle stress are particularly investigated. This shows that the effect of friction is mostly due to the additional contact stress since the hydrodynamic stress remains unaffected by friction. Simulation results are also compared with experiments, such as normal stresses or effective friction coefficient , and the agreement is improved when friction is accounted for. This suggests that friction is operative in actual suspensions.