scispace - formally typeset
Search or ask a question

Showing papers on "Rhizoctonia solani published in 2017"


Journal ArticleDOI
TL;DR: The fungal endophytic communities associated with healthy maize and rice plants are characterized and the deterministic factors influencing plant growth and biocontrol properties against phytopathogens are studied to fill the gap in the agriculture industry.
Abstract: In a natural ecosystem, the plant is in a symbiotic relationship with beneficial endophytes contributing huge impact on its host plant. Therefore, exploring beneficial endophytes and understanding its interaction is a prospective area of research. The present work aims to characterize the fungal endophytic communities associated with healthy maize and rice plants and to study the deterministic factors influencing plant growth and biocontrol properties against phytopathogens, viz, Pythium ultimum, Sclerotium oryzae, Rhizoctonia solani, and Pyricularia oryzae. A total of 123 endophytic fungi was isolated using the culture-dependent approach from different tissue parts of the plant. Most dominating fungal endophyte associated with both the crops belong to genus Fusarium, Sarocladium, Aspergillus, and Penicillium and their occurrence was not tissue specific. The isolates were screened for in vitro plant growth promotion, stress tolerance, disease suppressive mechanisms and based on the results, each culture from both the cereal crops was selected for further study. Acremonium sp. (ENF 31) and Penicillium simplicisssum (ENF22), isolated from maize and rice respectively could potentially inhibit the growth of all the tested pathogens with 46.47 ± 0.16 mm to 60.09 ± 0.04 mm range zone of inhibition for ENF31 and 35.48 ± 0.14 to 62.29 ± 0.15 mm for ENF22. Both significantly produce the defensive enzymes, ENF31 could tolerate a wide range of pH from 2 to 12, very important criteria, for studying plant growth in different soil types, especially acidic as it is widely prevalent here, making more land unsuitable for cultivation. ENF22 grows in pH range 3-12, with 10% salt tolerating ability, another factor of consideration. Study of root colonization during 7th to 30th days of growth phase reveals that ENF31 could colonize pleasantly in rice, though a maize origin, ranging from 1.02 to 1.21 log10 CFU/g root and in maize, it steadily colonizes ranging from 0.95 to 1.18 log10 CFU, while ENF22 could colonize from 0.98 to 1.24 Log10CFU/g root in rice and 1.01 to 1.24Log10CFU/g root in maize, just the reverse observed in Acremonium sp. Therefore, both the organism has the potency of a promising Bio-resource agent, that we must definitely explore to fill the gap in the agriculture industry.

155 citations


Journal ArticleDOI
TL;DR: Results suggested that Streptomyces strain KX852460 had good general antifungal activity and might have potential biocontrol antagonist against R. solani AG-3 to cure the target spot in tobacco leaf.
Abstract: Streptomyces strain KX852460 having antifungal activity against Rhizoctonia solani AG-3 KX852461 that is the causal agent of target spot disease in tobacco leaf. The aim of the study was to determine the antifungal activity of Streptomyces strain KX852460 extract against R. solani AG-3 and to identify bioactive antifungal compounds produced by strain KX852460. Crude substance was produced by submerged fermentation process from Streptomyces strain KX852460. Various solvent was used to extract the culture filtrate. Among all, ethyl acetate extracted supernatant showed great potency against R. solani AG-3 KX852461. The active fractions were purified by silica gel column chromatography having 52 mm zone of inhibition against R. solani AG-3 KX852461. The purified fractions were identified by gas chromatography–mass spectrometry technique. Twenty-seven compounds were identified and most of the compounds were the derivatives of aromatic compounds. Eicosane (C20H42) and dibutyl phthalate (C16H22O4) were found antifungal compounds in this study. While morphinan, 7,8-didehydro-4,5-epoxy-17-methyl-3,6-bis[(trimethylsilyl)oxy]-, (5.Alpha. 6.Alpha)—(C23H35NO3Si2), cyclononasiloxane, octadecamethyl—(C18H54O9Si9) and benzoic acid, 2,5-bis(trimethylsiloxy) (C16H30O4Si3) were the major compounds with highest peak number. These results suggested that Streptomyces strain KX852460 had good general antifungal activity and might have potential biocontrol antagonist against R. solani AG-3 KX852461 to cure the target spot in tobacco leaf.

115 citations


Journal ArticleDOI
TL;DR: Burkholderia, Rahnella, Pseudomonas, and Curtobacterium were major endophyte genera that showed bio-control activities in the in-vitro assays and were stronger across all tested plant pathogens as compared to other stains.
Abstract: Microbial communities in the endosphere of Salicaceae plants, poplar (Populus trichocarpa) and willow (Salix sitchensis), have been demonstrated to be important for plant growth promotion, protection from biotic and abiotic stresses, and degradation of toxic compounds. Our study aimed to investigate bio-control activities of Salicaceae endophytes against various soil borne plant pathogens including Rhizoctonia solani AG-8, Fusarium culmorum, Gaeumannomyces graminis var. tritici, and Pythium ultimum. Additionally, different plant growth promoting traits such as biological nitrogen fixation (BNF), indole-3-acetic acid (IAA) biosynthesis, phosphate solubilization, and siderophore production were assessed in all bio-control positive strains. Burkholderia, Rahnella, Pseudomonas, and Curtobacterium were major endophyte genera that showed bio-control activities in the in-vitro assays. The bio-control activities of Burkholderia strains were stronger across all tested plant pathogens as compared to other stains. Genomes of sequenced Burkholderia strains WP40 and WP42 were surveyed to identify the putative genes involved in the bio-control activities. The ocf and hcnABC gene clusters responsible for biosynthesis of the anti-fungal metabolites, occidiofungin and hydrogen cyanide, are present in the genomes of WP40 and WP42. Nearly all endophyte strains showing the bio-control activities produced IAA, solubilized tricalcium phosphate, and synthesized siderophores in the culture medium. Moreover, some strains reduced acetylene into ethylene in the acetylene reduction assay, a common assay used for BNF. Salicaceae endophytes could be useful for bio-control of various plant pathogens, and plant growth promotion possibly through the mechanisms of BNF, IAA production, and nutrient acquisition.

114 citations


Journal ArticleDOI
TL;DR: The results show that Trichoderma is able to respond in different ways to the presence of a plant or a fungal host, and it can even distinguish between different strains of fungi of a given species.
Abstract: Trichoderma spp. can establish beneficial interactions with plants by promoting plant growth and defense systems, as well as, antagonizing fungal phytopathogens in mycoparasitic interactions. Such interactions depend on signal exchange between both participants and can be mediated by effector proteins that alter the host cell structure and function, allowing the establishment of the relationship. The main purpose of this work was to identify, using computational methods, candidates of effector proteins from T. virens, T. atroviride and T. reesei, validate the expression of some of the genes during a beneficial interaction and mycoparasitism and to define the biological function for one of them. We defined a catalogue of putative effector proteins from T. virens, T. atroviride and T. reesei. We further validated the expression of 16 genes encoding putative effector proteins from T. virens and T. atroviride during the interaction with the plant Arabidopsis thaliana, and with two anastomosis groups of the phytopathogenic fungus Rhizoctonia solani. We found genes which transcript levels are modified in response to the presence of both plant fungi, as well as genes that respond only to either a plant or a fungal host. Further, we show that overexpression of the gene tvhydii1, a Class II hydrophobin family member, enhances the antagonistic activity of T. virens against R. solani AG2. Further, deletion of tvhydii1 results in reduced colonization of plant roots, while its overexpression increases it. Our results show that Trichoderma is able to respond in different ways to the presence of a plant or a fungal host, and it can even distinguish between different strains of fungi of a given species. The putative effector proteins identified here may play roles in preventing perception of the fungus by its hosts, favoring host colonization or protecting it from the host’s defense response. Finally, the novel effector protein TVHYDII1 plays a role in plant root colonization by T, virens, and participates in its antagonistic activity against R. solani.

102 citations


Journal ArticleDOI
Ke Liu1, Molli M. Newman1, John A. McInroy1, Chia-Hui Hu1, Joseph W. Kloepper1 
TL;DR: Select individual PGPR strains showed broad-spectrum biocontrol activity to multiple plant diseases, as well as predicting secondary metabolite clusters of selected strains.
Abstract: A study was designed to screen individual strains of plant growth-promoting rhizobacteria (PGPR) for broad-spectrum disease suppression in vitro and in planta. In a preliminary screen, 28 of 196 strains inhibited eight different tested pathogens in vitro. In a secondary screen, these 28 strains showed broad spectrum antagonistic activity to six different genera of pathogens, and 24 of the 28 strains produced five traits reported to be related to plant growth promotion, including nitrogen fixation, phosphate solubilization, indole-3-acetic acid production, siderophore production, and biofilm formation. In advanced screens, the 28 PGPR strains selected in vitro were tested in planta for biological control of multiple plant diseases including bacterial spot of tomato caused by Xanthomonas axonopodis pv. vesicatoria, bacterial speck of tomato caused by Pseudomonas syringae pv. tomato, damping-off of pepper caused by Rhizoctonia solani, and damping-off of cucumber caused by Pythium ultimum. In all, 5 of the 28 tested strains significantly reduced three of the four tested diseases, and another 19 strains showed biological control to two tested diseases. To understand the observed broad-spectrum biocontrol capacity, antiSMASH was used to predict secondary metabolite clusters of selected strains. Multiple gene clusters encoding for secondary metabolites, e.g., bacillibactin, bacilysin, and microcin, were detected in each strain. In conclusion, selected individual PGPR strains showed broad-spectrum biocontrol activity to multiple plant diseases.

101 citations


Journal ArticleDOI
TL;DR: The discovery of a natural infection of the phytopathogenic fungus Rhizoctonia solani by a plant virus, cucumber mosaic virus (CMV), which is evidence of cross-kingdom virus transmission from the plant to fungus.
Abstract: The transmission of viral infections between plant and fungal hosts has been suspected to occur, based on phylogenetic and other findings, but has not been directly observed in nature. Here, we report the discovery of a natural infection of the phytopathogenic fungus Rhizoctonia solani by a plant virus, cucumber mosaic virus (CMV). The CMV-infected R. solani strain was obtained from a potato plant growing in Inner Mongolia Province of China, and CMV infection was stable when this fungal strain was cultured in the laboratory. CMV was horizontally transmitted through hyphal anastomosis but not vertically through basidiospores. By inoculation via protoplast transfection with virions, a reference isolate of CMV replicated in R. solani and another phytopathogenic fungus, suggesting that some fungi can serve as alternative hosts to CMV. Importantly, in fungal inoculation experiments under laboratory conditions, R. solani could acquire CMV from an infected plant, as well as transmit the virus to an uninfected plant. This study presents evidence of the transfer of a virus between plant and fungus, and it further expands our understanding of plant–fungus interactions and the spread of plant viruses.

87 citations


Journal ArticleDOI
03 Aug 2017-PLOS ONE
TL;DR: The plant growth promotion study showed that the inoculation of consortia of these four PGPR isolates significantly increased the growth of tea plant in nursery conditions, underlines the commercial potential of these selected PGPR isolate for sustainable tea cultivation.
Abstract: Plant growth promoting rhizobacteria (PGPR) are studied in different agricultural crops but the interaction of PGPR of tea crop is not yet studied well. In the present study, the indigenous tea rhizobacteria were isolated from seven tea estates of Darjeeling located in West Bengal, India. A total of 150 rhizobacterial isolates were screened for antagonistic activity against six different fungal pathogens i.e. Nigrospora sphaerica (KJ767520), Pestalotiopsis theae (ITCC 6599), Curvularia eragostidis (ITCC 6429), Glomerella cingulata (MTCC 2033), Rhizoctonia Solani (MTCC 4633) and Fusarium oxysporum (MTCC 284), out of which 48 isolates were antagonist to at least one fungal pathogen used. These 48 isolates exhibited multifarious antifungal properties like the production of siderophore, chitinase, protease and cellulase and also plant growth promoting (PGP) traits like IAA production, phosphate solubilization, ammonia and ACC deaminase production. Amplified ribosomal DNA restriction analysis (ARDRA) and BOX-PCR analysis based genotyping clustered the isolates into different groups. Finally, four isolates were selected for plant growth promotion study in two tea commercial cultivars TV-1 and Teenali-17 in nursery conditions. The plant growth promotion study showed that the inoculation of consortia of these four PGPR isolates significantly increased the growth of tea plant in nursery conditions. Thus this study underlines the commercial potential of these selected PGPR isolates for sustainable tea cultivation.

81 citations


Journal ArticleDOI
TL;DR: The present study unravels key events associated during susceptible rice-R.
Abstract: Sheath blight disease is caused by a necrotrophic fungal pathogen Rhizoctonia solani and it continues to be a challenge for sustainable rice cultivation. In this study, we adopted a multi-pronged approach to understand the intricacies of rice undergoing susceptible interactions with R. solani. Extensive anatomical alteration, chloroplast localized ROS, deformed chloroplast ultrastructure along with decreased photosynthetic efficiency were observed in infected tissue. GC-MS based metabolite profiling revealed accumulation of glycolysis and TCA cycle intermediates, suggesting enhanced respiration. Several aromatic and aliphatic amino acids along with phenylpropanoid intermediates were also accumulated, suggesting induction of secondary metabolism during pathogenesis. Furthermore, alterations in carbon metabolism along with perturbation of hormonal signalling were highlighted in this study. The gene expression analysis including RNAseq profiling reinforced observed metabolic alterations in the infected tissues. In conclusion, the present study unravels key events associated during susceptible rice-R. solani interactions and identifies metabolites and transcripts that are accumulated in infected tissues.

74 citations


Journal ArticleDOI
TL;DR: Analysis of the biocontrol behavior of a Tunisian strain of T. harzianum against Fso14 provided valuable information on using Ths97 as a beneficial agent to control fusarium root rot disease caused by F. solani in olive trees.

66 citations


Journal ArticleDOI
TL;DR: It is shown that VOCs released from mycelium and sclerotia of the fungal root pathogen Rhizoctonia solani enhance growth and accelerate development of Arabidopsis thaliana, suggesting that enhanced biomass and accelerated development are primed already at early developmental stages.
Abstract: Beneficial soil microorganisms can affect plant growth and resistance by the production of volatile organic compounds (VOCs). Yet, little is known on how VOCs from soil-borne plant pathogens affect plant growth and resistance. Here we show that VOCs released from mycelium and sclerotia of the fungal root pathogen Rhizoctonia solani enhance growth and accelerate development of Arabidopsis thaliana. Seedlings briefly exposed to the fungal VOCs showed similar phenotypes, suggesting that enhanced biomass and accelerated development are primed already at early developmental stages. Fungal VOCs did not affect plant resistance to infection by the VOC-producing pathogen itself but reduced aboveground resistance to the herbivore Mamestra brassicae. Transcriptomics of A. thaliana revealed that genes involved in auxin signaling were up-regulated, whereas ethylene and jasmonic acid signaling pathways were down-regulated by fungal VOCs. Mutants disrupted in these pathways showed similar VOC-mediated growth responses as the wild-type A. thaliana, suggesting that other yet unknown pathways play a more prominent role. We postulate that R. solani uses VOCs to predispose plants for infection from a distance by altering root architecture and enhancing root biomass. Alternatively, plants may use enhanced root growth upon fungal VOC perception to sacrifice part of the root biomass and accelerate development and reproduction to survive infection.

64 citations


Journal ArticleDOI
TL;DR: In vivo glasshouse experiments showed that SNPs at the same concentration favourably affects both the fresh and dry weight of rice plants with a remarkable suppressive effect on the lesion development in leaves.
Abstract: Sheath blight disease in rice has caused major crop losses worldwide Managing the causal agent of disease Rhizoctonia solani Kuhn is difficult because of its broad host range and formation of sclerotia which can survive in harsh environmental conditions; therefore developing innovative disease management methods without application of hazardous chemicals has been considered as the main concern to maintain sustainable agriculture This presented research has revealed the negative impact of silver nanoparticles (SNPs) on R solani and disease progress both in vitro and in vivo The adverse effects of the SNPs on R solaniare significantly dependent on the quantity of SNPs, sprayed at different concentrations in vitro The highest inhibition level against sclerotia formation and mycelia growth are 92 and 85%, respectively, at a SNPs concentration of 50 ppm In vivo glasshouse experiments also showed that SNPs at the same concentration favourably affects both the fresh and dry weight of rice plants with a remarkable suppressive effect on the lesion development in leaves

Journal ArticleDOI
TL;DR: Results clearly indicate the effectiveness and mechanisms of B. subtilis strain 330-2 in enhancing plant growth, as well as tolerance to biotic/abiotic stresses, which suggests that the strain has great potential for commercialization as a vital biological control agent.
Abstract: Plant growth-promoting bacteria (PGPB) may trigger tolerance against biotic/abiotic stresses and growth enhancement in plants. In this study, an endophytic bacterial strain from rapeseed was isolated to assess its role in enhancing plant growth and tolerance to abiotic stresses, as well as banded leaf and sheath blight disease in maize. Based on 16S rDNA and BIOLOG test analysis, the 330-2 strain was identified as Bacillus subtilis. The strain produced indole-3-acetic acid, siderophores, lytic enzymes and solubilized different sources of organic/inorganic phosphates and zinc. Furthermore, the strain strongly suppressed the in vitro growth of Rhizoctonia solani AG1-IA, Botrytis cinerea, Fusarium oxysporum, Alternaria alternata, Cochliobolus heterostrophus, and Nigrospora oryzae. The strain also significantly increased the seedling growth (ranging 14–37%) of rice and maize. Removing PCR analysis indicated that 114 genes were differentially expressed, among which 10%, 32% and 10% were involved in antibiotic production (e.g., srfAA, bae, fen, mln, and dfnI), metabolism (e.g., gltA, pabA, and ggt) and transportation of nutrients (e.g., fhu, glpT, and gltT), respectively. In summary, these results clearly indicate the effectiveness and mechanisms of B. subtilis strain 330-2 in enhancing plant growth, as well as tolerance to biotic/abiotic stresses, which suggests that the strain has great potential for commercialization as a vital biological control agent.

Journal ArticleDOI
TL;DR: Diverse endophytic nitrogen fixing bacteria colonize cereal plants non-specifically and possess other plant beneficial traits which help in plant growth promotion.
Abstract: Diazotrophic endophytic bacteria colonizing cereal plants have a tremendous scope to increase crop yields by supporting low input sustainable agricultural demands of nitrogen. Present work was aimed at studying diversity and functional attributes of nitrogen fixing bacterial endophytes from cereal plants. Diazotrophic endophytic bacteria from cereal plants were enriched on nitrogen-free medium and their diversity analyzed by PCR-denaturing gradient gel electrophoresis. Evaluation of plant growth promoting traits of individual isolates and their effect on wheat plants was carried out in plant-soil system. DGGE analysis and band sequencing showed diazotrophic community to be similar in different plant parts but different than total endophytes. Thirty-one nitrogen fixing endophytic bacteria affiliated to Actinobacteria, Proteobacteria and Firmicutes representing 14 genera were isolated, where Arthrobacter, Rhizobium, and Bacillus spp. were more cosmopolitan. Cross-colonization of the endophytes monitored by green fluorescent protein tagging showed that they are not plant specific. All the bacterial isolates showed presence of nifH gene, siderophore production whereas 81% and 48% isolates showed IAA and P-solubilization, respectively. Biocontrol activity was seen only in Streptomyces spp. which inhibited the growth of Rhizoctonia solani. Pot experiments conducted with wheat plant inoculations showed good growth promotion and correlated with IAA and siderophore production by the isolates. Diverse endophytic nitrogen fixing bacteria colonize cereal plants non-specifically and possess other plant beneficial traits which help in plant growth promotion.

Journal ArticleDOI
TL;DR: The results indicated that the fungicides application could be a potential tool to increase plant growth, the antioxidative defense mechanisms and decreased infection with plant diseases.

Journal ArticleDOI
TL;DR: The experiments demonstrate that the Cu@Chit NC synthesized via MVS using acetone was more effective than that of toluene in inhibiting fungal hyphae growth against R. solani AG-4 and S. rolfsii.
Abstract: In this report, the metal-vapor synthesis (MVS) was used for the preparation of copper nanoparticles which was then used for the preparation of chitosan–copper nanocomposite. The antifungal activity of Cu@Chit NCs against two sclerotium-forming plant pathogenic fungi Sclerotium rolfsii (S. rolfsii) and Rhizoctonia solani (R. solani) AG-4 was evaluated in vitro and their effects on hyphal morphology, and sclerotia formation were observed for the first time. The NCs were prepared through impregnation of chitosan with colloid solution of copper nanoparticles in organic solvent (acetone or toluene). Transmission electron microscopy shows that the particles have predominantly spherical form, polydisperse character, the mean diameter about 2–3 nm and a rather uniform distribution in the chitosan matrice. Analysis of the small angle scattering curves suggests that the copper particles in the NCs with the size of ≤2 nm are mostly located in the chitosan pores with the same size. The effect of Cu@Chit NCs on fungal growth reveals some significant inhibitory activity against two tested fungi. The highest level of inhibition against S. rolfsii and R. solani AG-4 was observed using the high concentrations of Cu@Chit NC prepared using acetone as a solvent. A loss of the cytoplasm content, cytoplasmic coagulation, irregular shape of mycelia, or destruction in the hyphae was confirmed. The experiments demonstrate that the Cu@Chit NC synthesized via MVS using acetone was more effective than that of toluene in inhibiting fungal hyphae growth against R. solani AG-4 and S. rolfsii. The results show that the Cu@Chit NCs are fungicidal against both the tested fungus at high concentrations and the fungicidal or fungistatic activity is dependent on the tested fungus species.

Journal ArticleDOI
TL;DR: A significant reduction in disease index under gnotobiotic conditions and productivity enhancement of F. solani and F. oxysporum and R. esculentum using vermiculite-based bioformulation revealed B. pumilus MSUA3 as a successful potential biocontrol agent (BCA) and an efficient plant growth promoting rhizobacterium (PGPR) for disease management and productivity enhancements of buckwheat crop.

Journal ArticleDOI
TL;DR: In vivo testing demonstrated that 6ad was effective for the control of rice sheath blight, rape sclerotinia rot, fusarium head blight and rice blast caused by the aforementioned phytopathogens, suggesting that the combination of 1,2,3-triazole and hydrazide moiety could be a promising fungicide scaffold in the future.

Journal ArticleDOI
TL;DR: Transcription data include the most comprehensive list of genes and pathway candidates induced by AG1 IA that is available for rice and will serve as a resource for future studies into the molecular mechanisms of the responses of rice to AG 1 IA.
Abstract: Rice sheath blight, caused by Rhizoctonia solani, is one of the most devastating diseases for stable rice production in most rice-growing regions of the world. Currently, studies of the molecular mechanism of rice sheath blight resistance are scarce. Here, we used an RNA-seq approach to analyze the gene expression changes induced by the AG1 IA strain of R. solani in rice at 12, 24, 36, 48 and 72 h. By comparing the transcriptomes of TeQing (a moderately resistant cultivar) and Lemont (a susceptible cultivar) leaves, variable transcriptional responses under control and infection conditions were revealed. From these data, 4,802 differentially expressed genes were identified. Gene ontology and pathway enrichment analyses suggested that most differentially expressed genes and related metabolic pathways in both rice genotypes were common and spanned most biological activities after AG1 IA inoculation. The main difference between the resistant and susceptible plants was a difference in the timing of the response to AG1 IA infection. Photosynthesis, photorespiration, and jasmonic acid and phenylpropanoid metabolism play important roles in disease resistance, and the relative response of disease resistance-related pathways in TeQing leaves was more rapid than that of Lemont leaves at 12 h. Here, the transcription data include the most comprehensive list of genes and pathway candidates induced by AG1 IA that is available for rice and will serve as a resource for future studies into the molecular mechanisms of the responses of rice to AG1 IA.

Journal ArticleDOI
TL;DR: These findings provide novel targets for further dissection of the virulence mechanisms and potential avenues to control this under-characterised but important pathogen.
Abstract: Rhizoctonia solani is a fungal pathogen causing substantial damage to many of the worlds' largest food crops including wheat, rice, maize and soybean. Despite impacting global food security, little is known about the pathogenicity mechanisms employed by R. solani. To enable prediction of effectors possessing either broad efficacy or host specificity, a combined secretome was constructed from a monocot specific isolate, a dicot specific isolate and broad host range isolate infecting both monocot and dicot hosts. Secretome analysis suggested R. solani employs largely different virulence mechanisms to well-studied pathogens, despite in many instances infecting the same host plants. Furthermore, the secretome of the broad host range AG8 isolate may be shaped by maintaining functions for saprophytic life stages while minimising opportunities for host plant recognition. Analysis of possible co-evolution with host plants and in-planta up-regulation in particular, aided identification of effectors including xylanase and inhibitor I9 domain containing proteins able to induce cell death in-planta. The inhibitor I9 domain was more abundant in the secretomes of a wide range of necrotising fungi relative to biotrophs. These findings provide novel targets for further dissection of the virulence mechanisms and potential avenues to control this under-characterised but important pathogen.

Journal ArticleDOI
TL;DR: The results indicate that the antagonistic activity of Bacillus amyloliquefaciens DA12 was attributable to iturin A and volatile heptanones, and the strain could be used as a biocontrol agent to reduce the development of Fusarium diseases and mycotoxin contamination of crops.
Abstract: In an attempt to develop a biological control agent against mycotoxigenic Fusarium species, we isolated Bacillus amyloliquefaciens strain DA12 from soil and explored its antimicrobial activities. DA12 was active against the growth of mycotoxigenic F. asiaticum, F. graminearum, F. proliferatum, and F. verticillioides both in vitro and in planta (maize). Further screening using dual culture extended the activity range of strain DA12 against other fungal pathogens including Botrytis cinerea, Colletotrichum coccodes, Endothia parasitica, Fusarium oxysporum, Raffaelea quercus-mongolicae, and Rhizoctonia solani. The butanol extract of the culture filtrate of B. amyloliquefaciens DA12 highly inhibited the germination of F. graminearum macroconidia with inhibition rate 83% at a concentration of 31.3 μg/ml and 100% at a concentration of 250 μg/ml. The antifungal metabolite from the butanol extract was identified as iturin A by thin layer chromatography-bioautogra-phy In addition, volatile organic compounds produced by DA12 were able to inhibit mycelial growth of various phytopathogenic fungi. The volatile compounds were identified as 2-heptanone, 5-methyl heptanone and 6-methyl heptanone by gas chromatography-mass spectrometry (GC-MS) analysis. These results indicate that the antagonistic activity of Bacillus amyloliquefaciens DA12 was attributable to iturin A and volatile heptanones, and the strain could be used as a biocontrol agent to reduce the development of Fusarium diseases and mycotoxin contamination of crops.

Journal ArticleDOI
TL;DR: This is the first report demonstrating the effectiveness of HD-RNAi against sheath blight and offers new opportunities for durable control of the disease as it does not rely on resistance conferred by major resistance genes.
Abstract: Rhizoctonia solani, the causal agent of rice sheath blight disease, causes significant losses worldwide as there are no cultivars providing absolute resistance to this fungal pathogen. We have used Host Delivered RNA Interference (HD-RNAi) technology to target two PATHOGENICITY MAP KINASE 1 (PMK1) homologues, RPMK1-1 and RPMK1-2, from R. solani using a hybrid RNAi construct. PMK1 homologues in other fungal pathogens are essential for the formation of appressorium, the fungal infection structures required for penetration of the plant cuticle, as well as invasive growth once inside the plant tissues and overall viability of the pathogen within the plant. Evaluation of transgenic rice lines revealed a significant decrease in fungal infection levels compared to non-transformed controls and the observed delay in disease symptoms was further confirmed through microscopic studies. Relative expression levels of the targeted genes, RPMK1-1 and RPMK1-2, were determined in R. solani infecting either transgenic or control lines with significantly lower levels observed in R. solani infecting transgenic lines carrying the HD-RNAi constructs. This is the first report demonstrating the effectiveness of HD-RNAi against sheath blight and offers new opportunities for durable control of the disease as it does not rely on resistance conferred by major resistance genes.

Journal ArticleDOI
TL;DR: Results revealed that using P. indica in seedling bed before transplantation to the field could be a novel and effective method to increase rice production and decrease sheath blight progress.
Abstract: In this study, the effect of endophytic fungus Piriformospora indica on Rhizoctonia solani AG1-IA, causal agent of sheath blight disease, was investigated. In addition, plant defence responses acti...

Journal ArticleDOI
TL;DR: Comparisons of the antifungal activities of cinnamaldehyde and eugenol derivatives revealed that α-methylcinnamhyde, α- methylcinnamic acid, methyleugenol, acetyleugenolia, methylisoeugenols, and acetyl isoeugenol showed good antifundal activities against R. solani and F. oxysporum.

Journal ArticleDOI
TL;DR: This study isolated Bacillus licheniformis MH48 from rhizosphere soil and demonstrated that this strain shows significant antifungal activity against Rhizoctonia solani, Colletotrichum gloeosporioides, and Phytophile capsici.

Journal ArticleDOI
TL;DR: This review paper provides first comprehensive report of a biological control activity (BCA) of Trichoderma spp.
Abstract: Trichoderma spp. are fungal species in a certain natural suppressive soil prevents the plant from infectious diseases caused by soil-borne pathogens. Among these soils borne pathogen, the fungus Rhizoctonia solani (R. solani) causes serious damages to economically significant crops and trees. The control strategies such as breeding for resistant cultivars, crop rotations, and application of fungicides are insufficient to manage diseases caused by R. solani because it persists in soil by producing sclerotia which is a hard-resistant structure. Moreover, fungicides are now unacceptable as they are not environment-friendly. The Trichoderma spp. are the potential biocontrol agents which inhibit R. solani by direct confrontation through mycoparasitic or antibiosis or competition as well as inducing plant defense responses. In this review paper, we provide first comprehensive report of a biological control activity (BCA) of Trichoderma spp. against various diseases caused by R. solani. We also report the cloning and functions of genes or proteins of Trichoderma spp. associated with suppression of diseases caused by a plant pathogen. Nevertheless, fast paced current research regarding Trichoderma spp. is required to fully exploit their actual potential against diseases caused by R. solani under field conditions.

Journal ArticleDOI
01 Jun 2017
TL;DR: In soil, plant roots coexist with bacteria and fungi that produce siderophores capable of sequestering the available iron and a simple confrontation assay for identifying potential antagonists was developed.
Abstract: In soil, plant roots coexist with bacteria and fungi that produce siderophores capable of sequestering the available iron. Microbial cyanogenesis has been demonstrated in many species of fungi and in a few species of bacteria (e.g., Chromobacterium and Pseudomonas). Fluorescent Pseudomonas isolates P29, P59, P144, P166, P174, P187, P191 and P192 were cyanogenic and produced siderophores in the presence of a strong chelater 8-Hydroxyquinoline (50 mg/l). A simple confrontation assay for identifying potential antagonists was developed. Fluorescent Pseudomonas isolates P66, P141, P144, P166 and P174 were antagonistic against both Rhizoctonia solani and Sclerotium rolfsii. Vigorous plant growth was observed following seed bacterization with P141, P200 and P240. In field experiments, seed bacterization with selected bacterial isolates resulted in reduced collar rot (S. rolfsii) incidence.

Journal ArticleDOI
TL;DR: It can be concluded that clove basil EO is a highly effective antifungal agent, and therefore, a potential alternative for the control of plant pathogenic diseases.
Abstract: Ocimum gratissimum L. or clove basil, belongs to the Lamiaceae family, has various desirable uses and applications. Beyond its aromatic, seasoning, and medicinal applications, this plant also has antimicrobial activity. This study was aimed at assessing the antifungal activity, yield, and composition of the essential oil (EO) of O. gratissimum. The species was cultivated in garden beds with dystrophic red latosol soil type containing high organic-matter content. The EO was obtained by hydrodistillation of dried leaves in a modified Clevenger apparatus, followed by determination of its content. Chemical characterization was carried out by gas chromatography-mass spectrometry (GC-MS). Microbial activity was assessed using the broth microdilution method, by determining the minimum inhibitory concentration (MIC), in order to compare the antimicrobial effect of EO in 10 isolates-Fusarium oxysporum f. sp tracheiphilum (CMM-0033), F. oxysporum f. sp. cubense (CMM-0813 and CMM-2819), F. oxysporum f. sp lycopersici (CMM-1104), F. solani (CMM-3828), Rhizoctonia solani (CMM-3274), and Macrophomina phaseolina (CMM-2715, CMM-3875, CMM-3615, and CMM-3650). The EO was a highly effective inhibitor of the studied phytopathogenic fungi, with MICs varying from 31.25 to 125 µg/mL. F. oxysporum f. sp lycopersici and R. solani were the most sensitive; both were inhibited at an MIC of 31.25 µg/mL. The EO content in the plant extract was 0.18%. Thirty chemical compounds were detected via GC-MS, with linalool (32.9%) being the major compound followed by 1,8-cineole (21.9%), both oxygenated monoterpenes. It can be concluded that clove basil EO is a highly effective antifungal agent, and therefore, a potential alternative for the control of plant pathogenic diseases.

Journal ArticleDOI
Xingjie Lan1, Jing Zhang1, Zhaofeng Zong1, Qing Ma1, Yang Wang1 
TL;DR: This study showed that the strain QLP12 is not only an effective biocontrol agent for controlling Verticillium wilt of eggplant, but also a plant growth-promoting fungus that deserves to be further developed.
Abstract: A fungus with broad spectrum antifungal activity was isolated from the soil in Qinling Mountain, Shaanxi Province, in China. The fungus was identified as Purpureocillium lilacinum based on ITS rDNA gene analysis. The strain, coded as QLP12, showed high inhibition activity on fungal mycelium growth in vitro, especially to Mucor piriformis, Trichothecium roseum, Rhizoctonia solani, and Verticillium dahliae, and its potential for biocontrol efficacy of eggplant. Verticillium wilt disease caused by Verticillium dahliae among 10 fungal species tested was explored. In greenhouse experiments, QLP12 showed an excellent growth-promoting effect on eggplant seed germination (76.7%), bud growth (79.4%), chlorophyll content (47.83%), root activity (182.02%), and so on. QLP12 can colonize the eggplant interior and also develop in rhizosphere soil. In greenhouse, the incidence of Verticillium wilt decreased by 83.82% with pretreated QLP12 fermentation broth in the soil. In the field, QLP12 showed prominent biocontrol effects on Verticillium wilt by reducing the disease index over the whole growth period, a decline of 40.1%. This study showed that the strain QLP12 is not only an effective biocontrol agent for controlling Verticillium wilt of eggplant, but also a plant growth-promoting fungus that deserves to be further developed.

Journal ArticleDOI
31 Dec 2017
TL;DR: In vitro study revealed that although Trichoderma species plays an important role in controlling all type of soil borne fungal plant pathogens, however, isolates as biocontrol agent against Sclerotium rolfsii was found to be more efficient in comparison to other pathogens.
Abstract: Soil borne pathogenic fungi are of major concern in agriculture which significantly decreases the plant yield. Chemically controlled plant imposes environmental threats potentially dangerous to humans as well as other animals. Thus, application of biological methods in plant disease control is more effective alternative technique. This study was carried out to isolate Trichoderma species from soil sample and to assess its in vitro biocontrol efficacy against fungal pathogens viz. Sclerotium rolfsii , Sclerotionia sclerotiorum , Fusarium solani and Rhizoctonia solani . Biocontrol efficacy testing of isolates against different fungal pathogens was performed by dual culture technique. In this study, 5 different Trichoderma species were isolated from 26 various soil samples and were tested against four fungal soil-borne pathogens. Inhibition percentage of radial growth of Sclerotium rolfsii by three of the Trichoderma isolates was found to be 100%; about 62% and 68% of maximum inhibition was observed against Rhizoctonia solani and Fusarium solani respectively whereas Sclerotionia sclerotiorum was inhibited maximum up to 23%. This in vitro study revealed that although Trichoderma species plays an important role in controlling all type of soil borne fungal plant pathogens, however, isolates as biocontrol agent against Sclerotium rolfsii was found to be more efficient in comparison to other pathogens. Nepal Journal of Biotechnology. Dec. 2017 Vol. 5, No. 1: 39-49

Journal ArticleDOI
TL;DR: Assessment of the ethyl acetate extracts from 129 fungal isolates for their biocontrol activity against 5 ginseng pathogens revealed that Trichoderma polysporum produces the antimcriobial metabolite against all the pathogens.
Abstract: Fungal endophytes isolated from mountain-cultivated ginseng (MCG, Panax ginseng Meyer) were explored for their diversity and biocontrol activity against ginseng pathogens (Alternaria panax, Botrytis cinerea, Cylindrocarpon destructans, Pythium sp. and Rhizoctonia solani). A total of 1,300 isolates were isolated from three tissues (root, stem and leaf) from MCGs grown in 24 different geographic locations in Korea. In total, 129 different fungal isolates were authenticated by molecular identification based on internal transcribed spacer (ITS) sequences. The fungal endophytes belonged to Ascomycota (81.7%), Basidiomycota (7.08%), Zygomycota (10%) and Unknown (1.15%), with 59 genera. Analysis of diversity indices across sampling sites suggested species abundance as a function of geographical and environmental factors of the locations. Shannon diversity index and richness in the different tissues revealed that root tissues are colonized more than stem and leaf tissues, and also certain fungal endophytes are tissue specific. Assessment of the ethyl acetate extracts from 129 fungal isolates for their biocontrol activity against 5 ginseng pathogens revealed that Trichoderma polysporum produces the antimcriobial metabolite against all the pathogens. This result indicates the promise of its potential usage as a biocontrol agent.