scispace - formally typeset
Search or ask a question

Showing papers on "Root hair published in 2011"


Journal ArticleDOI
TL;DR: New physiological and molecular evidence shows that for phosphorus the mycorrhizal pathway (MP) is operational regardless of plant growth responses (positive or negative) and has important implications for consideration of AM symbioses in ecological, agronomic, and evolutionary contexts.
Abstract: Root systems of most land plants form arbuscular mycorrhizal (AM) symbioses in the field, and these contribute to nutrient uptake. AM roots have two pathways for nutrient absorption, directly through the root epidermis and root hairs and via AM fungal hyphae into root cortical cells, where arbuscules or hyphal coils provide symbiotic interfaces. New physiological and molecular evidence shows that for phosphorus the mycorrhizal pathway (MP) is operational regardless of plant growth responses (positive or negative). Amounts delivered cannot be determined from plant nutrient contents because when responses are negative the contribution of the direct pathway (DP) is reduced. Nitrogen (N) is also delivered to roots via an MP, but the contribution to total N requirement and the costs to the plant are not clear. The functional interplay between activities of the DP and MP has important implications for consideration of AM symbioses in ecological, agronomic, and evolutionary contexts.

1,174 citations


Journal ArticleDOI
TL;DR: A survey of 19 soils, with textures ranging from loamy sand to silty clay loam, found that mechanical impedance is often a major limitation to root elongation in these soils even under moderately wet conditions, and is important to consider in breeding programmes for drought-resistant crops.
Abstract: Root elongation in drying soil is generally limited by a combination of mechanical impedance and water stress. Relationships between root elongation rate, water stress (matric potential), and mechanical impedance (penetration resistance) are reviewed, detailing the interactions between these closely related stresses. Root elongation is typically halved in repacked soils with penetrometer resistances >0.8‐2 MPa, in the absence of water stress. Root elongation is halved by matric potentials drier than about ‐0.5 MPa in the absence of mechanical impedance. The likelihood of each stress limiting root elongation is discussed in relation to the soil strength characteristics of arable soils. A survey of 19 soils, with textures ranging from loamy sand to silty clay loam, found that ;10% of penetration resistances were >2 MPa at a matric potential of ‐10 kPa, rising to nearly 50% >2 MPa at ‐ 200 kPa. This suggests that mechanical impedance is often a major limitation to root elongation in these soils even under moderately wet conditions, and is important to consider in breeding programmes for drought-resistant crops. Root tip traits that may improve root penetration are considered with respect to overcoming the external (soil) and internal (cell wall) pressures resisting elongation. The potential role of root hairs in mechanically anchoring root tips is considered theoretically, and is judged particularly relevant to roots growing in biopores or from a loose seed bed into a compacted layer of soil.

787 citations


Journal ArticleDOI
01 Jan 2011-Planta
TL;DR: Evidence for effects of SLs on root development is presented and effect on lateral root formation and root-hair elongation may suggest a role for SLs in the regulation of root development; perhaps, as a response to growth conditions.
Abstract: Strigolactones (SLs) have been proposed as a new group of plant hormones, inhibiting shoot branching, and as signaling molecules for plant interactions. Here, we present evidence for effects of SLs on root development. The analysis of mutants flawed in SLs synthesis or signaling suggested that the absence of SLs enhances lateral root formation. In accordance, roots grown in the presence of GR24, a synthetic bioactive SL, showed reduced number of lateral roots in WT and in max3-11 and max4-1 mutants, deficient in SL synthesis. The GR24-induced reduction in lateral roots was not apparent in the SL signaling mutant max2-1. Moreover, GR24 led to increased root-hair length in WT and in max3-11 and max4-1 mutants, but not in max2-1. SLs effect on lateral root formation and root-hair elongation may suggest a role for SLs in the regulation of root development; perhaps, as a response to growth conditions.

447 citations


Journal ArticleDOI
TL;DR: This review describes how the model plant Arabidopsis thaliana adapts its root system architecture to phosphate deficiency through inhibition of primary root growth, increase in lateral root formation and growth and production of root hairs, which all promote topsoil foraging.

427 citations


Book ChapterDOI
TL;DR: The use of crop species and cultivars tolerant to biotic and abiotic stresses, as well as the use of appropriate cultural practices, can improve plant root system function under favorable and unfavorable environmental conditions.
Abstract: Agriculture is going through a profound revolution worldwide due to increasing world demand for food, higher costs of energy and other inputs, environmental pollution problems, and instability of cropping systems. In this context, knowledge of factors that affect root development is fundamental to improving nutrient cycling and uptake in soil–plant systems. Roots are important organs that supply water, nutrients, hormones, and mechanical support (anchorage) to crop plants and consequently affect economic yields. In addition, roots improve soil organic matter (OM) by contributing to soil pools of organic carbon (C), nitrogen (N), and microbial biomass. Root-derived soil C is retained and forms more stable soil aggregates than shoot-derived soil C. Although roots normally contribute only 10–20% of the total plant weight, a well-developed root system is essential for healthy plant growth and development. Root growth of plants is controlled genetically, but it is also influenced by environmental factors. Mineral nutrition is an important factor influencing the growth of plant roots, but detailed information on nutritional effects is limited, primarily because roots are half-hidden organs that are very difficult to separate from soil. As a result, it is difficult to measure the effect of biotic and abiotic factors on root growth under field conditions. Root growth is mainly measured in terms of root density, length, and weight. Root dry weight is often better related to crop yields than is root length or density. The response of root growth to chemical fertilization is similar to that of shoot growth; however, the magnitude of the response may differ. In nutrient-deficient soils, root weight often increases in a quadratic manner with the addition of chemical fertilizers. Increasing nutrient supplies in the soil may also decrease root length but increase root weight in a quadratic fashion. Roots with adequate nutrient supplies may also have more root hairs than nutrient-deficient roots. This may result in greater uptake of water and nutrients by roots well supplied with essential plant nutrients, compared with roots grown in nutrient-deficient soils. Under favorable conditions, a major part of the root system is usually found in the top 20 cm of soil. Maximum root growth is generally achieved at flowering in cereals and at pod-setting in legumes. Genotypic variations are often found in the response of root growth to nutrient applications, and the possibility of modifying root system response to soil properties offers exciting prospects for future improvements in crop yields. Rooting pattern in crop plants is under multi- or polygenic control, and breeding programs can be used to improve root system properties for environments where drought is a problem. The use of crop species and cultivars tolerant to biotic and abiotic stresses, as well as the use of appropriate cultural practices, can improve plant root system function under favorable and unfavorable environmental conditions.

324 citations


Journal ArticleDOI
17 Jun 2011-Science
TL;DR: It is demonstrated that correct O-glycosylation on EXTs is essential for cell-wall self-assembly and, hence, root hair elongation in Arabidopsis thaliana.
Abstract: Root hairs are single cells that develop by tip growth and are specialized in the absorption of nutrients. Their cell walls are composed of polysaccharides and hydroxyproline-rich glycoproteins (HRGPs) that include extensins (EXTs) and arabinogalactan-proteins (AGPs). Proline hydroxylation, an early posttranslational modification of HRGPs that is catalyzed by prolyl 4-hydroxylases (P4Hs), defines the subsequent O-glycosylation sites in EXTs (which are mainly arabinosylated) and AGPs (which are mainly arabinogalactosylated). We explored the biological function of P4Hs, arabinosyltransferases, and EXTs in root hair cell growth. Biochemical inhibition or genetic disruption resulted in the blockage of polarized growth in root hairs and reduced arabinosylation of EXTs. Our results demonstrate that correct O-glycosylation on EXTs is essential for cell-wall self-assembly and, hence, root hair elongation in Arabidopsis thaliana.

268 citations


Journal ArticleDOI
TL;DR: Data indicate that Pht1;5 plays a critical role in mobilizing Pi from P source to sink organs in accordance with developmental cues and P status, and provides evidence for a link between Pi and ethylene signaling pathways.
Abstract: Phosphorus (P) remobilization in plants is required for continuous growth and development. The Arabidopsis (Arabidopsis thaliana) inorganic phosphate (Pi) transporter Pht1;5 has been implicated in mobilizing stored Pi out of older leaves. In this study, we used a reverse genetics approach to study the role of Pht1;5 in Pi homeostasis. Under low-Pi conditions, Pht1;5 loss of function (pht1;5-1) resulted in reduced P allocation to shoots and elevated transcript levels for several Pi starvation-response genes. Under Pi-replete conditions, pht1;5-1 had higher shoot P content compared with the wild type but had reduced P content in roots. Constitutive overexpression of Pht1;5 had the opposite effect on P distribution: namely, lower P levels in shoots compared with the wild type but higher P content in roots. Pht1;5 overexpression also resulted in altered Pi remobilization, as evidenced by a greater than 2-fold increase in the accumulation of Pi in siliques, premature senescence, and an increase in transcript levels of genes involved in Pi scavenging. Furthermore, Pht1;5 overexpressors exhibited increased root hair formation and reduced primary root growth that could be rescued by the application of silver nitrate (ethylene perception inhibitor) or aminoethoxyvinylglycine (ethylene biosynthesis inhibitor), respectively. Together, these data indicate that Pht1;5 plays a critical role in mobilizing Pi from P source to sink organs in accordance with developmental cues and P status. The study also provides evidence for a link between Pi and ethylene signaling pathways.

233 citations


Journal ArticleDOI
TL;DR: Genetic evidence is presented that root flavonoids are necessary for nodule initiation in M. truncatula and suggestions that they act as auxin transport regulators are suggested.
Abstract: Legumes form symbioses with rhizobia, which initiate the development of a new plant organ, the nodule. Flavonoids have long been hypothesized to regulate nodule development through their action as auxin transport inhibitors, but genetic proof has been missing. To test this hypothesis, we used RNA interference to silence chalcone synthase (CHS), the enzyme that catalyzes the first committed step of the flavonoid pathway, in Medicago truncatula. Agrobacterium rhizogenes transformation was used to create hairy roots that showed strongly reduced CHS transcript levels and reduced levels of flavonoids in silenced roots. Flavonoid-deficient roots were unable to initiate nodules, even though normal root hair curling was observed. Nodule formation and flavonoid accumulation could be rescued by supplementation of plants with the precursor flavonoids naringenin and liquiritigenin. The flavonoid-deficient roots showed increased auxin transport compared with control roots. Inoculation with rhizobia reduced auxin transport in control roots after 24 h, similar to the action of the auxin transport inhibitor N-(1-naphthyl)phthalamic acid (NPA). Rhizobia were unable to reduce auxin transport in flavonoid-deficient roots, even though NPA inhibited auxin transport. Our results present genetic evidence that root flavonoids are necessary for nodule initiation in M. truncatula and suggest that they act as auxin transport regulators.

216 citations


Journal ArticleDOI
TL;DR: Recent findings regarding the effects of SLs on root growth and development, and their association with changes in auxin flux, suggest that they are coordinators of shoot and root development and mediators of plant responses to environmental conditions.
Abstract: Strigolactones (SLs) have been defined as a new group of plant hormones or their derivatives that suppress lateral shoot branching. Recently, a new role for SLs was discovered, in the regulation of root development. Strigolactones were shown to alter root architecture and affect root-hair elongation. Here, I review the recent findings regarding the effects of SLs on root growth and development, and their association with changes in auxin flux. The networking between SLs and other plant hormones that regulate root development is also presented. Strigolactone regulation of plant development suggests that they are coordinators of shoot and root development and mediators of plant responses to environmental conditions.

207 citations


Journal ArticleDOI
TL;DR: An overview of the infection process is provided, including the roles of NF signaling, actin, and calcium and the influence of the hormones ethylene and cytokinin.
Abstract: Nodulation of legume roots typically begins with rhizobia attaching to the tip of a growing root-hair cell. The attached rhizobia secrete Nod factors (NF), which are perceived by the plant. This initiates a series of preinfection events that include cytoskeletal rearrangements, curling at the root-hair tip, and formation of radially aligned cytoplasmic bridges called preinfection threads (PIT) in outer cortical cells. Within the root-hair curl, an infection pocket filled with bacteria forms, from which originates a tubular invagination of cell wall and membrane called an infection thread (IT). IT formation is coordinated with nodule development in the underlying root cortex tissues. The IT extends from the infection pocket down through the root hair and into the root cortex, where it passes through PIT and eventually reaches the nascent nodule. As the IT grows, it is colonized by rhizobia that are eventually released into cells within the nodule, where they fix nitrogen. NF can also induce cortical root hairs that appear to originate from PIT and can become infected like normal root hairs. Several genes involved in NF signaling and some of the downstream transcription factors required for infection have been characterized. More recently, several genes with direct roles in infection have been identified, some with roles in actin rearrangement and others with possible roles in protein turnover and secretion. This article provides an overview of the infection process, including the roles of NF signaling, actin, and calcium and the influence of the hormones ethylene and cytokinin.

204 citations


Journal ArticleDOI
TL;DR: It is found that ethylene signalling plays a negative role in Pi starvation-induced anthocyanin production and will help to gain a better understanding of the molecular mechanism underlying these responses.
Abstract: • With the exception of root hair development, the role of the phytohormone ethylene is not clear in other aspects of plant responses to inorganic phosphate (Pi) starvation. • The induction of AtPT2 was used as a marker to find novel signalling components involved in plant responses to Pi starvation. Using genetic and chemical approaches, we examined the role of ethylene in the regulation of plant responses to Pi starvation. • hps2, an Arabidopsis mutant with enhanced sensitivity to Pi starvation, was identified and found to be a new allele of CTR1 that is a key negative regulator of ethylene responses. 1-aminocyclopropane-1-carboxylic acid (ACC), the precursor of ethylene, increases plant sensitivity to Pi starvation, whereas the ethylene perception inhibitor Ag+ suppresses this response. The Pi starvation-induced gene expression and acid phosphatase activity are also enhanced in the hps2 mutant, but suppressed in the ethylene-insensitive mutant ein2-5. By contrast, we found that ethylene signalling plays a negative role in Pi starvation-induced anthocyanin production. • These findings extend the roles of ethylene in the regulation of plant responses to Pi starvation and will help us to gain a better understanding of the molecular mechanism underlying these responses.

Journal ArticleDOI
TL;DR: Results suggest that hypoxia, prevailing in the nodule-fixing zone, may drive the stimulation of MtRbohA expression, which would, in turn, lead to the regulation of nodule functioning.
Abstract: The plant plasma membrane-localized NADPH oxidases, known as respiratory burst oxidase homologues (RBOHs), appear to play crucial roles in plant growth and development. They are involved in important processes, such as root hair growth, plant defence reactions and abscisic acid signalling. Using sequence similarity searches, we identified seven putative RBOH-encoding genes in the Medicago truncatula genome. A phylogenetic reconstruction showed that Rboh gene duplications occurred in legume species. We analysed the expression of these MtRboh genes in different M. truncatula tissues: one of them, MtRbohA, was significantly up-regulated in Sinorhizobium meliloti-induced symbiotic nodules. MtRbohA expression appeared to be restricted to the nitrogen-fixing zone of the functional nodule. Moreover, using S. meliloti bacA and nifH mutants unable to form efficient nodules, a strong link between nodule nitrogen fixation and MtRbohA up-regulation was shown. MtRbohA expression was largely enhanced under hypoxic conditions. Specific RNA interference for MtRbohA provoked a decrease in the nodule nitrogen fixation activity and the modulation of genes encoding the microsymbiont nitrogenase. These results suggest that hypoxia, prevailing in the nodule-fixing zone, may drive the stimulation of MtRbohA expression, which would, in turn, lead to the regulation of nodule functioning.

Journal ArticleDOI
TL;DR: Members of the root hair EXPA sub-clade play a crucial role in root hair cell elongation in Graminaceae, indicating functional conservation of these root hair EXPAs in monocots and dicots.
Abstract: *SUMMARY Root hair growth requires intensive cell-wall modification. This study demonstrates that root hair-specific expansin As, a sub-clade of the cell wall-loosening expansin proteins, are required for root hair elongation in rice (Oryza sativa L.). We identified a gene encoding EXPA17 (OsEXPA17) from a rice mutant with short root hairs. Promoter::reporter transgenic lines exhibited exclusive OsEXPA17 expression in root hair cells. The OsEXPA17 mutant protein (OsexpA17) contained a point mutation, causing a change in the amino acid sequence (Gly104 fi Arg). This amino acid alteration is predicted to disrupt a highly conserved disulfide bond in the mutant. Suppression of OsEXPA17 by RNA interference further confirmed requirement for the gene in root hair elongation. Complementation of the OsEXPA17 mutant with other root hair EXPAs (OsEXPA30 and Arabidopsis EXPA7) can restore root hair elongation, indicating functional conservation of these root hair EXPAs in monocots and dicots. These results demonstrate that members of the root hair EXPA sub-clade play a crucial role in root hair cell elongation in Graminaceae.

Journal ArticleDOI
TL;DR: The major environmental, physiological and genetic factors that regulate the differentiation and growth of root hairs in angiosperms are discussed and the functional and genetic similarities between the root hairs of angios perms and the rhizoids of bryophytes and ferns are discussed.
Abstract: Root hairs are tip-growing extensions from root epidermal cells that play important roles in nutrient uptake and in plant-soil interactions. In this review, we discuss the major environmental, physiological and genetic factors that regulate the differentiation and growth of root hairs in angiosperms. Root hair cells are arranged in a number of different patterns in the root epidermis of different species. In Arabidopsis (Arabidopsis thaliana L.), a striped pattern of hair and non-hair files is generated by an intercellular gene regulatory network that involves feedback loops and protein movement between neighbouring cells. The growth of root hairs can be broadly divided into an initiation phase, where site selection and bulge formation take place, and an elongation phase. The initiation phase is regulated by different transcription factors, GTPases and cell wall modification enzymes. During the elongation phase root hairs grow by tip growth, a type of polarised cell expansion that is restricted to the growing apex. Root hair elongation is characterized by a strong polarisation of the cytoskeleton, active cell wall modifications and dynamic ion movements. Finally, we discuss the functional and genetic similarities between the root hairs of angiosperms and the rhizoids of bryophytes and ferns.

Journal ArticleDOI
TL;DR: In vitro study system using in vitro propagated olive plants, differential fluorescent-protein tagging of bacteria, and confocal laser scanning microscopy analysis have been successfully used to examine olive roots–Pseudomonas spp.
Abstract: The use of indigenous bacterial root endophytes with biocontrol activity against soil-borne phytopathogens is an environmentally-friendly and ecologically-efficient action within an integrated disease management framework. The earliest steps of olive root colonization by Pseudomonas fluorescens PICF7 and Pseudomonas putida PICP2, effective biocontrol agents (BCAs) against Verticillium wilt of olive (Olea europaea L.) caused by the fungus Verticillium dahliae Kleb., are here described. A gnotobiotic study system using in vitro propagated olive plants, differential fluorescent-protein tagging of bacteria, and confocal laser scanning microscopy analysis have been successfully used to examine olive roots–Pseudomonas spp. interactions at the single-cell level. In vivo simultaneous visualization of PICF7 and PICP2 cells on/in root tissues enabled to discard competition between the two bacterial strains during root colonization. Results demonstrated that both BCAs are able to endophytically colonized olive root tissues. Moreover, results suggest a pivotal role of root hairs in root colonization by both biocontrol Pseudomonas spp. However, colonization of root hairs appeared to be a highly specific event, and only a very low number of root hairs were effectively colonized by introduced bacteria. Strains PICF7 and PICP2 can simultaneously colonize the same root hair, demonstrating that early colonization of a given root hair by one strain did not hinder subsequent attachment and penetration by the other. Since many environmental factors can affect the number, anatomy, development, and physiology of root hairs, colonization competence and biocontrol effectiveness of BCAs may be greatly influenced by root hair’s fitness. Finally, the in vitro study system here reported has shown to be a suitable tool to investigate colonization processes of woody plant roots by microorganisms with biocontrol potential.

Journal ArticleDOI
TL;DR: It is shown that it is possible to unlink low shoot Pi content with the responses normally associated with Pi deficiency through the modulation of PHO1 expression or activity, and that reduced shoot growth is not a direct consequence of Pi deficiency, but is more likely to be a result of extensive gene expression reprogramming triggered by Pi deficiency.
Abstract: SUMMARYInorganic phosphate (Pi) is one of the most limiting nutrients for plant growth in both natural and agriculturalcontexts. Pi-deficiency leads to a strong decrease in shoot growth, and triggers extensive changes at thedevelopmental, biochemical and gene expression levels that are presumably aimed at improving theacquisition of this nutrient and sustaining growth. The Arabidopsis thaliana PHO1 gene has previously beenshown toparticipatein the transportof Pi fromroots toshoots, andthe null pho1 mutant hasall the hallmarksassociated with shoot Pi deficiency. We show here that A. thaliana plants with a reduced expression of PHO1in roots have shoot growth similar to Pi-sufficient plants, despite leaves being strongly Pi deficient.Furthermore, the gene expression profile normally triggered by Pi deficiency is suppressed in plants with lowPHO1 expression. At comparable levels of shoot Pi supply, the wild type reduces shoot growth but maintainsadequate shoot vacuolar Pi content, whereas the PHO1 underexpressor maintains maximal growth withstrongly depleted Pi reserves. Expression of the Oryza sativa (rice) PHO1 ortholog in the pho1 null mutant alsoleads to plants that maintain normal growth and suppression of the Pi-deficiency response, despite the lowshoot Pi. These data show that it is possible to unlink low shoot Pi content with the responses normallyassociated with Pi deficiency through the modulation of PHO1 expression or activity. These data also showthat reduced shoot growth is not a direct consequence of Pi deficiency, but is more likely to be a result ofextensive gene expression reprogramming triggered by Pi deficiency.Keywords: phosphate, PHO1, nutrient deficiency, signal transduction.INTRODUCTIONOf the macronutrients required for plant growth, phospho-rus is the least mobile in soil. Plants absorb phosphorusfrom the roots as orthophosphate (inorganic phosphate, Pi).Pi concentration in most soils is in the low micromolarrange, and may even drop to submicromolar levels at theroot/soil interface. Plants respond to growth in Pi-deficientenvironments with numerous changes at the biochemical,morphological, developmental and gene expression levels.For example, vacuolar Pi reserves are mobilized, phospha-tases are secreted to scavenge Pi from organic sources,phospholipids are replaced by sulfolipids and galactolipids,root hair density and length are increased, and growth ofsecondary roots is promoted (Poirier and Bucher, 2002).Microarray studies revealed that several hundreds of genesare either induced or repressed following Pi starvation(Misson et al., 2004; Morcuende et al., 2007; Mu¨ller et al.,2007). Collectively, all these changes are thought to help theplant improve the acquisition of this vital nutrient, therebysustaining growth and improving plant survival. From anagronomical point of view, the main deleterious effects ofPi deficiency is a strong reduction in shoot growth. The wideuse of Pi-containing fertilizers is aimed at compensating thislimitation, andthusassuringmaximumcrop yield.However,this agricultural practice is costly, non-sustainable and

Journal ArticleDOI
TL;DR: It is proposed that activation of auxin biosynthesis and signaling in the roots might be the cause for the P. indica-mediated growth phenotype in Chinese cabbage.
Abstract: Piriformospora indica, an endophytic fungus of the order Sebacinales, interacts with the roots of a large variety of plant species. We compared the interaction of this fungus with Chinese cabbage (Brassica campestris subsp. chinensis) and Arabidopsis seedlings. The development of shoots and roots of Chinese cabbage seedlings was strongly promoted by P. indica and the fresh weight of the seedlings increased approximately twofold. The strong stimulation of root hair development resulted in a bushy root phenotype. The auxin level in the infected Chinese cabbage roots was twofold higher compared with the uncolonized controls. Three classes of auxin-related genes, which were upregulated by P. indica in Chinese cabbage roots, were isolated from a double-subtractive expressed sequence tag library: genes for proteins related to cell wall acidification, intercellular auxin transport carrier proteins such as AUX1, and auxin signal proteins. Overexpression of B. campestris BcAUX1 in Arabidopsis strongly promoted growth and biomass production of Arabidopsis seedlings and plants; the roots were highly branched but not bushy when compared with colonized Chinese cabbage roots. This suggests that BcAUX1 is a target of P. indica in Chinese cabbage. P. indica also promoted growth of Arabidopsis seedlings but the auxin levels were not higher and auxin genes were not upregulated, implying that auxin signaling is a more important target of P. indica in Chinese cabbage than in Arabidopsis. The fungus also stimulated growth of Arabidopsis aux1 and aux1/axr4 and rhd6 seedlings. Furthermore, a component in an exudate fraction from P. indica but not auxin stimulated growth of Chinese cabbage and Arabidopsis seedlings. We propose that activation of auxin biosynthesis and signaling in the roots might be the cause for the P. indica-mediated growth phenotype in Chinese cabbage.

Journal ArticleDOI
Sungjin Park1, Amy L. Szumlanski1, Fangwei Gu1, Feng Guo1, Erik Nielsen1 
TL;DR: Evidence is provided that CSLD3 represents a distinct (1→4)-β-glucan synthase activity in apical plasma membranes during tip growth in root-hair cells, and de novo synthesis of these polysaccharides is required for tip growth.
Abstract: In plants, cell shape is defined by the cell wall, and changes in cell shape and size are dictated by modification of existing cell walls and deposition of newly synthesized cell-wall material. In root hairs, expansion occurs by a process called tip growth, which is shared by root hairs, pollen tubes and fungal hyphae. We show that cellulose-like polysaccharides are present in root-hair tips, and de novo synthesis of these polysaccharides is required for tip growth. We also find that eYFP-CSLD3 proteins, but not CESA cellulose synthases, localize to a polarized plasma-membrane domain in root hairs. Using biochemical methods and genetic complementation of a csld3 mutant with a chimaeric CSLD3 protein containing a CESA6 catalytic domain, we provide evidence that CSLD3 represents a distinct (1→4)-β-glucan synthase activity in apical plasma membranes during tip growth in root-hair cells.

Journal ArticleDOI
TL;DR: A novel, integrated view at a systems level of the root responses that acclimate Arabidopsis (Arabidopsis thaliana) to suboptimal Pi levels is provided.
Abstract: Phosphate (Pi) deficiency triggers the differential expression of a large set of genes, which communally adapt the plant to low Pi bioavailability. To infer functional modules in early transcriptional responses to Pi deficiency, we conducted time-course microarray experiments and subsequent coexpression-based clustering of Pi-responsive genes by pairwise comparison of genes against a customized database. Three major clusters, enriched in genes putatively functioning in transcriptional regulation, root hair formation, and developmental adaptations, were predicted from this analysis. Validation of gene expression by quantitative reverse transcription-PCR revealed that transcripts from randomly selected genes were robustly induced within the first hour after transfer to Pi-deplete medium. Pectin-related processes were among the earliest and most robust responses to Pi deficiency, indicating that cell wall alterations are critical in the early transcriptional response to Pi deficiency. Phenotypical analysis of homozygous mutants defective in the expression of genes from the root hair cluster revealed eight novel genes involved in Pi deficiency-induced root hair elongation. The plants responded rapidly to Pi deficiency by the induction of a subset of transcription factors, followed by a repression of genes involved in cell wall alterations. The combined results provide a novel, integrated view at a systems level of the root responses that acclimate Arabidopsis (Arabidopsis thaliana) to suboptimal Pi levels.

Journal ArticleDOI
TL;DR: Two distinct modes of infection and nodule organogenesis coexist in Aeschynomene legumes, each displaying original features, and one of them remains enclosed in large tubular structures.
Abstract: Here, we present a comparative analysis of the nodulation processes of Aeschynomene afraspera and A. indica that differ in their requirement for Nod factors (NF) to initiate symbiosis with photosynthetic bradyrhizobia. The infection process and nodule organogenesis was examined using the green fluorescent protein-labeled Bradyrhizobium sp. strain ORS285 able to nodulate both species. In A. indica, when the NF-independent strategy is used, bacteria penetrated the root intercellularly between axillary root hairs and invaded the subepidermal cortical cells by invagination of the host cell wall. Whereas the first infected cortical cells collapsed, the infected ones immediately beneath kept their integrity and divided repeatedly to form the nodule. In A. afraspera, when the NF-dependent strategy is used, bacteria entered the plant through epidermal fissures generated by the emergence of lateral roots and spread deeper intercellularly in the root cortex, infecting some cortical cells during their progression. Whereas the infected cells of the lower cortical layers divided rapidly to form the nodule, the infected cells of the upper layers gave rise to an outgrowth in which the bacteria remained enclosed in large tubular structures. Together, two distinct modes of infection and nodule organogenesis coexist in Aeschynomene legumes, each displaying original features.

Journal ArticleDOI
TL;DR: It is shown that ethylene, via ethylene-insensitive 2 (EIN2) protein, is involved in the induction of root hair formation and elongation under low B treatment as well as the alteration of root system architecture elicited by low B supply.
Abstract: Changes in root architecture are one of the adaptive strategies used by plants to compensate for nutrient deficiencies in soils. In this work, the temporal responses of Arabidopsis (Arabidopsis thaliana) root system architecture to low boron (B) supply were investigated. Arabidopsis Col-0 seedlings were grown in 10 µM B for 5 days and then transferred to a low B medium (0.4 µM) or control medium (10 µM) for a 4-day period. Low B supply caused an inhibition of primary root (PR) growth without altering either the growth or number of lateral roots (LRs). In addition, low B supply induced root hair formation and elongation in positions close to the PR meristem not observed under control conditions. The possible role of auxin and ethylene in the alteration of root system architecture elicited by low B supply was also studied by using two Arabidopsis reporter lines (DR5:GUS and EBS:GUS) and two Arabidopsis mutants with impaired auxin and ethylene signaling (aux1-22 and ein2-1). Low B supply increased auxin reporter DR5:GUS activity in PR tip, suggesting that low B alters the pattern of auxin distribution in PR tip. Moreover, PR elongation in aux1-22 mutant was less sensitive to low B treatment than in wild-type plants, which suggests that auxin resistant 1 (AUX1) participates in the inhibition of PR elongation under low B supply. From all these results, a hypothetical model to explain the effect of low B treatment on PR growth is proposed. We also show that ethylene, via ethylene-insensitive 2 (EIN2) protein, is involved in the induction of root hair formation and elongation under low B treatment.

Journal ArticleDOI
TL;DR: A regulator of cytoskeleton organization and of disease susceptibility shuttling between microtubules and the monomeric G-protein RACB at the cell periphery is described and genetic evidence suggests a function of MAGAP1 in limiting susceptibility to penetration by B. graminis.
Abstract: Little is known about the function of host factors involved in disease susceptibility. The barley (Hordeum vulgare) ROP (RHO of plants) G-protein RACB is required for full susceptibility of the leaf epidermis to invasion by the biotrophic fungus Blumeria graminis f. sp hordei. Stable transgenic knockdown of RACB reduced the ability of barley to accommodate haustoria of B. graminis in intact epidermal leaf cells and to form hairs on the root epidermis, suggesting that RACB is a common element of root hair outgrowth and ingrowth of haustoria in leaf epidermal cells. We further identified a barley MICROTUBULE-ASSOCIATED ROP-GTPASE ACTIVATING PROTEIN (MAGAP1) interacting with RACB in yeast and in planta. Fluorescent MAGAP1 decorated cortical microtubules and was recruited by activated RACB to the cell periphery. Under fungal attack, MAGAP1-labeled microtubules built a polarized network at sites of successful defense. By contrast, microtubules loosened where the fungus succeeded in penetration. Genetic evidence suggests a function of MAGAP1 in limiting susceptibility to penetration by B. graminis. Additionally, MAGAP1 influenced the polar organization of cortical microtubules. These results add to our understanding of how intact plant cells accommodate fungal infection structures and suggest that RACB and MAGAP1 might be antagonistic players in cytoskeleton organization for fungal entry.

Journal ArticleDOI
TL;DR: The results show that in root hairs, as in pollen tubes, oscillatory peaks in PI fluorescence precede growth rate oscillations, and suggest that pectin secretion at the apex of tip-growing plant cells plays a critical role in regulating growth, and PI represents an excellent tool for examining the role of pect in and of Ca2+ in tip growth.
Abstract: We have used propidium iodide (PI) to investigate the dynamic properties of the primary cell wall at the apex of Arabidopsis (Arabidopsis thaliana) root hairs and pollen tubes and in lily (Lilium formosanum) pollen tubes. Our results show that in root hairs, as in pollen tubes, oscillatory peaks in PI fluorescence precede growth rate oscillations. Pectin forms the primary component of the cell wall at the tip of both root hairs and pollen tubes. Given the electronic structure of PI, we investigated whether PI binds to pectins in a manner analogous to Ca2+ binding. We first show that Ca2+ is able to abrogate PI growth inhibition in a dose-dependent manner. PI fluorescence itself also relies directly on the amount of Ca2+ in the growth solution. Exogenous pectin methyl esterase treatment of pollen tubes, which demethoxylates pectins, freeing more Ca2+-binding sites, leads to a dramatic increase in PI fluorescence. Treatment with pectinase leads to a corresponding decrease in fluorescence. These results are consistent with the hypothesis that PI binds to demethoxylated pectins. Unlike other pectin stains, PI at low yet useful concentration is vital and specifically does not alter the tip-focused Ca2+ gradient or growth oscillations. These data suggest that pectin secretion at the apex of tip-growing plant cells plays a critical role in regulating growth, and PI represents an excellent tool for examining the role of pectin and of Ca2+ in tip growth.

Journal ArticleDOI
TL;DR: Results show that serotonin regulates root development probably by acting as a natural auxin inhibitor, indicating an anti-auxin activity in the plant.
Abstract: Serotonin (5-hydroxytryptamine) is a well-known neurotransmitter in mammals and is widely distributed in plants. This compound is synthesized from tryptophan and shares structural similarity with IAA. To date, little is known about the morphological, physiological and molecular responses of plants to serotonin. In this study, we characterized the effects of serotonin on growth and development in Arabidopsis thaliana seedlings. Gas chromatography-mass spectrometry (GC-MS) analysis showed that plants are able to take up serotonin from the growth medium, which coincided with greatly stimulated lateral root development at concentrations from 10 to 160 μM. In contrast, higher doses of serotonin repressed lateral root growth, primary root growth and root hair development, but stimulated adventitious root formation. To investigate the role of serotonin in modulating auxin responses, we performed experiments using transgenic Arabidopsis lines expressing the auxin-responsive marker constructs DR5:uidA, BA3:uidA and HS::AXR3NT-GUS, as well as a variety of Arabidopsis mutants defective at the AUX1, AXR1, AXR2 and AXR4 auxin-related loci. We found that serotonin strongly inhibited both DR5:uidA and BA3:uidA gene expression in primary and adventitious roots and in lateral root primordia. This compound also abolished the effects of IAA or naphthaleneacetic acid on auxin-regulated developmental and genetic responses, indicating an anti-auxin activity in the plant. Mutant analysis further showed that lateral root induction elicited by serotonin was independent of the AUX1 and AXR4 loci but required AXR1 and AXR2. Our results show that serotonin regulates root development probably by acting as a natural auxin inhibitor.

Journal ArticleDOI
TL;DR: In this paper, the authors evaluated genotypic variation in both root (root architecture and morphology, including root hairs) and plant growth traits associated with the adaptation of maize landraces to a P-deficient Andisol in two locations in the Central Mexican highlands.

Book ChapterDOI
TL;DR: Molecular-genetic approaches have led to the identification of many genes that are involved in epidermal cell differentiation, most of which encode transcription factors that induce the expression of genes active in both root hair and trichome development.
Abstract: Epidermis cell differentiation in Arabidopsis thaliana is a model system for understanding the mechanisms leading to the developmental end state of plant cells. Both root hairs and trichomes differentiate from epidermal cells and molecular genetic analyses using Arabidopsis mutants have demonstrated that the differentiation of root hairs and trichomes is regulated by similar molecular mechanisms. Molecular-genetic approaches have led to the identification of many genes that are involved in epidermal cell differentiation, most of which encode transcription factors that induce the expression of genes active in both root hair and trichome development. Control of cell growth after fate determination has also been studied using Arabidopsis mutants.

Journal ArticleDOI
TL;DR: The effect of arsenate with or without phosphate on the growth and metabolism in rice seedlings cv. MTU1010 was studied in this article, where arsenic was more toxic for root growth, than for shoot growth.
Abstract: The effect of arsenate with or without phosphate on the growth and metabolism in rice seedlings cv. MTU1010 was studied. In the test, cv. arsenic was more toxic for root growth, than for shoot growth, where root hairs were fewer and short, roots were characteristically stubby, brittle and root tips gradually turned brown. Arsenic caused damage to the root epidermal cells and aerenchymatous cortex. The level of total chlorophyll, chlorophyll-a, chlorophyll-b and fluorescence intensity were decreased in arsenic treated rice seedlings. Arsenic toxicity affected the activities of different antioxidant scavenging enzymes in the test seedlings. Activities of superoxide dismutase and ascorbic acid oxidase were increased, whereas catalase and catechol peroxidase activities were decreased by arsenic application. In these seedlings, the oxidative stress has been observed with arsenic treatments and the level of proline, H2O2 and malondialdehyde contents were increased. Joint application of phosphate with a...


Journal ArticleDOI
TL;DR: Microelectrode ion flux estimation experiments with auxin mutants lead to the final conclusion that control of the activity state of plasma membrane H+-ATPases is one of the mechanisms by which ethylene, via auxin, affects the final cell length in the root.
Abstract: In Arabidopsis (Arabidopsis thaliana; Columbia-0) roots, the so-called zone of cell elongation comprises two clearly different domains: the transition zone, a postmeristematic region (approximately 200-450 mu m proximal of the root tip) with a low rate of elongation, and a fast elongation zone, the adjacent proximal region (450 mu m away from the root tip up to the first root hair) with a high rate of elongation. In this study, the surface pH was measured in both zones using the microelectrode ion flux estimation technique. The surface pH is highest in the apical part of the transition zone and is lowest at the basal part of the fast elongation zone. Fast cell elongation is inhibited within minutes by the ethylene precursor 1-aminocyclopropane-1-carboxylic acid; concomitantly, apoplastic alkalinization occurs in the affected root zone. Fusicoccin, an activator of the plasma membrane H+-ATPase, can partially rescue this inhibition of cell elongation, whereas the inhibitor N,N'-dicyclohexylcarbodiimide does not further reduce the maximal cell length. Microelectrode ion flux estimation experiments with auxin mutants lead to the final conclusion that control of the activity state of plasma membrane H+-ATPases is one of the mechanisms by which ethylene, via auxin, affects the final cell length in the root.

Journal ArticleDOI
TL;DR: In vivo evidence is provided that expansin-mediated wall modification occurs during root hair growth and root hairs of RNAi transformant lines were 25–48% shorter than control plants and exhibited a broader range of lengths than the controls.
Abstract: Expansins are non-hydrolytic cell wall-loosening proteins that are involved in the cell wall modifications that underlie many plant developmental processes. Root hair growth requires the accumulation of cell wall materials and dynamic cell wall modification at the tip region. Although several lines of indirect evidence support the idea that expansin-mediated wall modification occurs during root hair growth, the involvement of these proteins remains to be demonstrated in vivo. In this study, we used RNA interference (RNAi) to examine the biological function of Arabidopsis thaliana EXPANSIN A7 (AtEXPA7), which is expressed specifically in the root hair cell. The root hairspecific AtEXPA7 promoter was used to drive RNAi expression, which targeted two independent regions in the AtEXPA7 transcript. Quantitative reverse transcriptase-PCR analyses were used to examine AtEXPA7 transcript levels. In four independent RNAi transformant lines, RNAi expression reduced AtEXPA7 transcript levels by 25–58% compared to controls. Accordingly, the root hairs of RNAi transformant lines were 25–48% shorter than control plants and exhibited a broader range of lengths than the controls. Our results provide in vivo evidence that expansins are required for root hair tip growth.