scispace - formally typeset
Search or ask a question

Showing papers on "Saturable absorption published in 2014"


Journal ArticleDOI
TL;DR: The finding suggests that few-layered MoS₂ nanoplatelets can be useful nonlinear optical material for laser photonics devices, such as passive laser mode locker, Q-switcher, optical limiter, optical switcher and so on.
Abstract: The nonlinear optical property of few-layered MoS2 nanoplatelets synthesized by the hydrothermal exfoliation method was investigated from the visible to the near-infrared band using lasers. Both open-aperture Z-scan and balanced-detector measurement techniques were used to demonstrate the broadband saturable absorption property of few-layered MoS2. To explore its potential applications in ultrafast photonics, we fabricated a passive mode locker for ytterbium-doped fibre laser by depositing few-layered MoS2 onto the end facet of optical fiber by means of an optical trapping approach. Our laser experiment shows that few-layer MoS2-based mode locker allows for the generation of stable mode-locked laser pulse, centered at 1054.3 nm, with a 3-dB spectral bandwidth of 2.7 nm and a pulse duration of 800 ps. Our finding suggests that few-layered MoS2 nanoplatelets can be useful nonlinear optical material for laser photonics devices, such as passive laser mode locker, Q-switcher, optical limiter, optical switcher and so on.

991 citations


Journal ArticleDOI
TL;DR: The operation of a broadband MoS2 saturable absorber is demonstrated by the introduction of suitable defects and it is believed that the results provide some inspiration in the investigation of two-dimensional optoelectronic materials.
Abstract: The bandgaps of monolayer and bulk molybdenum sulfide (MoS2 ) result in that they are far from suitable for application as a saturable absorption device. In this paper, the operation of a broadband MoS2 saturable absorber is demonstrated by the introduction of suitable defects. It is believed that the results provide some inspiration in the investigation of two-dimensional optoelectronic materials.

654 citations


Journal ArticleDOI
TL;DR: The generation of a femtosecond pulse in a fiber ring laser by using a polyvinyl alcohol (PVA)-based molybdenum disulfide (MoS(2) SA) saturable absorber indicates that the filmy PVA-based MoS( 2) SA is indeed a good candidate for an ultrafast saturable absorption device.
Abstract: We report on the generation of a femtosecond pulse in a fiber ring laser by using a polyvinyl alcohol (PVA)-based molybdenum disulfide (MoS2) saturable absorber (SA). With a saturable optical intensity of 34 MW/cm2 and a modulation depth of ∼4.3%, the PVA-based MoS2 SA had been employed with an erbium-doped fiber ring laser as a mode locker. The mode-locking operation could be achieved at a low pump threshold of 22 mW. A ∼710 fs pulse centered at 1569.5 nm wavelength with a repetition rate of 12.09 MHz had been achieved with proper cavity dispersion. With the variation of net cavity dispersion, output pulses with durations from 0.71 to 1.46 ps were obtained. The achievement of a femtosecond pulse at 1.55 μm waveband demonstrates the broadband saturable absorption of MoS2, and also indicates that the filmy PVA-based MoS2 SA is indeed a good candidate for an ultrafast saturable absorption device.

351 citations


Journal ArticleDOI
TL;DR: The versatile ultrafast nonlinear properties imply a huge potential of the layered MoX2 semiconductors in the development of nanophotonic devices, such as mode-lockers, Optical limiters, optical switches, etc.
Abstract: A series of layered molybdenum dichalcogenides, i.e., MoX2 (X = S, Se and Te), were prepared in cyclohexyl pyrrolidinone by a liquid-phase exfoliation technique. The high quality of the two-dimensional nanostructures was verified by transmission electron microscopy and absorption spectroscopy. Open- and closed-aperture Z-scans were employed to study the nonlinear absorption and nonlinear refraction of the MoX2 dispersions, respectively. All the three-layered nanostructures exhibit prominent ultrafast saturable absorption (SA) for both femtosecond (fs) and picosecond (ps) laser pulses over a broad wavelength range from the visible to the near infrared. While the dispersions treated with low-speed centrifugation (1500 rpm) have an SA response, and the MoS2 and MoSe2 dispersions after higher speed centrifugation (10 000 rpm) possess two-photon absorption for fs pulses at 1030 nm, which is due to the significant reduction of the average thickness of the nanosheets; hence, the broadening of band gap. In addition, all dispersions show obvious nonlinear self-defocusing for ps pulses at both 1064 nm and 532 nm, resulting from the thermally-induced nonlinear refractive index. The versatile ultrafast nonlinear properties imply a huge potential of the layered MoX2 semiconductors in the development of nanophotonic devices, such as mode-lockers, optical limiters, optical switches, etc.

321 citations


Journal ArticleDOI
TL;DR: In this paper, a few-layer Molybdenum sulfide (MoS2) polymer composite is used as broadband saturable absorber (SA) for Q-switching.
Abstract: We propose and demonstrate 1, 1.5, and 2 μm passively Q-switched fiber lasers by exploiting a few-layer Molybdenum sulfide (MoS2) polymer composite as broadband saturable absorber (SA), respectively. The few-layer MoS2 nanosheets are prepared by the liquid-phase exfoliation method, and are composited with polyvinyl alcohol (PVA). The PVA-MoS2 film is sandwiched between two fiber ferrules to form the fiber-compatible SA. The few-layer MoS2 not only shows good transparency from ultraviolet to mid-infrared spectral region, but also possesses the nonlinear saturable absorption. The modulation depth and saturation optical intensity of the PVA-MoS2 film are measured to be 1.6% and 13 MW/cm2 at 1566 nm by the balanced twin-detector technique, respectively. By further inserting the filmy PVA-MoS2 SA into the cavities of Yb-, Er- and Tm-doped fiber lasers, we achieve stable Q-switching operations at 1.06, 1.56, and 2.03 μm, respectively. The output characteristics of the Q-switched pulses at the three wavelengths have been investigated, respectively. The MoS2-based Q-switching enables the large pulse energy of ∼1 μJ with a pulse width of 1.76 μs. This is, to the best of our knowledge, the first demonstration of MoS2-based Q-switched fiber lasers in a wide wavelength range (from 1 to 2 μm). Our results experimentally confirm that the new-type 2-D material, few-layer MoS2, is a promising broadband SA to Q-switch fiber lasers covering all major wavelengths from near- to mid-infrared region.

320 citations


Journal ArticleDOI
TL;DR: A mechanism, based on edge states within the bandgap, is proposed, responsible for the wideband nonlinear optical absorption exhibited by the few-layer MoS₂ sample, despite operating at photon energies lower than the material bandgap.
Abstract: We fabricate a few-layer molybdenum disulfide (MoS₂) polymer composite saturable absorber by liquid-phase exfoliation, and use this to passively Q-switch an ytterbium-doped fiber laser, tunable from 1030 to 1070 nm. Self-starting Q-switching generates 2.88 μs pulses at 74 kHz repetition rate, with over 100 nJ pulse energy. We propose a mechanism, based on edge states within the bandgap, responsible for the wideband nonlinear optical absorption exhibited by our few-layer MoS₂ sample, despite operating at photon energies lower than the material bandgap.

314 citations


Journal ArticleDOI
TL;DR: The experimental results show that multilayer MoS(2) is a promising material for ultrafast laser systems and stable mode locking is obtained at a pump threshold of 31 mW.
Abstract: We demonstrate an erbium-doped fiber laser passively mode-locked by a multilayer molybdenum disulfide (MoS(2)) saturable absorber (SA). The multilayer MoS(2) is prepared by the chemical vapor deposition (CVD) method and transferred onto the end-face of a fiber connector. Taking advantage of the excellent saturable absorption of the fabricated MoS(2)-based SA, stable mode locking is obtained at a pump threshold of 31 mW. Resultant output soliton pulses have central wavelength, spectral width, pulse duration, and repetition rate of 1568.9 nm, 2.6 nm, 1.28 ps, and 8.288 MHz, respectively. The experimental results show that multilayer MoS(2) is a promising material for ultrafast laser systems.

282 citations


Journal ArticleDOI
TL;DR: The experimental results demonstrate that the PVA could be an excellent host material for fabricating high-performance TISA, and indicate that the filmy PVA-TISA is indeed a good candidate for ultrafast saturable absorption device.
Abstract: We reported on the generation of femtosecond pulse in a fiber ring laser by using a polyvinyl alcohol (PVA)-based topological insulator (TI), Bi2Se3 saturable absorber (SA). The PVA-TI composite has a low saturable optical intensity of 12 MW/cm2 and a modulation depth of ~3.9%. By incorporating the fabricated PVA-TISA into a fiber laser, mode-locking operation could be achieved at a low pump threshold of 25 mW. After an optimization of the cavity parameters, optical pulse with ~660 fs centered at 1557.5 nm wavelength had been generated. The experimental results demonstrate that the PVA could be an excellent host material for fabricating high-performance TISA, and also indicate that the filmy PVA-TISA is indeed a good candidate for ultrafast saturable absorption device.

253 citations


Journal ArticleDOI
TL;DR: In this article, an erbium-doped fiber laser passively Q-switched by a topological insulator saturable absorber (TI-SA) is described.
Abstract: We report on the generation of large energy, widely wavelength tunable pulses in an erbium-doped fiber laser passively Q-switched by a topological insulator saturable absorber (TI-SA). The TI-SA is prepared through an optical deposition method. Its saturating intensity and modulation depth are measured to be about 57 MW/cm2 and 22%, respectively. We show that the high modulation depth of TI-SA allows the generation of stable Q-switched pulses with per-pulse energy up to 1.5 μJ and its broadband saturable absorption favors the tunable Q-switching operation from 1510.9 nm to 1589.1 nm. Our study suggests that TI: Bi2Te3 could be a promising saturable absorber for both the high energy and broadband optical applications.

249 citations


Journal ArticleDOI
TL;DR: It is shown that stable, ultrafast pulses with a temporal width of ~795 fs could readily be generated at a wavelength of 1935 nm from a thulium/holmium co-doped fiber ring cavity.
Abstract: We experimentally demonstrate a femtosecond mode-locked, all-fiberized laser that operates in the 2 μm region and that incorporates a saturable absorber based on a bulk-structured bismuth telluride (Bi(2)Te(3)) topological insulator (TI). Our fiberized saturable absorber was prepared by depositing a mechanically exfoliated, ~30 μm-thick Bi(2)Te(3) TI layer on a side-polished optical fiber platform. The bulk crystalline structure of the prepared Bi(2)Te(3) layer was confirmed by Raman and X-ray photoelectron spectroscopy measurements. The modulation depth of the prepared saturable absorber was measured to be ~20.6%. Using the saturable absorber, it is shown that stable, ultrafast pulses with a temporal width of ~795 fs could readily be generated at a wavelength of 1935 nm from a thulium/holmium co-doped fiber ring cavity. This experimental demonstration confirms that bulk structured, TI-based saturable absorbers can readily be used as an ultra-fast mode-locker for 2 μm lasers.

247 citations


Journal ArticleDOI
TL;DR: The use of a bulk-structured Bi(2)Te(3) topological insulator (TI) as an ultrafast mode-locker to generate femtosecond pulses from an all-fiberized cavity indicates that high-crystalline-quality atomic-layered films of TI, which demand complicated and expensive material processing facilities, are not essential for ultrafast laser mode-locking applications.
Abstract: We experimentally demonstrate the use of a bulk-structured Bi2Te3 topological insulator (TI) as an ultrafast mode-locker to generate femtosecond pulses from an all-fiberized cavity. Using a saturable absorber based on a mechanically exfoliated layer about 15 μm thick deposited onto a side-polished fiber, we show that stable soliton pulses with a temporal width of ~600 fs can readily be produced at 1547 nm from an erbium fiber ring cavity. Unlike previous TI-based mode-locked laser demonstrations, in which high-quality nanosheet-based TIs were used for saturable absorption, we chose to use a bulk-structured Bi2Te3 layer because it is easy to fabricate. We found that the bulk-structured Bi2Te3 layer can readily provide sufficient nonlinear saturable absorption for femtosecond mode-locking even if its modulation depth of ~15.7% is much lower than previously demonstrated nanosheet-structured TI-based saturable absorbers. This experimental demonstration indicates that high-crystalline-quality atomic-layered films of TI, which demand complicated and expensive material processing facilities, are not essential for ultrafast laser mode-locking applications.

Journal ArticleDOI
TL;DR: In this paper, the authors demonstrate the use of a new saturable absorber material, antimony telluride (Sb2Te3), for efficient mode-locking of an Erbium-doped fiber laser.
Abstract: We demonstrate the usage of a new saturable absorber material – antimony telluride (Sb2Te3) for efficient mode-locking of an Erbium-doped fiber laser. The Sb2Te3 layers were obtained by mechanical exfoliation and transferred onto the fiber connector tip. The all-fiber laser was capable of generating optical solitons with the full width at half maximum of 1.8 nm centered at 1558.6 nm, with 4.75 MHz repetition rate. The pulse energy of the generated 1.8 ps pulses was at the level of 105 pJ.

Journal ArticleDOI
TL;DR: In this article, the topological insulator (TI) Bi2Se3 as a saturable absorber (SA) is exploited to Q-switch fiber lasers at 2 μm wavelength for the first time.
Abstract: In this paper, Topological insulator (TI) Bi2Se3 as a saturable absorber (SA) is exploited to Q-switch fiber lasers at 2 μm wavelength for the first time. Few-layer TI:Bi 2Se 3 nanosheets in CS-HAc solution are prepared by the liquid-phase exfoliation method, and the thin 2-D structure with the thickness of 3-5 layers is well characterized. The open-aperture Z-scan experiment shows that the few-layer TI:Bi 2Se 3 has the saturable optical intensity of 41 MW/cm 2 at 800 nm and the modulation depth of 3.7%. The optical deposition technique is used to efficiently assemble the TI:Bi 2Se 3 nanosheets in the solution onto a fiber ferrule, therefore constructing a fiber-compatible TI-based SA (FC-TISA). By further inserting the FC-TISA into a diode-pumped Tm 3+-doped double-clad fiber laser (TM-DCFL), stable Q-switching operation at 1.98 μm is successfully achieved with the shortest pulse width of 4.18 μs and the tunable repetition rate from 8.4 to 26.8 kHz. In particular, the TM-DCFL can deliver large-energy Q-switched pulses with the pulse energy as high as 313 nJ (corresponding to average output power of 8.4 mW). Our results suggest that TI-based SA is suitable for pulsed laser operation in the eye-safe region of 2 μm, and potentially develops as an ultra-broadband photonics device.

Journal ArticleDOI
TL;DR: In this paper, the nonlinear response of topological insulator (TI): Bi2Te3 at both the optical and microwave band was investigated, and it was shown that the absorbance decreases with the increase of the incident power.
Abstract: We experimentally studied the nonlinear response of topological insulator (TI): Bi2Te3 at both the optical and microwave band, and found that the absorbance of topological insulator decreases with the increase of the incident power and reaches at a constant value once the incident power exceeds a threshold. By the open-aperture Z-scan and balanced twin detector measurement techniques, the optical saturable absorption property of TI: Bi2Te3 from 800 nm to 1550 nm was experimentally demonstrated. Based on a power dependent microwave transmittance experimental setup, TI: Bi2Te3 was also identified to show a saturation intensity of ~12 μW/cm2 and a normalized modulation depth of ~70%. We argue that the optical (resp. microwave) saturable absorption in topological insulator is a natural consequence of the Pauli-blocking principle of the electrons filled in the bulk insulating state (resp. surface metallic state). Our experimental results illustrate the potential photonic applications of TI: Bi2Te3 at both the optical and microwave band.

Journal ArticleDOI
TL;DR: It is proposed and demonstrated a MoS2-based passively Q-switched Er-doped fiber laser with a wide tuning range of 1519.6-1567.7 nm, and to the best of the knowledge, it is the first demonstration ofMoS2 Q- Switched, widely-tunable fiber laser.
Abstract: We propose and demonstrate a MoS2-based passively Q-switched Er-doped fiber laser with a wide tuning range of 1519.6-1567.7 nm. The few-layer MoS2 nano-platelets are prepared by the liquid-phase exfoliation method, and are then made into polymer-composite film to construct the fiber-compatible MoS2 saturable absorber (SA). It is measured at 1560 nm wavelength, that such MoS2 SA has the modulation depth of ∼ 2% and the saturable optical intensity of ∼ 10 MW/cm(2). By further inserting the filmy MoS2-SA into an Er-doped fiber laser, stable Q-switching operation with a 48.1 nm continuous tuning from S- to C-waveband is successfully achieved. The shortest pulse duration and the maximum pulse energy are 3.3 μs and 160 nJ, respectively. The repetition rate and the pulse duration under different operation conditions have been also characterized. To the best of our knowledge, it is the first demonstration of MoS2 Q-switched, widely-tunable fiber laser.

Journal ArticleDOI
TL;DR: The generation of tunable single-, switchable and tunable dual-, and stable triple-wavelength dissipative solitons (DSs) in an all-normal-dispersion mode-locked Yb-doped fiber laser based on a graphene-oxide saturable absorber (GOSA) without additional components (such as optical filter, or fiber grating).
Abstract: We report the generation of tunable single-, switchable and tunable dual-, and stable triple-wavelength dissipative solitons (DSs) in an all-normal-dispersion mode-locked Yb-doped fiber laser based on a graphene-oxide saturable absorber (GOSA) without additional components (such as optical filter, or fiber grating). The tunable single-wavelength DS have a wide wavelength-tunable range of 16.4 nm. The dual-wavelength DSs not only have a wavelength-tunable range (about 10 nm) but also have variable wavelength spacing (3.8-13.8 nm). The formation dynamics of the triple-wavelength DSs was also investigated experimentally. The different operations of tunable single-, switchable and tunable dual-, and stable triple-wavelength DSs depend on the strength of the cavity birefringence. The simple, compact all-fiber DS laser with lasing wavelength tunability and flexibility can meet great potential for applications.

Journal ArticleDOI
TL;DR: The results provide the first demonstration of the simultaneous applications of both highly non linear and saturable absorption effects of the MoS(2), indicating that the microfiber-based MoS (2) photonic device could serve as high-performance SA and highly nonlinear optical component for application fields such as ultrafast nonlinear optics.
Abstract: We reported on the generation of high-order harmonic mode-locking in a fiber laser using a microfiber-based molybdenum disulfide (MoS(2)) saturable absorber (SA). Taking advantage of both the saturable absorption and large third-order nonlinear susceptibilities of the few-layer MoS(2), up to 2.5 GHz repetition rate HML pulse could be obtained at a pump power of 181 mW, corresponding to 369th harmonic of fundamental repetition frequency. The results provide the first demonstration of the simultaneous applications of both highly nonlinear and saturable absorption effects of the MoS(2), indicating that the microfiber-based MoS(2) photonic device could serve as high-performance SA and highly nonlinear optical component for application fields such as ultrafast nonlinear optics.

Journal ArticleDOI
TL;DR: In this paper, the authors demonstrate a mode-locked Er-doped fiber laser incorporating antimony telluride (Sb2Te3) topological insulator (TI) as a saturable absorber.
Abstract: In this Letter, we demonstrate a mode-locked Er-doped fiber laser incorporating antimony telluride (Sb2Te3) topological insulator (TI) as a saturable absorber (SA). The laser was capable of generating 270 fs-short soliton pulses at 1560 nm wavelength, which are the shortest solitons generated with a TI-based saturable absorber so far. In order to form a saturable absorber, a bulk piece of Sb2Te3 was deposited on a side-polished single-mode fiber with the presence of a low refractive index polymer. Such saturable absorber exhibits modulation depth at the level of 6% with less than 3 dB of non-saturable losses. Our study shows that TI-based saturable absorbers with evanescent field interaction might compete with SAs based on carbon nanomaterials, like graphene or nanotubes. Additionally, thanks to the interaction with the evanescent field, the material is not exposed to high optical power, which allows to avoid optical or thermal damage.

Journal ArticleDOI
TL;DR: The ring laser resonator based on Er-doped active fiber with managed intracavity dispersion was capable of generating ultrashort optical pulses with full width at half maximum (FWHM) of 30 nm centered at 1565 nm.
Abstract: In this work we present for the first time, to the best of our knowledge, a stretched-pulse mode-locked fiber laser based on topological insulator. As a saturable absorber (SA) a ~0.5 mm thick lump of antimony telluride (Sb2Te3) deposited on a side-polished fiber was used. Such a SA introduced 6% modulation depth with 43% of non-saturable losses, which is sufficient for supporting stretched-pulse mode-locking. The ring laser resonator based on Er-doped active fiber with managed intracavity dispersion was capable of generating ultrashort optical pulses with full width at half maximum (FWHM) of 30 nm centered at 1565 nm. The pulses with duration of 128 fs were repeated with a frequency of 22.32 MHz.

Journal ArticleDOI
TL;DR: Graphene is establishing itself as a new photonic material with huge potential in a variety of applications ranging from transparent electrodes in displays and photovoltaic modules to saturable absorber in mode-locked lasers.
Abstract: Graphene is establishing itself as a new photonic material with huge potential in a variety of applications ranging from transparent electrodes in displays and photovoltaic modules to saturable absorber in mode-locked lasers Its peculiar bandstructure and electron transport characteristics naturally suggest graphene could also form the basis for a new generation of high-performance devices operating in the terahertz (THz) range of the electromagnetic spectrum The region between 300 GHz and 10 THz is in fact still characterized by a lack of efficient, compact, solid state photonic components capable of operating well at 300 K Recent works have already shown very promising results in the development of high-speed modulators as well as of bolometer and plasma-wave detectors Furthermore, several concepts have been proposed aiming at the realization of lasers and oscillators This paper will review the latest achievements in graphene-based THz photonics and discuss future perspectives of this rapidly developing research field

Journal ArticleDOI
TL;DR: Application of a multilayer Molybdenum Disulfide thin film as a saturable absorber was experimentally demonstrated by realizing a stable and robust passive mode-locked fiber laser via the evanescent field interaction between the light and the film.
Abstract: Application of a multilayer Molybdenum Disulfide (MoS2) thin film as a saturable absorber was experimentally demonstrated by realizing a stable and robust passive mode-locked fiber laser via the evanescent field interaction between the light and the film. The MoS2 film was grown by chemical vapor deposition, and was then transferred to a side polished fiber by a lift-off method. Intensity-dependent optical transmission through the MoS2 thin film on side polished fiber was experimentally observed showing efficient saturable absorption characteristics. Using erbium doped fiber as an optical gain medium, we built an all-fiber ring cavity, where the MoS2 film on the side polished fiber was inserted as a saturable absorber. Stable dissipative soliton pulse trains were successfully generated in the normal dispersion regime with a spectral bandwidth of 23.2 nm and the pulse width of 4.98 ps. By adjusting the total dispersion in the cavity, we also obtained soliton pulses with a width of 637 fs in the anomalous dispersion regime near the lasing wavelength λ = 1.55 μm. Detailed and systematic experimental comparisons were made for stable mode locking of an all-fiber laser cavity in both the normal and anomalous regimes.

Journal ArticleDOI
TL;DR: In this article, the formation of various multi-soliton patterns and noise-like (NL) pulses in an erbium-doped fiber laser passively mode-locked by a new type of saturable absorber: topological insulator.
Abstract: We experimentally investigated the formation of various multi-soliton patterns and noise-like (NL) pulses in an erbium-doped fiber laser passively mode-locked by a new type of saturable absorber: topological insulator With the increase of pump power, various multi-soliton operation states—ordered, chaotic and bunched multiple-soliton—were subsequently obtained Once the pump power exceeds 401 mW, an NL pulse state emerged, with a maximum 3 dB bandwidth of about 93 nm This systematic study clearly demonstrated that a topological insulator could be an effective saturable absorber for the formation of various soliton operation states in a fiber laser cavity

Journal ArticleDOI
TL;DR: In this article, the authors reported broadband (up to ~1000 nm) ultrafast pulse generation from three fiber lasers mode-locked by a single graphene saturable absorber device, based on Yb-, Er- and Tm:Ho-doped fiber lasers at the central wavelength of 1035, 1564, and 1908 nm, respectively.
Abstract: Ultrafast fiber lasers with broad spectral coverage are in great demand for a variety of applications, such as spectroscopy, and biomedical diagnosis. Graphene is an ideal ultrawide-band saturable absorber. We report broadband (up to ~1000 nm) ultrafast pulse generation from three fiber lasers mode-locked by a single graphene saturable absorber device. The mode-locked pulses were based on Yb-, Er- and Tm:Ho-doped fiber lasers at the central wavelength of 1035, 1564, and 1908 nm, respectively. The maximum output energy is up to 16.2 nJ at 1908 nm. It is the first time that ultrafast fiber lasers covering 1, 1.5, and 2 μm spectral region are mode-locked with a single graphene device. Our results validate the intrinsic broadband operation property of graphene devices for all major fiber laser wavelengths from 1 to 2 μm.

Journal ArticleDOI
TL;DR: In this paper, the authors presented a harmonically mode-locked Er-doped fiber laser with antimony telluride (Sb2Te3) topological insulator material used as a saturable absorber (SA).
Abstract: In this letter we present for the first time, to the best of our knowledge, a harmonically mode-locked Er-doped fiber laser with antimony telluride (Sb2Te3) topological insulator material used as a saturable absorber (SA). The SA was prepared via mechanical exfoliation of the bulk material. The 80 nm thick Sb2Te3 layers transferred onto fiber ferrule entirely cover the fiber core. The Er-doped fiber mode-locked laser based on such SA generated optical pulses was centered at 1558 nm with 1.9 ps duration and a fundamental repetition rate of 3.75 MHz. Increasing the pump power results in stable harmonic mode-locked operation up to the 81st harmonic at 304 MHz repetition frequency. The laser was capable of generating optical solitons with 2.2 ps duration. The number of generated harmonics could be tuned only by changing the pump power injected into the laser cavity.

Journal ArticleDOI
01 Oct 2014-Carbon
TL;DR: In this article, a reduced graphene oxide-zinc phthalocyanine (RGO-ZnPc) hybrid material with good dispersibility has been prepared by covalent functionalization method.

Journal ArticleDOI
TL;DR: In this article, a dual-wavelength passively harmonic mode locking (HML) operation is demonstrated in an erbium-doped fiber laser with a microfiber-based topological insulator (TI) saturable absorber.
Abstract: Dual-wavelength passively harmonic mode locking (HML) operation is demonstrated in an erbium-doped fiber laser with a microfiber-based topological insulator (TI) saturable absorber. It was found that the dual-wavelength pulse-trains possess different HML orders due to the different cavity nonlinear effects experienced by the two wavelengths. By properly adjusting the cavity parameters, dual-wavelength HML pulses with repetition rates of 388 and 239 MHz were achieved. Moreover, wavelength switchable operation of dual-wavelength HML pulses was also obtained. The experimental results reveal that the microfiber-based TI could indeed be employed as a high-performance dual-function photonic device with the saturable absorption and high nonlinear effects for the applications in fields of ultrafast and nonlinear photonics.

Journal ArticleDOI
TL;DR: Hydroxyl steroidal matrices embedding properly designed aromatic molecules as acceptors and transition-metal complexes as donors exhibit high RSA on exposure to weak incoherent light at room temperature and in air, which may be used to protect eyes and light sensors from exposure to intense radiation generated by incoherent sources.
Abstract: In materials showing reverse saturable absorption (RSA), the optical absorbance increases as the power of the light incident on them increases. To date, RSA has only been observed when very intense light sources, such as short-pulse lasers, are used. Here, we show that hydroxyl steroidal matrices embedding properly designed aromatic molecules as acceptors and transition-metal complexes as donors exhibit high RSA on exposure to weak incoherent light at room temperature and in air. Accumulation by photosensitization of long-lived room-temperature triplet excitons in acceptors with a large triplet-triplet absorption coefficient allows a nonlinear increase in absorbance also under low-power irradiation conditions. As a consequence, continuous exposure to weak light significantly decreases the transmittance of thin films fabricated with these compounds. These optical limiting properties may be used to protect eyes and light sensors from exposure to intense radiation generated by incoherent sources and for other light-absorption applications that have not been realized with conventional RSA materials.

Journal ArticleDOI
TL;DR: To the best of the knowledge, both of the repetition rate and the output power were the highest values among the Q-switched fiber lasers with topological insulator absorber.
Abstract: We demonstrated a high-repetition-rate Q-switched fiber laser with topological insulator Bi₂Se₃ absorber. The absorber was made into a film structure by spin-coating method using few-layer Bi₂Se₃ nano-platelets which had regular shape. The uniform film had a low saturable optical intensity of 11 MW/cm(2), which is the lowest saturable optical intensity in the saturable absorbers made by topological insulator till now. By inserting the absorber film into an Erbium-doped fiber laser, a high-repetition Q-switched laser with the repetition rates from 459 kHz to 940 kHz was achieved. The maximum output power was 22.35 mW with the shortest pulse duration of 1.9 μs. To the best of our knowledge, both of the repetition rate and the output power were the highest values among the Q-switched fiber lasers with topological insulator absorber.

Journal ArticleDOI
TL;DR: The results experimentally confirm the promising application of the new kind of 2D material, few-layer MoS₂, in solid state lasers.
Abstract: We report on the first passively Q-switched Nd:YAlO3 laser at ~1079.5 nm using MoS2 as saturable absorber. The MoS2 saturable absorber is fabricated by transferring the liquid-phase-exfoliated MoS2 nanosheets onto a BK7 glass substrate. By inserting the glass MoS2 saturable absorber into a plano-concave Nd:YAlO3 laser cavity, we obtain a stable Q-switched laser operation with a maximum average output power of 0.26 W corresponding to a pulse repetition rate of 232.5 kHz, a pulse width of 227 ns and a pulse energy of about 1.11 μJ. The results experimentally confirm the promising application of the new kind of 2D material, few-layer MoS2, in solid state lasers.

Journal ArticleDOI
TL;DR: The ultrashort-pulse Cr:ZnS laser mode-locked by graphene-based saturable absorber mirror using the combination of bulk material and a chirped mirror is reported, demonstrating the shortest reported so far mid-IR pulses.
Abstract: We report the ultrashort-pulse Cr:ZnS laser mode-locked by graphene-based saturable absorber mirror. Using the combination of bulk material and a chirped mirror, we demonstrate the shortest reported so far mid-IR pulses of only 5.1 optical cycles (41 fs) centered at 2.4 µm with 190 nm spectral bandwidth. The pulse spectrum almost completely fills the water-free atmospheric window. The output parameters reach 2.3 nJ pulse energy and 250 mW average output power at 108 MHz repetition rate.