scispace - formally typeset
Search or ask a question

Showing papers on "Shoot published in 2016"


Journal ArticleDOI
TL;DR: It is suggested that Na+ is retained and detoxified mainly in roots, and less stress impact is observed in mature and younger leaves, allowing leaves to activate their defense mechanisms for better protection against salt stress.
Abstract: Salinity negatively affects plant growth and causes significant crop yield losses world-wide. Maize is an economically important cereal crop affected by high salinity. In this study, maize seedlings were subjected to 75 mM and 150 mM NaCl, to emulate high soil salinity. Roots, mature leaves (basal leaf-pair 1,2) and young leaves (distal leaf-pair 3,4) were harvested after 3 weeks of sowing. Roots showed the highest reduction in biomass, followed by mature and young leaves in the salt-stressed plants. Concomitant with the pattern of growth reduction, roots accumulated the highest levels of Na(+) followed by mature and young leaves. High salinity induced oxidative stress in the roots and mature leaves, but to a lesser extent in younger leaves. The younger leaves showed increased electrolyte leakage (EL), malondialdehyde (MDA), and hydrogen peroxide (H2O2) concentrations only at 150 mM NaCl. Total antioxidant capacity (TAC) and polyphenol content increased with the increase in salinity levels in roots and mature leaves, but showed no changes in the young leaves. Under salinity stress, reduced ascorbate (ASC) and glutathione (GSH) content increased in roots, while total tocopherol levels increased specifically in the shoot tissues. Similarly, redox changes estimated by the ratio of redox couples (ASC/total ascorbate and GSH/total glutathione) showed significant decreases in the roots. Activities of enzymatic antioxidants, catalase (CAT, EC 1.11.1.6) and dehydroascorbate reductase (DHAR, EC 1.8.5.1), increased in all organs of salt-treated plants, while superoxide dismutase (SOD, EC 1.15.1.1), ascorbate peroxidase (APX, EC 1.11.1.11), glutathione-s-transferase (GST, EC 2.5.1.18) and glutathione reductase (GR, EC 1.6.4.2) increased specifically in the roots. Overall, these results suggest that Na(+) is retained and detoxified mainly in roots, and less stress impact is observed in mature and younger leaves. This study also indicates a possible role of ROS in the systemic signaling from roots to leaves, allowing leaves to activate their defense mechanisms for better protection against salt stress.

351 citations


Journal ArticleDOI
TL;DR: Cucumber plants grown from seeds that were treated with these PGPR strains displayed significantly higher levels of germination, seedling vigour, growth, and N content in root and shoot tissue compared to non-treated control plants, indicating their ability to suppress Phytophthora crown rot in cucumber.
Abstract: Plant growth promoting rhizobacteria (PGPR) are the rhizosphere bacteria that may be utilized to augment plant growth and suppress plant diseases. The objectives of this study were to identify and characterize PGPR indigenous to cucumber rhizosphere in Bangladesh, and to evaluate their ability to suppress Phytophthora crown rot in cucumber. A total of sixty six isolates were isolated, out of which ten (PPB1, PPB2, PPB3, PPB4, PPB5, PPB8, PPB9, PPB10, PPB11 and PPB12) were selected based on their in vitro plant growth promoting attributes and antagonism of phytopathogens. Phylogenetic analysis of 16S rRNA sequences identified these isolates as new strains of Pseudomonas stutzeri, Bacillus subtilis, Stenotrophomonas maltophilia and B. amyloliquefaciens. The selected isolates produced high levels (26.78 to 51.28 μg mL−1) of indole-3-acetic acid, while significant acetylene reduction activities (1.79 to 4.9 µmole C2H4 mg-1 protein h-1) were observed in eight isolates. Cucumber plants grown from seeds that were treated with these PGPR strains displayed significantly higher levels of germination, seedling vigor, growth, and N content in root and shoot tissue compared to non-treated control plants. All selected isolates were able to successfully colonize the cucumber roots. Moreover, treating cucumber seeds with these isolates significantly suppressed Phytophthora crown rot caused by Phytophthora capsici, and characteristic morphological alterations in Ph. capsici hyphae that grew towards PGPR colonies were observed. Since these PGPR inoculants exhibited multiple traits beneficial to the host plants, they may be applied in the development of new, safe, and effective seed treatments as an alternative to chemical fungicides.

251 citations


Journal ArticleDOI
TL;DR: In this article, the physiological and biochemical behavior of rice (Oryza sativa, var. Jyoti) treated with copper (II) oxide nanoparticles (CuO NPs) was studied.
Abstract: The physiological and biochemical behaviour of rice (Oryza sativa, var. Jyoti) treated with copper (II) oxide nanoparticles (CuO NPs) was studied. Germination rate, root and shoot length, and biomass decreased, while uptake of Cu in the roots and shoots increased at high concentrations of CuO NPs. The accumulation of CuO NPs was observed in the cells, especially, in the chloroplasts, and was accompanied by a lower number of thylakoids per granum. Photosynthetic rate, transpiration rate, stomatal conductance, maximal quantum yield of PSII photochemistry, and photosynthetic pigment contents declined, with a complete loss of PSII photochemical quenching at 1,000 mg(CuO NP) L−1. Oxidative and osmotic stress was evidenced by increased malondialdehyde and proline contents. Elevated expression of ascorbate peroxidase and superoxide dismutase were also observed. Our work clearly demonstrated the toxic effect of Cu accumulation in roots and shoots that resulted in loss of photosynthesis.

247 citations


10 Jan 2016
TL;DR: This work shows that tomato inflorescence branching mutants with extra flower and fruit organs due to enlarged meristems are defective in arabinosyltransferase genes, and shows that a mutation in CLV3 increased fruit size during domestication.
Abstract: Shoot meristems of plants are composed of stem cells that are continuously replenished through a classical feedback circuit involving the homeobox WUSCHEL (WUS) gene and the CLAVATA (CLV) gene signaling pathway. In CLV signaling, the CLV1 receptor complex is bound by CLV3, a secreted peptide modified with sugars. However, the pathway responsible for modifying CLV3 and its relevance for CLV signaling are unknown. Here we show that tomato inflorescence branching mutants with extra flower and fruit organs due to enlarged meristems are defective in arabinosyltransferase genes. The most extreme mutant is disrupted in a hydroxyproline O-arabinosyltransferase and can be rescued with arabinosylated CLV3. Weaker mutants are defective in arabinosyltransferases that extend arabinose chains, indicating that CLV3 must be fully arabinosylated to maintain meristem size. Finally, we show that a mutation in CLV3 increased fruit size during domestication. Our findings uncover a new layer of complexity in the control of plant stem cell proliferation.

231 citations


Journal ArticleDOI
TL;DR: Data strongly suggest the existence of a root localised protection mechanism consisting in armoring the root surface by Si- and Cd-bearing compounds and in limiting root–shoot translocation in durum wheat.
Abstract: We investigated the potential role of silicon in improving tolerance and decreasing cadmium (Cd) toxicity in durum wheat (Triticum turgidum L. durum) either through a reduced Cd uptake or exclusion/sequestration in non-metabolic tissues. For this, plants were grown in hydroponic conditions for 10 days either in presence or absence of 1 mM Si and for 11 additional days in various Cd concentrations (0, 0.5, 5.0 and 50 mu M). After harvesting, morphological and physiological parameters as well as elemental concentrations were recorded. Cadmium caused reduction in growth parameters, photosynthetic pigments and mineral nutrient concentrations both in shoots and roots. Shoot and root contents of malate, citrate and aconitate increased, while contents of phosphate, nitrate and sulphate decreased with increasing Cd concentrations in plants. Addition of Si to the nutrient solution mitigated these adverse effects: Cd concentration in shoots decreased while concentration of Cd adsorbed at the root cell apoplasmic level increased together with Zn uptake by roots. Overall, total Cd uptake decreased in presence of Si. There was no co-localisation of Cd and Si either at the shoot or at the root levels. No Cd was detected in leaf phytoliths. In roots, Cd was mainly detected in the cortical parenchyma and Si at the endodermis level, while analysis of the outer thin root surface of the plants grown in the 50 mu M Cd + 1 mM Si treatment highlighted non-homogeneous Cd and Si enrichments. These data strongly suggest the existence of a root localised protection mechanism consisting in armoring the root surface by Si- and Cd-bearing compounds and in limiting root-shoot translocation.

208 citations


Journal ArticleDOI
TL;DR: The results of this study demonstrate that an application of nano-TiO2 can increase Cd uptake and minimize Cd stress in soybean plants.

201 citations


Journal ArticleDOI
TL;DR: Future breeding for waterlogging tolerance should focus on root internal aeration and better N-use efficiency; exploiting the genetic diversity in wheat for these and other traits should enable improvement of waterlogges tolerance.
Abstract: We review the detrimental effects of waterlogging on physiology, growth and yield of wheat. We highlight traits contributing to waterlogging tolerance and genetic diversity in wheat. Death of seminal roots and restriction of adventitious root length due to O2 deficiency result in low root:shoot ratio. Genotypes differ in seminal root anoxia tolerance, but mechanisms remain to be established; ethanol production rates do not explain anoxia tolerance. Root tip survival is short-term, and thereafter, seminal root re-growth upon re-aeration is limited. Genotypes differ in adventitious root numbers and in aerenchyma formation within these roots, resulting in varying waterlogging tolerances. Root extension is restricted by capacity for internal O2 movement to the apex. Sub-optimal O2 restricts root N uptake and translocation to the shoots, with N deficiency causing reduced shoot growth and grain yield. Although photosynthesis declines, sugars typically accumulate in shoots of waterlogged plants. Mn or Fe toxicity might occur in shoots of wheat on strongly acidic soils, but probably not more widely. Future breeding for waterlogging tolerance should focus on root internal aeration and better N-use efficiency; exploiting the genetic diversity in wheat for these and other traits should enable improvement of waterlogging tolerance.

199 citations


Journal ArticleDOI
TL;DR: The present study clearly signifies the potential of A. bettzickiana plant towards Cd and Pb tolerance and accumulation especially at lower metal levels.

199 citations


Journal ArticleDOI
TL;DR: The results indicated that the strain of T6 ameliorated the adverse effects significantly, protecting the seedlings from salt stress during their growth period, and may be due to the improvement of the antioxidative defense system and gene expression in the stressed wheat plants.
Abstract: Soil salinity is a serious problem worldwide that reduces agricultural productivity. Trichoderma longibrachiatum T6 (T6) has been shown to promote wheat growth and induce plant resistance to parasitic nematodes, but whether the plant-growth-promoting fungi T6 can enhance plant tolerance to salt stress is unknown. Here we determined the effect of plant-growth-promoting fungi T6 on wheat seedlings’ growth and development under salt stress, and investigated the role of T6 in inducing the resistance to NaCl stress at physiological, biochemical, and molecular levels. Wheat seedlings were inoculated with the strain of T6 and then compared with non-inoculated controls. Shoot height, root length, and shoot and root weights were measured on 15 days old wheat seedlings grown either under 150 mM NaCl or in a controlled setting without any NaCl. A number of colonies were re-isolated from the roots of wheat seedlings under salt stress. The relative water content in the leaves and roots, chlorophyll content, and root activity were significantly increased, and the accumulation of proline content in leaves was markedly accelerated with the plant growth parameters, but the content of leaf malondialdehyde (MDA) under saline condition was significantly decreased. The antioxidant enzymes-superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) in wheat seedlings were increased by 29%, 39% and 19%, respectively, with the application of the strain of T6 under salt stress; the relative expression of SOD, POD and CAT genes in these wheat seedlings were significantly up-regulated. Our results indicated that the strain of T6 ameliorated the adverse effects significantly, protecting the seedlings from salt stress during their growth period. The possible mechanisms by which T6 suppresses the negative effect of NaCl stress on wheat seedling growth may be due to the improvement of the antioxidative defense system and gene expression in the stressed wheat plants.

179 citations


Journal ArticleDOI
TL;DR: It is suggested that nAg could significantly affect the growth, nutrient content and macromolecule conformation in radish sprouts, with unknown consequences for human health.
Abstract: Reports indicate that silver nanoparticles (nAg) are toxic to vegetation, but little is known about their effects in crop plants. This study examines the impacts of nAg on the physiology and nutritional quality of radish (Raphanus sativus) sprouts. Seeds were germinated and grown for 5 days in nAg suspensions at 0, 125, 250, and 500 mg/L. Seed germination and seedling growth were evaluated with traditional methodologies; the uptake of Ag and nutrients was quantified by inductively coupled plasma-optical emission spectroscopy (ICP-OES) and changes in macromolecules were analyzed by infrared (IR) spectroscopy. None of the nAg concentrations reduced seed germination. However, the water content (% of the total weight) was reduced by 1.62, 1.65, and 2.54% with exposure to 125, 250, and 500 mg/L, respectively, compared with the control. At 500 mg/L, the root and shoot lengths were reduced by 47.7 and 40%, with respect to the control. The seedlings exposed to 500 mg/L had 901 ± 150 mg Ag/kg dry wt and significantly less Ca, Mg, B, Cu, Mn, and Zn, compared with the control. The infrared spectroscopy analysis showed changes in the bands corresponding to lipids (3000-2800 cm(-1)), proteins (1550-1530 cm(-1)), and structural components of plant cells such as lignin, pectin, and cellulose. These results suggest that nAg could significantly affect the growth, nutrient content and macromolecule conformation in radish sprouts, with unknown consequences for human health.

176 citations


Journal ArticleDOI
TL;DR: It is shown that both ABA levels in the roots and root growth in representative angiosperms are controlled by ABA synthesized in the leaves rather than sourced from the roots, suggesting that leaf rather than root hydration is the main signal for regulating plant responses to moisture.
Abstract: The phytohormone abscisic acid (ABA) plays a major role in regulating root growth. Most work to date has investigated the influence of root-sourced ABA on root growth during water stress. Here, we tested whether foliage-derived ABA could be transported to the roots, and whether this foliage-derived ABA had an influence on root growth under well-watered conditions. Using both application studies of deuterium-labelled ABA and reciprocal grafting between wild-type and ABA-biosynthetic mutant plants, we show that both ABA levels in the roots and root growth in representative angiosperms are controlled by ABA synthesized in the leaves rather than sourced from the roots. Foliage-derived ABA was found to promote root growth relative to shoot growth but to inhibit the development of lateral roots. Increased root auxin (IAA) levels in plants with ABA-deficient scions suggest that foliage-derived ABA inhibits root growth through the root growth-inhibitor IAA. These results highlight the physiological and morphological importance, beyond the control of stomata, of foliage-derived ABA. The use of foliar ABA as a signal for root growth has important implications for regulating root to shoot growth under normal conditions and suggests that leaf rather than root hydration is the main signal for regulating plant responses to moisture.

Journal ArticleDOI
TL;DR: Results suggest that B. cereus can be used in salinized agricultural lands as bio-inoculant to increase crop productivity.
Abstract: Salinity, a frequently occurring abiotic stress, is a major constraint for crop productivity worldwide. The present study was conducted to evaluate the ability of plant growth promoting rhizobacteria (PGPR) Bacillus cereus Pb25, isolated from soil irrigated with saline water, to promote Vigna radiate (mungbean) growth in the absence and presence of salt stress (9 dS m−1). Results demonstrated that B. cereus promoted V. radiate plant growth significantly even in the presence of salt. Inoculations with PGPR improved the plant growth, and increased the root, shoot fresh and dry biomass and yield as compared to plants with no bacterial treatment (control). Results showed that both chlorophyll content and plant growth were inhibited by saline stress and the salt-induced oxidative damage (measured by MDA, H2O2) was alleviated by PGPR inoculation. Furthermore, PGPR inoculation significantly increased the antioxidant enzymes (POD, SOD and CAT) activities and enhanced the accumulation of proline, potassium, nitrogen and phosphorus as well as decreased sodium accumulation in saline stressed plants. Regarding the soil biological activity, inoculated PGPR enhanced the activity of dehydrogenase, alkaline phosphatase, microbial biomass carbon, available phosphorus and total organic carbon under saline stress as compared to saline treatment alone. These results suggest that B. cereus can be used in salinized agricultural lands as bio-inoculant to increase crop productivity.

Journal ArticleDOI
TL;DR: In this article, the effects of exogenous application of 24-epibrassinolide (24-EBL) in the physiological and biochemical responses of Solanum nigrum L. exposed to nickel (Ni) were evaluated.

Journal ArticleDOI
TL;DR: Halotolerant bacteria associated with Psoralea corylifolia L., a luxuriantly growing annual weed in salinity-affected semi-arid regions of western Maharashtra, India were evaluated for their plant growth-promoting activity in wheat and revealed promising results under salinity stress.
Abstract: Halotolerant bacteria associated with Psoralea corylifolia L., a luxuriantly growing annual weed in salinity-affected semi-arid regions of western Maharashtra, India were evaluated for their plant growth-promoting activity in wheat. A total of 79 bacteria associated with different parts viz., root, shoot and nodule endophytes, rhizosphere, rhizoplane, and leaf epiphytes, were isolated and grouped based on their habitat. Twelve bacteria isolated for their potential in plant growth promotion were further selected for in vitro studies. Molecular identification showed the presence of the genera Bacillus, Pantoea, Marinobacterium, Acinetobacter, Enterobacter, Pseudomonas, Rhizobium, and Sinorhizobium (LC027447-53; LC027455; LC027457, LC027459, and LC128410). The phylogenetic studies along with carbon source utilization profiles using the Biolog® indicated the presence of novel species and the in planta studies revealed promising results under salinity stress. Whereas the nodule endophytes had minute plant growth-promoting (PGP) activity, the cell free culture filtrates of these strains enhanced seed germination of wheat (Triticum aestivum L). The maximum vigor index was monitored in isolate Y7 (Enterobacter sp strain NIASMVII). Indole acetic acid (IAA) production by the isolates ranged between 0.22 and 25.58 μg mL-1. This signifies the need of exploration of their individual metabolites for developing next-generation bio-inoculants through co-inoculation with other compatible microbes. This study has potential in utilization of the weed-associated microbiome in terms of alleviation of salinity stress in crop plants.

Journal ArticleDOI
TL;DR: Physiological and biochemical studies suggest that Cu-chitosan NPs enhance the seedling growth of maize by mobilizing the reserved food, primarily starch, through the higher activity of α-amylase.
Abstract: Food crop seedlings often have susceptibility to various abiotic and biotic stresses. Therefore, in the present study, we investigated the impact of Cu-chitosan nanoparticles (NPs) on physiological and biochemical changes during maize seedling growth. Higher values of percent germination, shoot and root length, root number, seedling length, fresh and dry weight, and seed vigor index were obtained at 0.04–0.12% concentrations of Cu-chitosan NPs as compared to water, CuSO4, and bulk chitosan treatments. Cu-chitosan NPs at the same concentrations induced the activities of α-amylase and protease enzymes and also increased the total protein content in germinating seeds. The increased activities of α-amylase and protease enzymes corroborated with decreased content of starch and protein, respectively, in the germinating seeds. Cu-chitosan NPs at 0.16% and CuSO4 at 0.01% concentrations showed inhibitory effect on seedling growth. The observed results on seedling growth could be explained by the toxicity of excess...

Journal ArticleDOI
TL;DR: All the seed priming treatments were effective in alleviating the damaging effects of drought stress under controlled as well as field conditions and increments were associated with better starch metabolism particularly increased α-amylase activity in primed rice seedlings.
Abstract: Drought stress encumbers the seed germination and delays seedling establishment in dry direct-seeded rice. Pot and field studies were carried out to ascertain the role of seed-priming on emergence, seedling growth and associated metabolic events in dry-direct seeded rice system. Seeds of two indica rice cultivars were subjected to different priming agents viz., hydropriming (H2O), potassium nitrate (KNO3; 0.5 %), polyethelene glycol-6000 (PEG; 10 %) and spermidine (Spd; 0.5 mmol L−1). A no-priming treatment was kept as control for comparison. Drought stress was imposed by 15 % PEG solution in a pot experiment; whilst in field trial soil moisture contents were maintained between 15 and 18 %. In pot experiment, drought stress severely hampered the germination rate, seedling growth, and starch metabolism, but increased the antioxidant enzymes activity and lipid peroxidation in both rice cultivars as compared with normal conditions. All the seed priming treatments particularly Spd priming, were effective in alleviating the damaging effects of drought stress under controlled as well as field conditions. In field trial, Spd priming recorded 21, 232, 173, 67 and 78 % higher emergence, shoot length, shoot fresh weight, maximum root length and root fresh weight of dry direct-seeded rice, respectively, compared with control. And such increments were associated with better starch metabolism particularly increased α-amylase activity in primed rice seedlings.

Journal ArticleDOI
TL;DR: Results indicate that B. subtilis B26 improves timothy growth under drought stress through the modification of osmolyte accumulation in roots and shoots.
Abstract: Drought is a major limiting factor of crop productivity worldwide and its incidence is predicted to increase under climate change. Drought adaptation of cool-season grasses is thus a major challenge to secure the agricultural productivity under current and future climate conditions. Endophytes are non-pathogenic plant-associated bacteria that can play an important role in conferring resistance and improving plant tolerance to drought. In this study, the effect of inoculation of the bacterial endophyte Bacillus subtilis strain B26 on growth, water status, photosynthetic activity and metabolism of timothy (Phleum pratense L.) subjected to drought stress was investigated under controlled conditions. Under both drought-stress and non-stressed conditions, strain B26 successfully colonized the internal tissues of timothy and had a positive impact on plant growth. Exposure of inoculated plant to a 8-wk drought-stress led to significant increase in shoot and root biomass by 26.6 and 63.8%, and in photosynthesis and stomatal conductance by 55.2 and 214.9% respectively, compared to non-inoculated plants grown under similar conditions. There was a significant effect of the endophyte on plant metabolism; higher levels of several sugars, notably sucrose and fructans and an increase of key amino acids such as, asparagine, glutamic acid and glutamine were recorded in shoots and roots of colonized plants compared to non-colonized ones. The accumulation of the non-protein amino acid GABA in shoots of stressed plants and in roots of stressed and unstressed plants was increased in the presence of the endophyte. Taken together, our results indicate that B. subtilis B26 improves timothy growth under drought stress through the modification of osmolyte accumulation in roots and shoots. These results will contribute to the development of a microbial agent to improve the yield of grass species including forage crops and cereals exposed to environmental stresses.

Journal ArticleDOI
TL;DR: The findings indicate that mycorrhizal colonization enhances watermelon drought tolerance through a stronger root system, greater protection of photosynthetic apparatus, a more efficient antioxidant system and improved osmoregulation.
Abstract: Drought stress has become an increasingly serious environmental issue that influences the growth and production of watermelon. Previous studies found that arbuscular mycorrhizal (AM) colonization improved the fruit yield and water use efficiency (WUE) of watermelon grown under water stress; however, the exact mechanisms remain unknown. In this study, the effects of Glomus versiforme symbiosis on the growth, physio-biochemical attributes, and stress-responsive gene expressions of watermelon seedlings grown under well-watered and drought conditions were investigated. The results showed that AM colonization did not significantly influence the shoot growth of watermelon seedlings under well-watered conditions but did promote root development irrespective of water treatment. Drought stress decreased the leaf relative water content and chlorophyll concentration, but to a lesser extent in the AM plants. Compared with the non-mycorrhizal seedlings, mycorrhizal plants had higher non-photochemical quenching values, which reduced the chloroplast ultrastructural damage in the mesophyll cells and thus maintained higher photosynthetic efficiency. Moreover, AM inoculation led to significant enhancements in the enzyme activities and gene expressions of superoxide dismutase, catalase, ascorbate peroxidase, glutathione reductase, and monodehydroascorbate reductase in watermelon leaves upon drought imposition. Consequently, AM plants exhibited lower accumulation of MDA, H2O2 and [Formula: see text] compared with non-mycorrhizal plants. Under drought stress, the soluble sugar and proline contents were significantly increased, and further enhancements were observed by pre-treating the drought-stressed plants with AM. Taken together, our findings indicate that mycorrhizal colonization enhances watermelon drought tolerance through a stronger root system, greater protection of photosynthetic apparatus, a more efficient antioxidant system and improved osmoregulation. This study contributes to advances in the knowledge of AM-induced drought tolerance.

Journal ArticleDOI
TL;DR: The hypothesis is put forward that along with role of ROIs-scavenging enzymes, the greater tolerance of primed rice seedlings can also be due to the reduced activity of ROI-producing enzymes.
Abstract: The production and detoxification of reactive oxygen intermediates (ROIs) play an important role in the plant response to nutrient and environmental stresses. The present study demonstrated the behavior of growth, ROIs-production and their detoxification in primed and non-primed rice seedlings under chilling stress (18°C) and nitrogen-(N), phosphorus-(P), or potassium-(K) deprivation. The results revealed that chilling stress as well as deprivation of any mineral nutrient severely hampered the seedling growth of rice, however, seed priming treatments (particularly selenium- or salicylic acid-priming), were effective in enhancing the rice growth under stress conditions. The N-deprivation caused the maximum reduction in shoot growth, while the root growth was only decreased by P- or K-deprivation. Although, N-deprivation enhanced the root length of rice, the root fresh weight was unaffected. Rate of lipid peroxidation as well as the production of ROIs, was generally increased under stress conditions; the K-deprived seedlings recorded significantly lower production of ROIs than N- or P-deprived seedlings. The responses of enzymatic and non-enzymatic antioxidants in rice seedlings to chilling stress were variable with nutrient management regime. All the seed priming were found to trigger or at least maintain the antioxidant defense system of rice seedlings. Notably, the levels of ROIs were significantly reduced by seed priming treatments, which were concomitant with the activities of ROIs-producing enzymes (monoamine oxidase and xanthine oxidase), under all studied conditions. Based on these findings, we put forward the hypothesis that along with role of ROIs-scavenging enzymes, the greater tolerance of primed rice seedlings can also be due to the reduced activity of ROIs-producing enzymes.

Journal ArticleDOI
TL;DR: Five bacterial strains isolated from the vegetable rhizosphere irrigated with industrial effluent are characterized for various plant growth-promoting activities and can be potential inoculants to promote maize growth and Cd extraction/stabilization in Cd-contaminated soil.
Abstract: Maize is a plant known for food, feed, and energy value, but being a greater biomass, it may also be utilized to extract pollutants from soil. Plant growth-promoting rhizobacteria (PGPR) may act as biofertilizer to improve plant health and indirectly may enhance metal extraction. This study focuses on five bacterial strains isolated from the vegetable (Bitter gourd) rhizosphere irrigated with industrial effluent and characterized for various plant growth-promoting activities. Based on 16S rRNA gene sequencing, bacterial strains belonging to the genera, Bacillus (CIK-517, CIK-519), Klebsiella (CIK-518), Leifsonia (CIK-521), and Enterobacter (CIK-521R), were tested for their ability to promote maize growth in axenic conditions. Results showed negative and positive regulation of maize growth by the exogenous application of Cd and PGPR, respectively. Seed germination assays revealed significant reduction in relative seedling growth of maize cultivars upon Cd exposure (0–80 mg Cd L−1). The tested strains showed tolerance to Cd (1.78–4.45 mmol L−1) and were positive for catalase, oxidase, phosphate solubilization, exopolysaccharide (EPS), and auxin production, whereas CIK-518, CIK-519, and CIK-521R were negative for EPS, phosphate solubilization, and oxidase activities, respectively. Bacterial strains significantly increased shoot/root growth and their dry biomass in normal and Cd-contaminated soil as compared to their respective controls. None of the strains showed significant effects on relative water content or membrane permeability; however, Cd uptake significantly increased in plant tissues upon bacterial inoculation. Bacterial strains CIK-518 and CIK-521R are effective colonizers and thus can be potential inoculants to promote maize growth and Cd extraction/stabilization in Cd-contaminated soil.

Journal ArticleDOI
TL;DR: V. paradoxus 5C-2 mitigates salt stress by improving water relations, ion homeostasis and photosynthesis of pea plants, and may provide an economic means of promoting growth of plants exposed to salt stress.
Abstract: Although plant salt tolerance has been improved by soil inoculation with rhizobacteria containing the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase (which metabolises ACC, the immediate precursor of the phytohormone ethylene), it is not always clear whether ion homeostasis and plant water relations are affected. When pea (Pisum sativum L. cv. Alderman) was grown with 70 and 130 mM NaCl, the ACC-deaminase containing rhizobacterium Variovorax paradoxus 5C-2 increased total biomass by 25 and 54% respectively. Nutrient flow modelling showed that V. paradoxus 5C-2 increased K uptake and root to shoot K flow, but decreased Na flow and increased Na deposition in roots. Thus, shoot K+ : Na+ ratio increased following V. paradoxus 5C-2 inoculation. At 70 and 130 mM NaCl, rhizobacterial inoculation decreased stomatal resistance by 14 and 31% and decreased xylem balancing pressure by 7 and 21% respectively. Furthermore, rhizobacterial inoculation improved photosynthetic efficiency (F-v/F-m) by 12 and 19% and increased maximal electron transport rate (ETR) by 18 and 22% at 70 and 130 mM NaCl respectively. Thus V. paradoxus 5C-2 mitigates salt stress by improving water relations, ion homeostasis and photosynthesis of pea plants, and may provide an economic means of promoting growth of plants exposed to salt stress.

Journal ArticleDOI
TL;DR: It is revealed that these rhizospheric PGP Streptomyces are good candidates to be developed as bioferlizers for growth promotion and yield enhancement in wheat crop and can be exploited for the commercial production of different agro-active compounds.
Abstract: In this study 98 rhizospheric actinomycetes were isolated from different wheat and tomato fields, Punjab, Pakistan. The isolates were characterized morphologically, biochemically and genetically and were subjected to a comprehensive in vitro screening for various plant growth promoting (PGP) traits. About 30% of the isolates screened were found to be the promising plant growth promoting rhizobacteria (PGPRs), which exhibited maximum genetic similarity (up to 98-99%) with different species of the genus Streptomyces by using16S rRNA gene sequencing. The most active indole acetic acid (IAA) producer Streptomyces nobilis WA-3, Streptomyces Kunmingenesis WC-3 and Streptomyces enissocaesilis TA-3 produce 79.5, 79.23 and 69.26 µg/ml IAA respectively at 500µg/ml L-tryptophan. The highest concentration of soluble phosphate was produced by Streptomyces sp. WA-1 (72.13 mg/100ml) and S. djakartensis TB-4 (70.36 mg/100ml). All rhizobacterial isolates were positive for siderophore, ammonia and hydrogen cyanide production. Strain S. mutabilis WD-3 showed highest concentration of ACC-deaminase (1.9 mmol /l). For in-vivo screening, seed germination and plant growth experiment were conducted by inoculating wheat (Triticum aestivum) seeds with the six selected isolates. Significant increases in shoot length was observed with S. nobilis WA-3 (65 %), increased root length was recorded in case of S. nobilis WA-3 (81 %) as compared to water treated control plants. Maximum increases in plant fresh weight were recorded with S. nobilis WA-3 (84 %), increased plant dry weight was recorded in case of S. nobilis WA-3 (85 %) as compared to water treated control plants. In case of number of leaves, significant increase was recorded with S. nobilis WA-3 (27 %) and significant increase in case of number of roots were recorded in case of strain S. nobilis WA-3 (30 %) as compared to control plants. Over all the study revealed that these rhizospheric plant growth promoting (PGP) Streptomyces are good candidates to be developed as bioferlizers for growth promotion and yield enhancement in wheat crop and can be exploited for the commercial production of different agro-active compounds.

Journal ArticleDOI
TL;DR: This study demonstrates that M. brunneum can systemically colonize different plant parts and improve plant growth when applied as a seed treatment, and this was also confirmed for the well-known endophytic B. bassiana strain used in this study.

Journal ArticleDOI
TL;DR: D. eriantha is sensitive to drought, salinity, and cold stresses and that inoculation with AM fungi regulates its physiology and performance under such conditions, with antioxidants and jasmonates being involved in this process.
Abstract: This study evaluates antioxidant responses and jasmonate regulation in Digitaria eriantha cv. Sudafricana plants inoculated (AM) and non-inoculated (non-AM) with Rhizophagus irregularis and subjected to drought, cold, or salinity. Stomatal conductance, photosynthetic efficiency, biomass production, hydrogen peroxide accumulation, lipid peroxidation, antioxidants enzymes activities, and jasmonate levels were determined. Stomatal conductance and photosynthetic efficiency decreased in AM and non-AM plants under all stress conditions. However, AM plants subjected to drought, salinity, or non-stress conditions showed significantly higher stomatal conductance values. AM plants subjected to drought or non-stress conditions increased their shoot/root biomass ratios, whereas salinity and cold caused a decrease in these ratios. Hydrogen peroxide accumulation, which was high in non-AM plant roots under all treatments, increased significantly in non-AM plant shoots under cold stress and in AM plants under non-stress and drought conditions. Lipid peroxidation increased in the roots of all plants under drought conditions. In shoots, although lipid peroxidation decreased in AM plants under non-stress and cold conditions, it increased under drought and salinity. AM plants consistently showed high catalase (CAT) and ascorbate peroxidase (APX) activity under all treatments. By contrast, the glutathione reductase (GR) and superoxide dismutase (SOD) activity of AM roots was lower than that of non-AM plants and increased in shoots. The endogenous levels of cis-12-oxophytodienoc acid (OPDA), jasmonic acid (JA), and 12-OH-JA showed a significant increase in AM plants as compared to non-AM plants. 11-OH-JA content only increased in AM plants subjected to drought. Results show that D. eriantha is sensitive to drought, salinity, and cold stresses and that inoculation with AM fungi regulates its physiology and performance under such conditions, with antioxidants and jasmonates being involved in this process.

Journal ArticleDOI
TL;DR: Plants possess natural genetic variation for the capacity to profit from the plant growth-promoting function of a beneficial rhizobacterium in their rhizosphere, and this knowledge is a promising starting point for sustainable breeding strategies for future crops that are better able to maximize profitable functions from their root microbiome.
Abstract: The plant growth-promoting rhizobacterium (PGPR) Pseudomonas simiae WCS417r stimulates lateral root formation and increases shoot growth in Arabidopsis thaliana (Arabidopsis). These plant growth-stimulating effects are partly caused by volatile organic compounds (VOCs) produced by the bacterium. Here, we performed a genome-wide association (GWA) study on natural genetic variation in Arabidopsis for the ability to profit from rhizobacteria-mediated plant growth-promotion. To this end, 302 Arabidopsis accessions were tested for root architecture characteristics and shoot fresh weight in response to exposure to WCS417r. Although virtually all Arabidopsis accessions tested responded positively to WCS417r, there was a large variation between accessions in the increase in shoot fresh weight, the extra number of lateral roots formed, and the effect on primary root length. Correlation analyses revealed that the bacterially-mediated increase in shoot fresh weight is related to alterations in root architecture. GWA mapping for WCS417r-stimulated changes in root and shoot growth characteristics revealed 10 genetic loci highly associated with the responsiveness of Arabidopsis to the plant growth-promoting activity of WCS417r. Several of the underlying candidate genes have been implicated in important plant growth-related processes. These results demonstrate that plants possess natural genetic variation for the capacity to profit from the plant growth-promoting function of a beneficial rhizobacterium in their rhizosphere. This knowledge is a promising starting point for sustainable breeding strategies for future crops that are better able to maximize profitable functions from their root microbiome.

Journal ArticleDOI
TL;DR: The tolerant genotypes possessed better ability to maintain stable osmotic potential, low Na+ accumulation, higher shoot K+ concentrations, higher rates of PSII activity, maximal photochemical efficiency and lower non-photochemical quenching (NPQ), resulting in the significantly higher dry matter production observed under salt stress.
Abstract: Salinity is one of the major limitations to wheat production worldwide. This study was designed to evaluate the level of genetic variation among 150 internationally derived wheat genotypes for salinity tolerance at germination, seedling and adult plant stages, with the aim of identifying new genetic resources with desirable adaptation characteristics for breeding programmes and further genetic studies. In all the growth stages, genotype and salt treatment effects were observed. Salt stress caused 33 %, 51 % and 82 % reductions in germination vigor, seedling shoot dry matter and seed grain yield, respectively. The rate of root and shoot water loss due to salt stress exhibited significant negative correlation with shoot K+, but not with shoot Na+ and shoot K+/Na+ ratio. The genotypes showed a wide spectrum of response to salt stress across the growth stages; however, four genotypes, Altay2000, 14IWWYTIR-19 and UZ-11CWA-8 (tolerant) and Bobur (sensitive), exhibited consistent responses to salinity across the three growth stages. The tolerant genotypes possessed better ability to maintain stable osmotic potential, low Na+ accumulation, higher shoot K+ concentrations, higher rates of PSII activity, maximal photochemical efficiency and lower non-photochemical quenching (NPQ), resulting in the significantly higher dry matter production observed under salt stress. The identified genotypes could be used as parents in breeding for new varieties with improved salt tolerance as well as in further genetic studies to uncover the genetic mechanisms governing salt stress response in wheat.

Journal ArticleDOI
TL;DR: Gv and Ri symbiosis alleviated Cd toxicity of L. japonica through the decline of shoot Cd concentrations and the improvement of P nutrition, PCs content and activities of GR, CAT, APX in inoculated plants, and then improved plant growth.
Abstract: A greenhouse pot experiment was conducted to study the impact of arbuscular mycorrhizal fungi--Glomus versiforme (Gv) and Rhizophagus intraradices (Ri) on the growth, Cd uptake, antioxidant indices [glutathione reductase (GR), ascorbate peroxidase (APX), superoxide dismutase (SOD), catalase (CAT), ascorbate (ASA), glutathione (GSH) and malonaldehyde (MDA)] and phytochelatins (PCs) production of Lonicera japonica in Cd-amended soils. Gv and Ri significantly increased P acquisition, biomass of shoots and roots at all Cd treatments. Gv significantly decreased Cd concentrations in shoots and roots, and Ri also obviously reduced Cd concentrations in shoots but increased Cd concentrations in roots. Meanwhile, activities of CAT, APX and GR, and contents of ASA and PCs were remarkably higher in Gv/Ri-inoculated plants than those of uninoculated plants, but lower MDA and GSH contents in Gv/Ri-inoculated plants were found. In conclusion, Gv and Ri symbiosis alleviated Cd toxicity of L. japonica through the decline of shoot Cd concentrations and the improvement of P nutrition, PCs content and activities of GR, CAT, APX in inoculated plants, and then improved plant growth. The decrease of shoot Cd concentrations in L. japonica inoculated with Gv/Ri would provide a clue for safe production of this plant from Cd-contaminated soils.

Journal ArticleDOI
TL;DR: Inoculation of B. licheniformis HSW-16 protected wheat plants from growth inhibition caused by NaCl and increased plant growth in terms of root length, shoot length, fresh weight, and dry weight, suggesting it could be used as a bioinoculant to improve the productivity of plants growing under salt stress.
Abstract: Certain plant growth promoting bacteria can protect associated plants from harmful effects of salinity. We report the isolation and characterization of 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase bacterium Bacillus licheniformis HSW-16 capable of ameliorating salt (NaCl) stress in wheat plants. The bacterium was isolated from water of Sambhar salt lake, Rajasthan, India. The presence of ACC deaminase activity was confirmed by enzyme assay and analysis of AcdS gene, a structural gene for ACC deaminase. Inoculation of B. licheniformis HSW-16 protected wheat plants from growth inhibition caused by NaCl and increased plant growth (6-38%) in terms of root length, shoot length, fresh weight, and dry weight. Ionic analysis of plant samples showed that the bacterial inoculation decreased accumulation of Na+ content (51%), and increased K+ (68%), and Ca2+ content (32%) in plants at different concentration of NaCl. It suggested that bacterial inoculation protected plants from the effect of NaCl by decreasing level of Na+ in plants. Production of exopolysaccharide by the B. licheniformis HSW-16 can also protect from Na+ by binding this ion. Moreover, application of test isolate resulted in an increase in certain osmolytes such as total soluble sugar, total protein content and a decrease in malondialdehyde content, illustrating their role in the protection of plants. The ability of B. licheniformis HSW-16 to colonize plant root surface was examined by staining the bacterium with acridine orange followed by fluorescence microscopy and polymerase chain reaction (PCR)-based DNA fingerprinting analysis. These results suggested that B. licheniformis HSW-16 could be used as a bioinoculant to improve the productivity of plants growing under salt stress.

Journal ArticleDOI
TL;DR: Streptomyces corchorusii strain UCR3-16, obtained from rice rhizospheric soils showed antifungal activities against 6 major rice fungal pathogens by diffusible and volatile compounds production and gave positive result for ACC deaminase activity.

Journal ArticleDOI
TL;DR: The results showed that the salinity decreased the colonization of B. japonicum BDYD1 in the rhizosphere of soybean, inhibited shoot, root growth, and nodulation compared with those of unstressed plants and synergistic interactions between compatible salt tolerant S. rhizophila and Bradyrhizobium were found.
Abstract: Understanding the interactions between endophytic bacteria, rhizobia, free living root associated bacteria and their host plants under stressed conditions remains a significant challenge for proposing strategies to improve the efficacy of PGPR In this study we analyzed the role of the endophytic bacterium Stenotrophomonas rhizophila in alleviating salinity stress in plants The nodulation efficiency, plant growth, nitrogen and phosphorus uptake of soybean under hydroponic salt stress conditions were determined Soybean seedlings were inoculated with Bradyrhizobium japonicum BDYD1 and S rhizophila ep-17 were grown in hydroponic plastic pots containing 2 l of Hoagland solution for 42 days Salinity conditions were established by adding 50 and 75 mM NaCl to the nutrient solution The results showed that the salinity decreased the colonization of B japonicum BDYD1 in the rhizosphere of soybean, inhibited shoot, root growth, and nodulation compared with those of unstressed plants We found synergistic interactions between compatible salt tolerant S rhizophila ep-17 and B japonicum BDYD1 strains which were manifested themselves as improved root, shoot length, dry weight, N and P uptake and number of nodules compared with the uninoculated plants grown under 75 mM NaCl condition S rhizophila and Bradyrhizobium build beneficial association in the rhizosphere and can act synergistically on promoting plant growth, nutrient uptake and fitness of hydroponically grown soybean under salt stress condition