scispace - formally typeset
Search or ask a question
Institution

Tomsk State University

EducationTomsk, Russia
About: Tomsk State University is a education organization based out in Tomsk, Russia. It is known for research contribution in the topics: Laser & Large Hadron Collider. The organization has 8980 authors who have published 15366 publications receiving 143526 citations. The organization is also known as: Leading National Research Tomsk State University & TK.


Papers
More filters
Journal ArticleDOI
Sergey Alekhin, Wolfgang Altmannshofer1, Takehiko Asaka2, Brian Batell3, Fedor Bezrukov4, Kyrylo Bondarenko5, Alexey Boyarsky5, Ki-Young Choi6, Cristóbal Corral7, Nathaniel Craig8, David Curtin9, Sacha Davidson10, Sacha Davidson11, André de Gouvêa12, Stefano Dell'Oro, Patrick deNiverville13, P. S. Bhupal Dev14, Herbi K. Dreiner15, Marco Drewes16, Shintaro Eijima17, Rouven Essig18, Anthony Fradette13, Björn Garbrecht16, Belen Gavela19, Gian F. Giudice3, Mark D. Goodsell20, Mark D. Goodsell21, Dmitry Gorbunov22, Stefania Gori1, Christophe Grojean23, Alberto Guffanti24, Thomas Hambye25, Steen Honoré Hansen24, Juan Carlos Helo26, Juan Carlos Helo7, Pilar Hernández27, Alejandro Ibarra16, Artem Ivashko5, Artem Ivashko28, Eder Izaguirre1, Joerg Jaeckel29, Yu Seon Jeong30, Felix Kahlhoefer, Yonatan Kahn31, Andrey Katz32, Andrey Katz3, Andrey Katz33, Choong Sun Kim30, Sergey Kovalenko7, Gordan Krnjaic1, Valery E. Lyubovitskij34, Valery E. Lyubovitskij35, Valery E. Lyubovitskij36, Simone Marcocci, Matthew McCullough3, David McKeen37, Guenakh Mitselmakher38, Sven Moch39, Rabindra N. Mohapatra9, David E. Morrissey40, Maksym Ovchynnikov28, Emmanuel A. Paschos, Apostolos Pilaftsis14, Maxim Pospelov13, Maxim Pospelov1, Mary Hall Reno41, Andreas Ringwald, Adam Ritz13, Leszek Roszkowski, Valery Rubakov, Oleg Ruchayskiy17, Oleg Ruchayskiy24, Ingo Schienbein42, Daniel Schmeier15, Kai Schmidt-Hoberg, Pedro Schwaller3, Goran Senjanovic43, Osamu Seto44, Mikhail Shaposhnikov17, Lesya Shchutska38, J. Shelton45, Robert Shrock18, Brian Shuve1, Michael Spannowsky46, Andrew Spray47, Florian Staub3, Daniel Stolarski3, Matt Strassler32, Vladimir Tello, Francesco Tramontano48, Anurag Tripathi, Sean Tulin49, Francesco Vissani, Martin Wolfgang Winkler15, Kathryn M. Zurek50, Kathryn M. Zurek51 
Perimeter Institute for Theoretical Physics1, Niigata University2, CERN3, University of Connecticut4, Leiden University5, Korea Astronomy and Space Science Institute6, Federico Santa María Technical University7, University of California, Santa Barbara8, University of Maryland, College Park9, Claude Bernard University Lyon 110, University of Lyon11, Northwestern University12, University of Victoria13, University of Manchester14, University of Bonn15, Technische Universität München16, École Polytechnique Fédérale de Lausanne17, Stony Brook University18, Autonomous University of Madrid19, Centre national de la recherche scientifique20, University of Paris21, Moscow Institute of Physics and Technology22, Autonomous University of Barcelona23, University of Copenhagen24, Université libre de Bruxelles25, University of La Serena26, University of Valencia27, Taras Shevchenko National University of Kyiv28, Heidelberg University29, Yonsei University30, Princeton University31, Harvard University32, University of Geneva33, University of Tübingen34, Tomsk State University35, Tomsk Polytechnic University36, University of Washington37, University of Florida38, University of Hamburg39, TRIUMF40, University of Iowa41, University of Grenoble42, International Centre for Theoretical Physics43, Hokkai Gakuen University44, University of Illinois at Urbana–Champaign45, Durham University46, University of Melbourne47, University of Naples Federico II48, York University49, Lawrence Berkeley National Laboratory50, University of California, Berkeley51
TL;DR: It is demonstrated that the SHiP experiment has a unique potential to discover new physics and can directly probe a number of solutions of beyond the standard model puzzles, such as neutrino masses, baryon asymmetry of the Universe, dark matter, and inflation.
Abstract: This paper describes the physics case for a new fixed target facility at CERN SPS. The SHiP (search for hidden particles) experiment is intended to hunt for new physics in the largely unexplored domain of very weakly interacting particles with masses below the Fermi scale, inaccessible to the LHC experiments, and to study tau neutrino physics. The same proton beam setup can be used later to look for decays of tau-leptons with lepton flavour number non-conservation, $\tau \to 3\mu $ and to search for weakly-interacting sub-GeV dark matter candidates. We discuss the evidence for physics beyond the standard model and describe interactions between new particles and four different portals—scalars, vectors, fermions or axion-like particles. We discuss motivations for different models, manifesting themselves via these interactions, and how they can be probed with the SHiP experiment and present several case studies. The prospects to search for relatively light SUSY and composite particles at SHiP are also discussed. We demonstrate that the SHiP experiment has a unique potential to discover new physics and can directly probe a number of solutions of beyond the standard model puzzles, such as neutrino masses, baryon asymmetry of the Universe, dark matter, and inflation.

842 citations

Journal ArticleDOI
Lianne Schmaal1, Derrek P. Hibar2, Philipp G. Sämann3, Geoffrey B. Hall4, Bernhard T. Baune5, Neda Jahanshad2, Joshua W. Cheung2, T.G.M. van Erp6, Daniel Bos7, M. A. Ikram7, Meike W. Vernooij7, Wiro J. Niessen7, Wiro J. Niessen8, Henning Tiemeier7, Henning Tiemeier9, A. Hofman7, Katharina Wittfeld10, Hans-Jörgen Grabe10, Hans-Jörgen Grabe11, Deborah Janowitz11, Robin Bülow11, M Selonke11, Henry Völzke11, Dominik Grotegerd12, Udo Dannlowski13, Udo Dannlowski12, Volker Arolt12, Nils Opel12, Walter Heindel12, Harald Kugel12, D. Hoehn3, Michael Czisch3, Baptiste Couvy-Duchesne14, Baptiste Couvy-Duchesne15, Miguel E. Rentería15, Lachlan T. Strike14, Margaret J. Wright14, Natalie T. Mills15, Natalie T. Mills14, G.I. de Zubicaray16, Katie L. McMahon14, Sarah E. Medland15, Nicholas G. Martin15, Nathan A. Gillespie17, Roberto Goya-Maldonado18, Oliver Gruber19, Bernd Krämer19, Sean N. Hatton20, Jim Lagopoulos20, Ian B. Hickie20, Thomas Frodl21, Thomas Frodl22, Angela Carballedo22, Eva-Maria Frey23, L. S. van Velzen1, B.W.J.H. Penninx1, M-J van Tol24, N.J. van der Wee25, Christopher G. Davey26, Ben J. Harrison26, Benson Mwangi27, Bo Cao27, Jair C. Soares27, Ilya M. Veer28, Henrik Walter28, D. Schoepf29, Bartosz Zurowski30, Carsten Konrad13, Elisabeth Schramm31, Claus Normann31, Knut Schnell19, Matthew D. Sacchet32, Ian H. Gotlib32, Glenda MacQueen33, Beata R. Godlewska34, Thomas Nickson35, Andrew M. McIntosh36, Andrew M. McIntosh35, Martina Papmeyer37, Martina Papmeyer35, Heather C. Whalley35, Jeremy Hall38, Jeremy Hall35, J.E. Sussmann35, Meng Li39, Martin Walter40, Martin Walter39, Lyubomir I. Aftanas, Ivan Brack, Nikolay A. Bokhan41, Nikolay A. Bokhan42, Nikolay A. Bokhan43, Paul M. Thompson2, Dick J. Veltman1 
TL;DR: In this article, the authors present the largest ever worldwide study by the ENIGMA (Enhancing Neuro Imaging Genetics through Meta-Analysis) Major Depressive Disorder Working Group on cortical structural alterations in MDD.
Abstract: The neuro-anatomical substrates of major depressive disorder (MDD) are still not well understood, despite many neuroimaging studies over the past few decades. Here we present the largest ever worldwide study by the ENIGMA (Enhancing Neuro Imaging Genetics through Meta-Analysis) Major Depressive Disorder Working Group on cortical structural alterations in MDD. Structural T1-weighted brain magnetic resonance imaging (MRI) scans from 2148 MDD patients and 7957 healthy controls were analysed with harmonized protocols at 20 sites around the world. To detect consistent effects of MDD and its modulators on cortical thickness and surface area estimates derived from MRI, statistical effects from sites were meta-analysed separately for adults and adolescents. Adults with MDD had thinner cortical gray matter than controls in the orbitofrontal cortex (OFC), anterior and posterior cingulate, insula and temporal lobes (Cohen's d effect sizes: -0.10 to -0.14). These effects were most pronounced in first episode and adult-onset patients (>21 years). Compared to matched controls, adolescents with MDD had lower total surface area (but no differences in cortical thickness) and regional reductions in frontal regions (medial OFC and superior frontal gyrus) and primary and higher-order visual, somatosensory and motor areas (d: -0.26 to -0.57). The strongest effects were found in recurrent adolescent patients. This highly powered global effort to identify consistent brain abnormalities showed widespread cortical alterations in MDD patients as compared to controls and suggests that MDD may impact brain structure in a highly dynamic way, with different patterns of alterations at different stages of life.

728 citations

Journal ArticleDOI
03 Sep 2015-Nature
TL;DR: The results quantify for the first time the extent of plant naturalizations worldwide, and illustrate the urgent need for globally integrated efforts to control, manage and understand the spread of alien species.
Abstract: All around the globe, humans have greatly altered the abiotic and biotic environment with ever-increasing speed. One defining feature of the Anthropocene epoch is the erosion of biogeographical barriers by human-mediated dispersal of species into new regions, where they can naturalize and cause ecological, economic and social damage. So far, no comprehensive analysis of the global accumulation and exchange of alien plant species between continents has been performed, primarily because of a lack of data. Here we bridge this knowledge gap by using a unique global database on the occurrences of naturalized alien plant species in 481 mainland and 362 island regions. In total, 13,168 plant species, corresponding to 3.9% of the extant global vascular flora, or approximately the size of the native European flora, have become naturalized somewhere on the globe as a result of human activity. North America has accumulated the largest number of naturalized species, whereas the Pacific Islands show the fastest increase in species numbers with respect to their land area. Continents in the Northern Hemisphere have been the major donors of naturalized alien species to all other continents. Our results quantify for the first time the extent of plant naturalizations worldwide, and illustrate the urgent need for globally integrated efforts to control, manage and understand the spread of alien species.

704 citations

Book
23 Feb 1995
TL;DR: In this paper, the Poincar-D'e group, the Lorentz group and the supergroup of general coordinate transformations on R^Tp/q were studied.
Abstract: Preface. Mathematical background: The Poincar^D'e group, the Lorentz group Finite-dimensional representations of ^ISpin(3,1) The Lorentz algebra Two-component and four-component spinors Representations of the Poincar^D'e group Elements of differential geometry and gravity The conformal group The mass-shell field representation Elements of algebra with supernumbers Elements of analysis with supernumbers The supergroup of general coordinate transformations on R^Tp/q. Supersymmetry and superspace: Introduction: from R^Tp/q to supersymmetry Superalgebras, Grassmann-shells and super Lie groups The Poincar^D'e superalgebra Unitary representation of the Poincar^D'e superalgebra Real superspace R^T4/4 and superfields Complex superspace C^T4/2, chiral superfields and covariant derivatives The on-shell massive superfield representations The on-shell massless superfield representations From superfields to component fields The superconformal group. Field theory in superspace: Supersymmetric field theory Wess-Zumino model Supersymmetric nonlinear sigma-models Vector multiplet models Supersymmetric Yang-Mills theories Geometric approach to super Yang-Mills theories Classically equivalent theories. Quantized superfields: Picture-change operators Equivalence of component field and superfield perturbation theories Effective action (super) funtional The Wess-Zumino model: perturbative analysis Note about gauge theories Feynman rules for super Yang-Mills theories Renormalization Examples of counterterm calculations: an alternative technique Superfield effective potential. Superspace geometry of supergravity: Gauge group of supergravity and supergravity fields Superspace differential geometry Supergeometry with conformal supergravity constraints Prepotentials Einstein supergravity Prepotential de formations Supercurrent and supertrace Supergravity in components. Dynamics in supergravity: Pure supergravity dynamics Linearized supergravity Superg

640 citations

Journal ArticleDOI
29 Nov 2013-Science
TL;DR: The asteroid impact near the Russian city of Chelyabinsk on 15 February 2013 was the largest airburst on Earth since the 1908 Tunguska event, causing a natural disaster in an area with a population exceeding one million.
Abstract: The asteroid impact near the Russian city of Chelyabinsk on 15 February 2013 was the largest airburst on Earth since the 1908 Tunguska event, causing a natural disaster in an area with a population exceeding one million. Because it occurred in an era with modern consumer electronics, field sensors, and laboratory techniques, unprecedented measurements were made of the impact event and the meteoroid that caused it. Here, we document the account of what happened, as understood now, using comprehensive data obtained from astronomy, planetary science, geophysics, meteorology, meteoritics, and cosmochemistry and from social science surveys. A good understanding of the Chelyabinsk incident provides an opportunity to calibrate the event, with implications for the study of near-Earth objects and developing hazard mitigation strategies for planetary protection.

560 citations


Authors

Showing all 9125 results

NameH-indexPapersCitations
Dmitri Tsybychev129118381383
Vadim Kostyukhin12887475890
Alexandre Vaniachine12783973472
Richard E. Tremblay11668545844
Sergei D. Odintsov11260962524
Alexander Khodinov11065057466
Alexey Myagkov10958645630
Alexander Zaitsev10345348690
Gueorgui Chelkov9332141816
Steven Robertson9033641641
Terry V. Callaghan8529128202
Vladimir Ivanov8174224340
Hans Ågren7976427967
Michel Boivin7738422104
Huseyin Sehitoglu6732414378
Network Information
Related Institutions (5)
Russian Academy of Sciences
417.5K papers, 4.5M citations

89% related

Moscow State University
123.3K papers, 1.7M citations

89% related

National Academy of Sciences of Belarus
16.4K papers, 202.9K citations

87% related

Novosibirsk State University
23K papers, 319.8K citations

87% related

Moscow Institute of Physics and Technology
16.9K papers, 246.5K citations

87% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202361
2022152
20211,030
20201,476
20191,476
20181,366