scispace - formally typeset
Search or ask a question

Showing papers on "Small hairpin RNA published in 2004"


Journal ArticleDOI
TL;DR: The results suggest that DGCR8 and Drosha interact in human cells and reside in a functional pri-miRNA processing complex.

868 citations


Journal ArticleDOI
25 Mar 2004-Nature
TL;DR: The construction and application of a shRNA expression library targeting 9,610 human and 5,563 mouse genes is reported, which suggests that the large-scale RNAi library can be used in specific, genetic applications in mammals, and will become a valuable resource for gene analysis and discovery.
Abstract: Gene silencing by RNA interference (RNAi) in mammalian cells using small interfering RNAs (siRNAs) and short hairpin RNAs (shRNAs) has become a valuable genetic tool. Here, we report the construction and application of a shRNA expression library targeting 9,610 human and 5,563 mouse genes. This library is presently composed of about 28,000 sequence-verified shRNA expression cassettes contained within multi-functional vectors, which permit shRNA cassettes to be packaged in retroviruses, tracked in mixed cell populations by means of DNA 'bar codes', and shuttled to customized vectors by bacterial mating. In order to validate the library, we used a genetic screen designed to report defects in human proteasome function. Our results suggest that our large-scale RNAi library can be used in specific, genetic applications in mammals, and will become a valuable resource for gene analysis and discovery.

736 citations


Journal ArticleDOI
TL;DR: The ability to efficiently control shRNA expression by using two lentiviral vectors for conditional, Cre-lox-regulated, RNA interference was shown in cell-based experiments and should facilitate functional genetic analysis in mammals.
Abstract: We have generated two lentiviral vectors for conditional, Cre-lox-regulated, RNA interference. One vector allows for conditional activation, whereas the other permits conditional inactivation of short hairpin RNA (shRNA) expression. The former is based on a strategy in which the mouse U6 promoter has been modified by including a hybrid between a LoxP site and a TATA box. The ability to efficiently control shRNA expression by using these vectors was shown in cell-based experiments by knocking down p53, nucleophosmin and DNA methyltransferase 1. We also demonstrate the usefulness of this approach to achieve conditional, tissue-specific RNA interference in Cre-expressing transgenic mice. Combined with the growing array of Cre expression strategies, these vectors allow spatial and temporal control of shRNA expression in vivo and should facilitate functional genetic analysis in mammals.

643 citations


Journal ArticleDOI
TL;DR: A Gateway vector, pANDA, is developed for RNA interference of rice genes to help identify the functions of genes whose tagged mutants are not available at present and complement existing methods for functional genomics of rice.
Abstract: Since the recent sequencing of the rice genome, the functional identification of rice genes has become increasingly important. Various tagged lines have been generated; however, the number of tagged genes available is not sufficient for extensive study of gene function. To help identify the functions of genes in rice, we developed a Gateway vector, pANDA, for RNA interference of rice genes. This vector can be used for Agrobacterium transformation of rice and allows easy and fast construction of efficient RNAi vectors. In the construct, hairpin RNA derived from a given gene is transcribed from a strong maize ubiquitin promoter, and an intron is placed 5' upstream of inverted repeats to enhance RNA expression. Analysis of rice genes using this vector showed that suppression of mRNA expression was observed in more than 90% of transgenic plants examined, and short interfering RNA indicative of RNA silencing was detected in each silenced plant. A similar vector, pANDA-mini, was also developed for direct transfer into leaf cells or protoplasts. This vector can be used for transient suppression of gene function in rice. These vectors should help identify the functions of rice genes whose tagged mutants are not available at present and complement existing methods for functional genomics of rice.

503 citations


Journal ArticleDOI
TL;DR: Small interfering (si) and short hairpin) RNAs induce robust degradation of homologous mRNAs, making them a potent tool to achieve gene silencing in mammalian cells, and it is demonstrated they are mediated in part by signaling through TLR3.
Abstract: Small interfering (si) and short hairpin (sh) RNAs induce robust degradation of homologous mRNAs, making them a potent tool to achieve gene silencing in mammalian cells. Silencing by siRNAs is used widely because it is considered highly specific for the targeted gene, although a recent report suggests that siRNA also induce signaling through the type I IFN system. When human embryonic kidney 293 (HEK293) or keratinocyte (HaCaT) cell lines or human primary dendritic cells or macrophages were transfected with siRNA or shRNAs, suppression of nontargeted mRNA expression was detected. Additionally, siRNA and shRNA, independent of their sequences, initiated immune activation, including IFN-alpha and TNF-alpha production and increased HLA-DR expression, in transfected macrophages and dendritic cells. The siRNAs induced low, but significant, levels of IFN-beta in HEK293 and HaCaT cells. Secretion of these cytokines increased tremendously when HEK293 cells overexpressed Toll-like receptor 3 (TLR3), and the increased secretion of IFN-beta was inhibited by coexpression of an inhibitor of TIR domain-containing adapter-inducing IFN-beta, the TLR3 adaptor protein linked to IFN regulatory factor 3 signaling. Although siRNA and shRNA knockdown of genes represents a new and powerful tool, it is not without nonspecific effects, which we demonstrate are mediated in part by signaling through TLR3.

463 citations


Journal ArticleDOI
TL;DR: The present review summarizes the role of the chemist's toolbox in this emerging technology and identifies appropriate chemical modifications to improve stability, potency and in vivo cellular delivery.

392 citations


Journal ArticleDOI
TL;DR: Evidence is presented demonstrating that the highly structured ∼160-nucleotide adenoviral VA1 noncoding RNA can inhibit RNAi at physiological levels of expression and identifying VA1 RNA as the first viral gene product able to inhibitRNAi in human cells.
Abstract: Although inhibition of RNA interference (RNAi) by plant virus proteins has been shown to enhance viral replication and pathogenesis in plants, no viral gene product has as yet been shown to inhibit RNAi in vertebrate cells. Here, we present evidence demonstrating that the highly structured ∼160-nucleotide adenoviral VA1 noncoding RNA can inhibit RNAi at physiological levels of expression. VA1, which is expressed at very high levels in adenovirus-infected cells, potently inhibited RNAi induced by short hairpin RNAs (shRNAs) or human microRNA precursors but did not affect RNAi induced by artificial short interfering RNA duplexes. Inhibition appeared to be due both to inhibition of nuclear export of shRNA or premicro-RNA precursors, competition for the Exportin 5 nuclear export factor, and inhibition of Dicer function by direct binding of Dicer. Together, these data argue that adenovirus infection can result in inhibition of RNAi and identify VA1 RNA as the first viral gene product able to inhibit RNAi in human cells.

375 citations


Journal ArticleDOI
TL;DR: In this paper, a weekly i.v. injection of non-viral gene therapy causing RNA interference (RNAi) of EGFR gene expression was designed to prolong survival in mice with intracranial human brain cancer.
Abstract: Purpose: The human epidermal growth factor receptor (EGFR) plays an oncogenic role in solid cancer, including brain cancer. The present study was designed to prolong survival in mice with intracranial human brain cancer with the weekly i.v. injection of nonviral gene therapy causing RNA interference (RNAi) of EGFR gene expression. Experimental Design: Human U87 gliomas were implanted in the brain of adult scid mice, and weekly i.v. gene therapy was started at day 5 after implantation of 500,000 cells. An expression plasmid encoding a short hairpin RNA directed at nucleotides 2529 –2557 within the human EGFR mRNA was encapsulated in pegylated immunoliposomes. The pegylated immunoliposome was targeted to brain cancer with 2 receptor-specific monoclonal antibodies (MAb), the murine 83–14 MAb to the human insulin receptor and the rat 8D3 MAb to the mouse transferrin receptor. Results: In cultured glioma cells, the delivery of the RNAi expression plasmid resulted in a 95% suppression of EGFR function, based on measurement of thymidine incorporation or intracellular calcium signaling. Weekly i.v. RNAi gene therapy caused reduced tumor expression of immunoreactive EGFR and an 88% increase in survival time of mice with advanced intracranial brain cancer. Conclusions: Weekly i.v. nonviral RNAi gene therapy directed against the human EGFR is a new therapeutic approach to silencing oncogenic genes in solid cancers. This is enabled with a nonviral gene transfer technology that delivers liposome-encapsulated plasmid DNA across cellular barriers with receptor-specific targeting ligands.

354 citations


Journal ArticleDOI
TL;DR: Data show that CBX7 controls cellular lifespan through regulation of both the p16Ink4a/Rb and the Arf/p53 pathways.
Abstract: In contrast to cancer cells and embryonic stem cells, the lifespan of primary human cells is finite. After a defined number of population doublings, cells enter in an irreversible growth-arrested state termed replicative senescence1. Mutations of genes involved in immortalization can contribute to cancer2,3. In a genetic screen for cDNAs bypassing replicative senescence of normal human prostate epithelial cells (HPrEC), we identified CBX7, a gene that encodes a Polycomb protein, as shown by sequence homology, its interaction with Ring1 and its localization to nuclear Polycomb bodies. CBX7 extends the lifespan of a wide range of normal human cells and immortalizes mouse fibroblasts by downregulating expression of the Ink4a/Arf locus. CBX7 does not inter-function or colocalize with Bmi1, and both can exert their actions independently of each other as shown by reverse genetics. CBX7 expression is downregulated during replicative senescence and its ablation by short-hairpin RNA (shRNA) treatment inhibited growth of normal cells though induction of the Ink4a/Arf locus. Taken together, these data show that CBX7 controls cellular lifespan through regulation of both the p16Ink4a/Rb and the Arf/p53 pathways.

339 citations


Journal ArticleDOI
10 Jun 2004-Oncogene
TL;DR: For the first time, these observations demonstrate that the simultaneous RNAi-mediated targeting of MMP-9 and cathepsin B has potential application for the treatment of human gliomas.
Abstract: Extracellular proteases have been shown to cooperatively influence matrix degradation and tumor cell invasion through proteolytic cascades, with individual proteases having distinct roles in tumor growth, invasion, migration and angiogenesis. Matrix metalloproteases (MMP)-9 and cathepsin B have been shown to participate in the processes of tumor growth, vascularization and invasion of gliomas. In the present study, we used a cytomegalovirus promoter-driven DNA template approach to induce hairpin RNA (hpRNA)-triggered RNA interference (RNAi) to block MMP-9 and cathepsin B gene expression with a single construct. Transfection of a plasmid vector-expressing double-stranded RNA (dsRNA) for MMP-9 and cathepsin B significantly inhibited MMP-9 and cathepsin B expression and reduced the invasive behavior of SNB19, glioblastoma cell line in Matrigel and spheroid invasion models. Downregulation of MMP-9 and cathepsin B using RNAi in SNB19 cells reduced cell-cell interaction of human microvascular endothelial cells, resulting in the disruption of capillary network formation in both in vitro and in vivo models. Direct intratumoral injections of plasmid DNA expressing hpRNA for MMP-9 and cathepsin B significantly inhibited established glioma tumor growth and invasion in intracranial tumors in vivo. Further intraperitoneal (i.p.) injections of plasmid DNA expressing hpRNA for MMP-9 and cathepsin B completely regressed pre-established tumors for a long time (4 months) without any indication of these tumor cells. For the first time, these observations demonstrate that the simultaneous RNAi-mediated targeting of MMP-9 and cathepsin B has potential application for the treatment of human gliomas.

302 citations


Patent
16 Sep 2004
TL;DR: In this paper, the authors present compounds, compositions, and methods useful for modulating VEGF and/or VEGFR gene expression using short interfering nucleic acid (siNA) molecules.
Abstract: This invention relates to compounds, compositions, and methods useful for modulating VEGF and/or VEGFR gene expression using short interfering nucleic acid (siNA) molecules. This invention also relates to compounds, compositions, and methods useful for modulating the expression and activity of other genes involved in pathways of VEGF and/or VEGFR gene expression and/or activity by RNA interference (RNAi) using small nucleic acid molecules. In particular, the instant invention features small nucleic acid molecules, such as short interfering nucleic acid (siNA), short interfering RNA (siRNA), double-stranded RNA (dsRNA), micro-RNA (miRNA), and short hairpin RNA (shRNA) molecules and methods used to modulate the expression of VEGF and/or VEGFR genes. The application also relates to methods of treating diseases and conditions associated with VEGF and/or VEGFR gene expression, such as ocular diseases and conditions, including age related macular degeneration (AMD) and diabetic retinopathy, as well as providing dosing regimens and treatment protocols.

Journal ArticleDOI
TL;DR: The results confirm the utility of expressing HIV-1 specific siRNA through a miR-30 precursor stem-loop structure and suggest that this strategy can be used to increase the antiviral potency of RNAi.
Abstract: Post-transcriptional inhibition of HIV-1 replication can be achieved by RNA interference (RNAi). The cellular expression of short interfering RNA (siRNA) or short hairpin RNA (shRNA) homologous to regions of the HIV-1 genome decreases viral replication by the selective degradation of targeted RNA. Here, we demonstrate that another class of noncoding regulatory RNA, termed microRNA (miRNA), can be used to deliver antiviral RNAi. By incorporating sequences encoding siRNA targeting the HIV-1 transactivator protein tat into a human miR-30 pre-microRNA (pre-miRNA) backbone, we were able to express tat siRNA in cells. The tat siRNA delivered as pre-miRNA precursor was 80% more effective in reducing HIV-1 p24 antigen production than tat siRNA expressed as conventional shRNA. Our results confirm the utility of expressing HIV-1 specific siRNA through a miR-30 precursor stem-loop structure and suggest that this strategy can be used to increase the antiviral potency of RNAi.

Journal Article
TL;DR: In this paper, the authors show that preventing RNA silencing in tobacco, using a silencing suppressor, greatly reduces the symptoms caused by the Y satellite of cucumber mosaic virus.
Abstract: Viroids and most viral satellites have small, noncoding, and highly structured RNA genomes. How they cause disease symptoms without encoding proteins and why they have characteristic secondary structures are two longstanding questions. Recent studies have shown that both viroids and satellites are capable of inducing RNA silencing, suggesting a possible role of this mechanism in the pathology and evolution of these subviral RNAs. Here we show that preventing RNA silencing in tobacco, using a silencing suppressor, greatly reduces the symptoms caused by the Y satellite of cucumber mosaic virus. Furthermore, tomato plants expressing hairpin RNA, derived from potato spindle tuber viroid, developed symptoms similar to those of potato spindle tuber viroid infection. These results provide evidence suggesting that viroids and satellites cause disease symptoms by directing RNA silencing against physiologically important host genes. We also show that viroid and satellite RNAs are significantly resistant to RNA silencing-mediated degradation, suggesting that RNA silencing is an important selection pressure shaping the evolution of the secondary structures of these pathogens.

Journal ArticleDOI
TL;DR: It is proposed that the induction of telomerase by the HPV-16 E6/E6-AP complex involves targeting of NFX1-91, a newly identified repressor of telomersase, for ubiquitination and degradation.
Abstract: The critical immortalizing activity of the human papillomavirus (HPV) type-16 E6 oncoprotein is to induce expression of hTERT, the catalytic and rate-limiting subunit of telomerase. Additionally, E6 binds to a cellular protein called E6-associated protein (E6-AP) to form an E3 ubiquitin ligase that targets p53 for proteasome-dependent degradation. Although telomerase induction and p53 degradation are separable and distinct functions of E6, binding of E6 to E6-AP strongly correlated with the induction of hTERT. Here, we demonstrate using shRNAs to reduce E6-AP expression that E6-AP is required for E6-mediated telomerase induction. A yeast two-hybrid screen to find new targets of the E6/E6-AP E3 ubiquitin ligase complex identified NFX1. Two isoforms of NFX1 were found: NFX1-123, which coactivated with c-Myc at the hTERT promoter, and NFX1-91, which repressed the hTERT promoter. NFX1-91 was highly ubiquitinated and destabilized in epithelial cells expressing E6. Furthermore, knockdown of NFX1-91 by shRNA resulted in derepression of the endogenous hTERT promoter and elevated levels of telomerase activity. We propose that the induction of telomerase by the HPV-16 E6/E6-AP complex involves targeting of NFX1-91, a newly identified repressor of telomerase, for ubiquitination and degradation.

Journal ArticleDOI
TL;DR: The data suggest that nef/U3 miRNAs produced in HIV-1-infected cells may suppress both Nef function and HIV- 1 virulence through the RNAi pathway.
Abstract: MicroRNAs (miRNAs) are 21~25-nucleotides (nt) long and interact with mRNAs to trigger either translational repression or RNA cleavage through RNA interference (RNAi), depending on the degree of complementarity with the target mRNAs Our recent study has shown that HIV-1 nef dsRNA from AIDS patients who are long-term non-progressors (LTNPs) inhibited the transcription of HIV-1 Here, we show the possibility that nef-derived miRNAs are produced in HIV-1 persistently infected cells Furthermore, nef short hairpin RNA (shRNA) that corresponded to a predicted nef miRNA (~25 nt, miR-N367) can block HIV-1 Nef expression in vitro and the suppression by shRNA/miR-N367 would be related with low viremia in an LTNP (15-2-2) In the 15-2-2 model mice, the weight loss, which may be rendered by nef was also inhibited by shRNA/miR-N367 corresponding to suppression of nef expression in vivo These data suggest that nef/U3 miRNAs produced in HIV-1-infected cells may suppress both Nef function and HIV-1 virulence through the RNAi pathway

Journal ArticleDOI
TL;DR: An inducible U6 promoter for synthesis of shRNAs in both human and murine cells is developed and it is shown that the inducibility is reversible after withdrawal of the inducer, as observed by reappearance of the protein and a restoration of the original cell phenotype.
Abstract: RNA interference is a powerful genetic approach for efficiently silencing target genes. The existing method of gene suppression by the constitutive expression of short hairpin RNAs (shRNAs) allows analysis of the consequences of stably silencing genes but limits the analysis of genes essential for cell survival, cell cycle regulation, and cell development. We have developed an inducible U6 promoter for synthesis of shRNAs in both human and murine cells. Cells containing stably integrated shRNA expression constructs demonstrate stringent dosage- and time-dependent kinetics of induction with undetectable background expression in the absence of the inducer ecdysone. Inducible suppression of human p53 in glioblastoma cells shows striking morphological changes and defects in cell cycle arrest caused by DNA damage, as expected. Remarkably, the inducibility is reversible after withdrawal of the inducer, as observed by reappearance of the protein and a restoration of the original cell phenotype. Inducible and reversible regulation of RNA interference has broad applications in the areas of mammalian genetics and molecular therapeutics.

Journal ArticleDOI
TL;DR: TIN2 is identified as a PARP modulator in the TRF1 complex and can explain how TIN2 contributes to the regulation of telomere length.
Abstract: Telomere length in humans is partly controlled by a feedback mechanism in which telomere elongation by telomerase is limited by the accumulation of the TRF1 complex at chromosome ends. TRF1 itself can be inhibited by the poly(ADP-ribose) polymerase (PARP) activity of its interacting partner tankyrase 1, which abolishes its DNA binding activity in vitro and removes the TRF1 complex from telomeres in vivo. Here we report that the inhibition of TRF1 by tankyrase is in turn controlled by a second TRF1-interacting factor, TIN2 (ref. 6). Partial knockdown of TIN2 by small hairpin RNA in a telomerase-positive cell line resulted in telomere elongation, which is typical of reduced TRF1 function. Transient inhibition of TIN2 with small interfering RNA led to diminished telomeric TRF1 signals. This effect could be reversed with the PARP inhibitor 3-aminobenzamide and did not occur in cells overexpressing a PARP-dead mutant of tankyrase 1. TIN2 formed a ternary complex with TRF1 and tankyrase 1 and stabilized their interaction, an effect also observed with the PARP-dead mutant of tankyrase 1. In vitro, TIN2 protected TRF1 from poly(ADP-ribosyl)ation by tankyrase 1 without affecting tankyrase 1 automodification. These data identify TIN2 as a PARP modulator in the TRF1 complex and can explain how TIN2 contributes to the regulation of telomere length.

Journal ArticleDOI
TL;DR: It is suggested that exogenously supplied dsRNA could form the basis for the development of an environmentally safe, new biotechnological tool aimed at protecting crops against virus diseases, provided that some limitations of the current status of the approach could be overcome.

Journal ArticleDOI
TL;DR: The results showed that miRNA prediction based on predicted precursor structures may give ambiguous results, and the success rate is significantly higher for the experimentally determined structures, which confirms the value of thermodynamic analysis based on mfold as a predictor of strand section by RNAi-induced silencing complex (RISC).

Journal ArticleDOI
TL;DR: Stable RNA interference is used to examine the role of PUMA, a p53 target gene and proapoptotic member of the Bcl2 family, in p53-mediated tumor suppression and demonstrates the utility of RNA interference for evaluating putative tumor suppressor genes in vivo.
Abstract: The p53 tumor suppressor regulates diverse antiproliferative processes such that cells acquiring p53 mutations have impaired cell-cycle checkpoints, senescence, apoptosis, and genomic stability. Here, we use stable RNA interference to examine the role of PUMA, a p53 target gene and proapoptotic member of the Bcl2 family, in p53-mediated tumor suppression. PUMA short hairpin RNAs (shRNAs) efficiently suppressed PUMA expression and p53-dependent apoptosis but did not impair nonapoptotic functions of p53. Like p53 shRNAs, PUMA shRNAs promoted oncogenic transformation of primary murine fibroblasts by the E1A/ras oncogene combination and dramatically accelerated myc-induced lymphomagenesis without disrupting p53-dependent cell-cycle arrest. However, the ability of PUMA to execute p53 tumor suppressor functions was variable because, in contrast to p53 shRNAs, PUMA shRNAs were unable to cooperate with oncogenic ras in transformation. These results demonstrate that the p53 effector functions involved in tumor suppression are context dependent and, in some settings, depend heavily on the expression of a single proapoptotic effector. Additionally, they demonstrate the utility of RNA interference for evaluating putative tumor suppressor genes in vivo.

Journal ArticleDOI
TL;DR: This work has developed a system to drive expression of shRNAs by placing them under the control of the human RNA polymerase III U6 small nuclear RNA (snRNA) promoter, which normally controls expression of small RNAs in cells.
Abstract: We and others have chosen to explore the shRNAs for several reasons: first, the considerable cost of chemically synthesized siRNAs; second, the possibility of enforceable and stable expression of shRNAs; and third, the availability of applications of expression constructs in primary cell types (for example, using retroviruses) and in whole organisms (for example, in mouse) We have developed a system to drive expression of shRNAs by placing them under the control of the human RNA polymerase III U6 small nuclear RNA (snRNA) promoter, which normally controls expression of small RNAs in cells This system has now been demonstrated to be effective both in

Journal ArticleDOI
TL;DR: Using tau and APP as model targets, an efficient method for producing small interfering RNA (siRNA) against essentially any targeted region of a gene is described and guiding principles for the production of allele-specific siRNAs are suggested.
Abstract: Tau and amyloid precursor protein (APP) are key proteins in the pathogenesis of sporadic and inherited Alzheimer's disease. Thus, developing ways to inhibit production of these proteins is of great research and therapeutic interest. The selective silencing of mutant alleles, moreover, represents an attractive strategy for treating inherited dementias and other dominantly inherited disorders. Here, using tau and APP as model targets, we describe an efficient method for producing small interfering RNA (siRNA) against essentially any targeted region of a gene. We then use this approach to develop siRNAs that display optimal allele-specific silencing against a well-characterized tau mutation (V337M) and the most widely studied APP mutation (APPsw). The allele-specific RNA duplexes identified by this method then served as templates for constructing short hairpin RNA (shRNA) plasmids that successfully silenced mutant tau or APP alleles. These plasmids should prove useful in experimental and therapeutic studies of Alzheimer's disease. Our results suggest guiding principles for the production of allele-specific siRNA, and the general method described here should facilitate the production of gene-specific siRNAs.

Journal ArticleDOI
TL;DR: It is shown that EPRIL can be applied to constructing an RNAi library from a cDNA library, providing a basis for future whole-genome phenotypic screening of genes.
Abstract: RNA interference (RNAi) induced by small interfering (siRNA) or short hairpin RNA (shRNA) is an important research approach in mammalian genetics. Here we describe a technology called enzymatic production of RNAi library (EPRIL) by which cDNAs are converted by a sequence of enzymatic treatments into an RNAi library consisting of a vast array of different shRNA expression constructs. We applied EPRIL to a single cDNA source and prepared an RNAi library consisting of shRNA constructs with various RNAi efficiencies. High-throughput screening allowed us to rapidly identify the best shRNA constructs from the library. We also describe a new selection scheme using the thymidine kinase gene for obtaining efficient shRNA constructs. Furthermore, we show that EPRIL can be applied to constructing an RNAi library from a cDNA library, providing a basis for future whole-genome phenotypic screening of genes.

Journal ArticleDOI
TL;DR: A shRNA-based live-cell microarray is described that allows simple, low-cost, high-throughput screening of phenotypes caused by the silencing of specific endogenous genes, and is validated by targeting genes involved in cytokinesis and proteasome-mediated proteolysis.
Abstract: RNA interference (RNAi) is a biological process in which a double-stranded RNA directs the silencing of target genes in a sequence-specific manner. Exogenously delivered or endogenously encoded double-stranded RNAs can enter the RNAi pathway and guide the suppression of transgenes and cellular genes. This technique has emerged as a powerful tool for reverse genetic studies aimed toward the elucidation of gene function in numerous biological models. Two approaches, the use of small interfering RNAs and short hairpin RNAs (shRNAs), have been developed to permit the application of RNAi technology in mammalian cells. Here we describe the use of a shRNA-based live-cell microarray that allows simple, low-cost, high-throughput screening of phenotypes caused by the silencing of specific endogenous genes. This approach is a variation of "reverse transfection" in which mammalian cells are cultured on a microarray slide spotted with different shRNAs in a transfection carrier. Individual cell clusters become transfected with a defined shRNA that directs the inhibition of a particular gene of interest, potentially producing a specific phenotype. We have validated this approach by targeting genes involved in cytokinesis and proteasome-mediated proteolysis.

Journal ArticleDOI
21 Oct 2004-Oncogene
TL;DR: Reducing XIAP protein expression by either RNAi or antisense approaches increases cancer cell susceptibility to functionally diverse chemotherapeutic agents and supports the notion that downregulation of XIAP in vivo may synergize with disease-relevant chemtherapeutic regimes, including TRAIL and taxanes, to increase the effectiveness of antineoplastic agents.
Abstract: Stable expression of short-hairpin RNAs (shRNAs) directed against the X-linked inhibitor of apoptosis (XIAP) resulted in the generation of three MDA-MB-231 cell lines (XIAP shRNA cells) with reductions in XIAP mRNA and protein levels > 85% relative to MDA-MB-231 cells stably transfected with the U6 RNA polymerase III promoter alone (U6 cells). This RNA interference (RNAi) approach dramatically sensitized these cells to killing by the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Importantly, loss of XIAP also sensitized the cells to killing by taxanes but had no additional effects on killing by carboplatin and doxorubicin. The increased sensitivity of the XIAP shRNA cells to killing by TRAIL and taxanes correlated with enhanced caspase cleavage and activation, including caspase-8, and robust processing of poly(ADP-ribose) polymerase and BID compared to U6 cells. Additionally, increasing XIAP levels by adenovirus-mediated expression protected both XIAP shRNA and U6 cells from TRAIL killing in a dose-dependent manner. The effects observed by stable RNAi with respect to TRAIL sensitization were also achieved following downregulation of XIAP in Panc-1 cells treated with a second-generation, mixed-backbone antisense oligonucleotide, AEG 35156/GEM640. These data indicate that reducing XIAP protein expression by either RNAi or antisense approaches increases cancer cell susceptibility to functionally diverse chemotherapeutic agents and supports the notion that downregulation of XIAP in vivo may synergize with disease-relevant chemotherapeutic regimes, including TRAIL and taxanes, to increase the effectiveness of antineoplastic agents.

Journal ArticleDOI
TL;DR: RNA interference (RNAi) is a phenomenon in which expression of an individual gene can be specifically silenced by introducing a double‐stranded RNA, one complementary to the gene, into cells.
Abstract: Background RNA interference (RNAi) is a phenomenon in which expression of an individual gene can be specifically silenced by introducing a double-stranded RNA, one complementary to the gene, into cells. This phenomenon can be observed in mammalian cells when small interfering RNAs (siRNAs) are used, and is receiving attention as the most powerful tool for reverse genetics in the post genome era. Several groups have developed vector-based siRNA-expression systems that can induce RNAi in living cells. Methods We describe here a comparative analysis of various siRNA-expression systems, in which we examined the effects of stem length, loop sequence and insertion of mutation(s) and/or bulges in the stem sequence on silencing effects and on the stability of the vectors. Results As a result of the comparative analysis, we determined the following optimized siRNA-expression system: U6 promoter-driven hairpin-type dsRNA with 21-nt stem length, three to four mutations in the sense strand only, and the optimized 9-nt loop sequence, derived from microRNA. Moreover, we demonstrate that the siRNA-expression system with a tetracycline-regulated U6 promoter(s) could have the potential to control RNAi in cells, and that the HIV vector-mediated transfer of an siRNA-expression cassette into cells resulted in efficient silencing of a target gene at a multiplicity of infection as low as five. Conclusion The mutated hairpin siRNAs and their genetically stable coding vectors could be very useful for gene knockdown experiments, and could further benefit gene therapy using RNAi. Copyright © 2004 John Wiley & Sons, Ltd.

Journal ArticleDOI
Stephanie Pebernard1, Richard Iggo1
TL;DR: To avoid interferon induction by U6 vectors, it is recommended to preserve the wild-type sequence around the transcription start site, in particular a C/G sequence at positions -1/+1, and a simple cloning strategy using the Gateway recombination system that facilitates this task is described.

Patent
20 Aug 2004
TL;DR: In this article, small nucleic acid molecules are used in the treatment of cancer, malignant blood disease, polycytemia vera, idiopathic myelofibrosis, essential thrombocythemia, myelodysplastic syndromes, autoimmune disease, viral infection, and proliferative diseases and conditions.
Abstract: This invention relates to compounds, compositions, and methods useful for modulating BCL2 gene expression using short interfering nucleic acid (siNA) molecules. This invention also relates to compounds, compositions, and methods useful for modulating the expression and activity of other genes involved in pathways of BCL2 gene expression and/or activity by RNA interference (RNAi) using small nucleic acid molecules. In particular, the instant invention features small nucleic acid molecules, such as short interfering nucleic acid (siNA), short interfering RNA (siRNA), double-stranded RNA (dsRNA), micro-RNA (miRNA), and short hairpin RNA (shRNA) molecules and methods used to modulate the expression of BCL2 genes (e.g., BCL2, BCL-XL, BCL2-L1, MCL-1 CED-9, BAG-1, E1B-194 and/or BCL-A1). The small nucleic acid molecules are useful in the treatment of cancer, malignant blood disease, polycytemia vera, idiopathic myelofibrosis, essential thrombocythemia, myelodysplastic syndromes, autoimmune disease, viral infection, and proliferative diseases and conditions

Journal ArticleDOI
TL;DR: RNA interference has advantages over antisense-mediated gene silencing and co-suppression, in terms of its efficiency and stability, and offers advantages over mutation-based reverse genetics in its ability to suppress transgene expression in multigene families in a regulated manner.

Journal ArticleDOI
TL;DR: Cytotoxicity or OAS1 induction could be reduced by changing shRNA sequence or vector titre, but stable gene silencing could not be maintained in extended cell culture despite persistent marker gene expression from the RNAi-inducing transgene cassette.
Abstract: RNA interference (RNAi) can potently reduce target gene expression in mammalian cells and is in wide use for loss-of-function studies. Several recent reports have demonstrated that short double-stranded RNAs (dsRNAs), used to mediate RNAi, can also induce an interferon-based response resulting in changes in the expression of many interferon-responsive genes. Off-target gene silencing has also been described, bringing into question the validity of certain RNAi-based approaches for studying gene function. We have targeted the plasminogen activator inhibitor-2 (PAI-2 or SERPINB2) mRNA using lentiviral vectors for delivery of U6 promoter-driven PAI-2-targeted short hairpin RNA (shRNA) expression. PAI-2 is reported to have anti-apoptotic activity, thus reduction of endogenous expression may be expected to make cells more sensitive to programmed cell death.