scispace - formally typeset
Search or ask a question

Showing papers on "Turbulence published in 2014"


Journal ArticleDOI
TL;DR: In this paper, the effect of domain size on direct numerical simulations of turbulent channels with periodic boundary conditions is studied, up to Reτ = 4179 in boxes with streamwise and spanwise sizes of 2πh × πh, where h is the channel half-height.
Abstract: The effect of domain size on direct numerical simulations of turbulent channels with periodic boundary conditions is studied. New simulations are presented up to Reτ = 4179 in boxes with streamwise and spanwise sizes of 2πh × πh, where h is the channel half-height. It is found that this domain is large enough to reproduce the one-point statistics of larger boxes. A simulation in a box of size 60πh × 6πh is used to show that a contour of the two-dimensional premultiplied spectrum of the streamwise velocity containing 80% of the kinetic energy closes at λx ≈ 100h.

415 citations


Journal ArticleDOI
TL;DR: The main source of turbulence may not be at the surface, but rather may result from shear above the surface inversion, sometimes preventing the formation of an inertial subrange as discussed by the authors.
Abstract: Atmospheric boundary layers with weak stratification are relatively well described by similarity theory and numerical models for stationary horizontally homogeneous conditions. With common strong stratification, similarity theory becomes unreliable. The turbulence structure and interactions with the mean flow and small-scale nonturbulent motions assume a variety of scenarios. The turbulence is intermittent and may no longer fully satisfy the usual conditions for the definition of turbulence. Nonturbulent motions include wave-like motions and solitary modes, two-dimensional vortical modes, microfronts, intermittent drainage flows, and a host of more complex structures. The main source of turbulence may not be at the surface, but rather may result from shear above the surface inversion. The turbulence is typically not in equilibrium with the nonturbulent motions, sometimes preventing the formation of an inertial subrange. New observational and analysis techniques are expected to advance our understanding of...

369 citations


Journal ArticleDOI
TL;DR: In this paper, the authors show that while the wake of the turbine is deeply influenced by the ambient turbulence conditions, its mean performances turn out to be slightly modified, which is crucial in the view of implanting second generation turbines arrays.

301 citations


Journal ArticleDOI
TL;DR: In this paper, the role of a number of parameters, including foil kinematics (modes, frequencies, amplitudes and time histories of motion), foil and system geometry (shape, configuration and structural flexibility), and flow physics effects (Reynolds number and turbulence, shear flows and ground effect), were investigated.

281 citations


Journal ArticleDOI
TL;DR: In this paper, the effects of nanoparticle concentration, shear and buoyancy forces, and turbulence on flow and thermal behavior of nanofluid flow were studied, and the model predictions for very low solid volume fraction were found to be in good agreement with earlier numerical studies for a base fluid.

270 citations


Journal ArticleDOI
TL;DR: The basic properties of quantum turbulence, systems such as superfluid helium and atomic Bose–Einstein condensates, which are characterized by quantized vorticity, superfluidity, and, at finite temperatures, two-fluid behavior are introduced.
Abstract: The term quantum turbulence denotes the turbulent motion of quantum fluids, systems such as superfluid helium and atomic Bose–Einstein condensates, which are characterized by quantized vorticity, superfluidity, and, at finite temperatures, two-fluid behavior. This article introduces their basic properties, describes types and regimes of turbulence that have been observed, and highlights similarities and differences between quantum turbulence and classical turbulence in ordinary fluids. Our aim is also to link together the articles of this special issue and to provide a perspective of the future development of a subject that contains aspects of fluid mechanics, atomic physics, condensed matter, and low-temperature physics.

239 citations


Journal ArticleDOI
TL;DR: In this article, three-dimensional spatial correlations are investigated in very long domains to educe the average structure of the velocity and pressure fluctuations in the zero-pressure-gradient turbulent boundary layer in the range Re θ = 2780-6680.
Abstract: Two-point statistics are presented for a new direct simulation of the zero-pressure-gradient turbulent boundary layer in the range Re θ = 2780–6680, and compared with channels in the same range of Reynolds numbers, δ+ ≈ 1000–2000. Three-dimensional spatial correlations are investigated in very long domains to educe the average structure of the velocity and pressure fluctuations. The streamwise velocity component is found to be coherent over longer distances in channels than in boundary layers, especially in the direction of the flow. For weakly correlated structures, the maximum streamwise length is O ( 7 δ ) for boundary layers and O ( 18 δ ) for channels, attained at the logarithmic and outer regions, respectively. The corresponding lengths for the spanwise and wall-normal velocities and for the pressure are shorter, O ( δ -2δ). The correlations are shown to be inclined to the wall at angles that depend on the distance from the wall, on the variable being considered, and on the correlation level used to define them. All these features change little between the two types of flows. Most the above features are also approximately independent of the Reynolds number, except for the pressure, and for the streamwise velocity structures in the channel. Further insight into the flow is provided by correlations conditioned on the intensity of the perturbations at the reference point, or on their sign. The statistics of the new simulation are available in our website.

238 citations


Journal ArticleDOI
TL;DR: In this article, a review of recent developments in the physics and modeling of interfacial layers between regions with different turbulent intensities is presented, focusing on the case of turbulent/nonturbulent interfaces that exist at the edges of jets, wakes, mixing layers, and boundary layers.
Abstract: Recent developments in the physics and modeling of interfacial layers between regions with different turbulent intensities are reviewed. The flow dynamics across these layers governs exchanges of mass, momentum, energy, and scalars (e.g., temperature), which determine the growth, spreading, mixing, and reaction rates in many flows of engineering and natural interest. Results from several analytical and linearized models are reviewed. Particular attention is given to the case of turbulent/nonturbulent interfaces that exist at the edges of jets, wakes, mixing layers, and boundary layers. The geometry, dynamics, and scaling of these interfaces are reviewed, and future lines of research are suggested. The dynamics of passive and active scalars is also discussed, including the effects of stratification, turbulence level, and internal forcing. Finally, the modeling challenges for one-point closures and subgrid-scale models are briefly mentioned.

225 citations


Journal ArticleDOI
TL;DR: In this article, the turbulent forced convection heat transfer of water/functionalized multi-walled carbon nanotube (FMWCNT) nanofluids over a forward-facing step was studied.
Abstract: The turbulent forced convection heat transfer of water/functionalized multi-walled carbon nanotube (FMWCNT) nanofluids over a forward-facing step was studied in this work. Turbulence was modeled using the shear stress transport K-ω model. Simulations were performed for Reynolds numbers ranging from 10,000 to 40,000, heat fluxes from 1,000 to 10,000 W/m2, and nanoparticle volume fractions of 0.00% to 0.25%. The two-dimensional governing equations were discretized with the finite volume method. The effects of nanoparticle concentration, shear force, heat flux, contraction, and turbulence on the hydraulics and thermal behavior of nanofluid flow were studied. The model predictions were found to be in good agreement with previous experimental and numerical studies. The results indicate that the Reynolds number and FMWCNT volume fraction considerably affect the heat transfer coefficient; a rise in local heat transfer coefficient was noted when both Reynolds number and FMWCNT volume fraction were increased for a...

221 citations


Journal ArticleDOI
TL;DR: In this paper, the authors present the detailed formulation and validation results of simple and robust procedures for the generation of synthetic turbulence aimed at providing artificial turbulent content at the RANS-to-LES interface within a zonal wall-modelled LES of attached and mildly separated wall-bounded flows.
Abstract: The paper presents the detailed formulation and validation results of simple and robust procedures for the generation of synthetic turbulence aimed at providing artificial turbulent content at the RANS-to-LES interface within a zonal Wall Modelled LES of attached and mildly separated wall-bounded flows. There are two versions of the procedure. The aerodynamic version amounts to a minor modification of a synthetic turbulence generator developed by the authors previously, but the acoustically adapted version is new and includes an internal damping layer, where the pressure field is computed by “weighting” of the instantaneous pressure fields from LES and RANS. This is motivated by the need to avoid creating spurious noise as part of the turbulence generation. In terms of pure aerodynamics, the validation includes canonical shear flows (developed channel flow, zero pressure gradient boundary layer, and plane mixing layer), as well as a more complex flow over the wall-mounted hump with non-fixed separation and reattachment, with emphasis on a rapid conversion from modeled to resolved Reynolds stresses. The aeroacoustic applications include the flow past a trailing edge and over a two-element airfoil configuration. In all cases the methodology ensures a very acceptable accuracy for the mean flow, turbulent statistics and, also, the near- and far-field noise.

213 citations


Journal ArticleDOI
TL;DR: In this paper, the influence of sheet/cloud cavitation on the hydrodynamic coefficients and surrounding flow turbulent structures was quantified for a 3D Clark-Y hydrofoil fixed at an angle of attack of α = 8 degrees at a moderate Reynolds number.

Journal ArticleDOI
TL;DR: In this paper, a hierarchy of eddy-viscosity terms in proper orthogonal decomposition (POD) Galerkin models is investigated to account for a large fraction of unresolved fluctuation energy.
Abstract: We investigate a hierarchy of eddy-viscosity terms in proper orthogonal decomposition (POD) Galerkin models to account for a large fraction of unresolved fluctuation energy. These Galerkin methods are applied to large eddy simulation (LES) data for a flow around a vehicle-like bluff body called an Ahmed body. This flow has three challenges for any reduced-order model: a high Reynolds number, coherent structures with broadband frequency dynamics, and meta-stable asymmetric base flow states. The Galerkin models are found to be most accurate with modal eddy viscosities as proposed by Rempfer & Fasel (J. Fluid Mech., vol. 260, 1994a, pp. 351–375; J. Fluid Mech. vol. 275, 1994b, pp. 257–283). Robustness of the model solution with respect to initial conditions, eddy-viscosity values and model order is achieved only for state-dependent eddy viscosities as proposed by Noack, Morzynski & Tadmor (Reduced-Order Modelling for Flow Control, CISM Courses and Lectures, vol. 528, 2011). Only the POD system with state-dependent modal eddy viscosities can address all challenges of the flow characteristics. All parameters are analytically derived from the Navier–Stokes-based balance equations with the available data. We arrive at simple general guidelines for robust and accurate POD models which can be expected to hold for a large class of turbulent flows.

Journal ArticleDOI
TL;DR: In this paper, a novel approach to the study of the kinematics and dynamics of turbulent flows is presented, which involves tracking in time coherent structures, and provides all of the information required to characterize eddies from birth to death.
Abstract: A novel approach to the study of the kinematics and dynamics of turbulent flows is presented. The method involves tracking in time coherent structures, and provides all of the information required to characterize eddies from birth to death. Spatially and temporally well-resolved DNSs of channel data at are used to analyse the evolution of three-dimensional sweeps, ejections (Lozano-Duran et al., J. Fluid Mech., vol. 694, 2012, pp. 100–130) and clusters of vortices (del Alamo et al., J. Fluid Mech., vol. 561, 2006, pp. 329–358). The results show that most of the eddies remain small and do not last for long times, but that some become large, attach to the wall and extend across the logarithmic layer. The latter are geometrically and temporally self-similar, with lifetimes proportional to their size (or distance from the wall), and their dynamics is controlled by the mean shear near their centre of gravity. They are responsible for most of the total momentum transfer. Their origin, eventual disappearance, and history are investigated and characterized, including their advection velocity at different wall distances and the temporal evolution of their size. Reinforcing previous results, the symmetry found between sweeps and ejections supports the idea that they are not independent structures, but different manifestations of larger quasi-streamwise rollers in which they are embedded. Spatially localized direct and inverse cascades are respectively associated with the splitting and merging of individual structures, as in the models of Richardson (Proc. R. Soc. Lond. A, vol. 97(686), 1920, pp. 354–373) or Obukhov (Izv. Akad. Nauk USSR, Ser. Geogr. Geofiz., vol. 5(4), 1941, pp. 453–466). It is found that the direct cascade predominates, but that both directions are roughly comparable. Most of the merged or split fragments have sizes of the order of a few Kolmogorov viscous units, but a substantial fraction of the growth and decay of the larger eddies is due to a self-similar inertial process in which eddies merge and split in fragments spanning a wide range of scales.

Journal ArticleDOI
TL;DR: In this paper, a numerical investigation is conducted to analyze the two-dimensional incompressible Navier-Stokes flows through the artificially roughened solar air heater for relevant Reynolds number ranges from 3800 to 18,000.

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the accuracy and efficiency of discontinuous Galerkin spectral method simulations of under-resolved transitional and turbulent flows at moderate Reynolds numbers, where the accurate prediction of closely coupled laminar regions, transition and developed turbulence presents a great challenge to large eddy simulation modelling.
Abstract: SUMMARY In this paper, we investigate the accuracy and efficiency of discontinuous Galerkin spectral method simulations of under-resolved transitional and turbulent flows at moderate Reynolds numbers, where the accurate prediction of closely coupled laminar regions, transition and developed turbulence presents a great challenge to large eddy simulation modelling. We take full advantage of the low numerical errors and associated superior scale resolving capabilities of high-order spectral methods by using high-order ansatz functions up to 12th order. We employ polynomial de-aliasing techniques to prevent instabilities arising from inexact quadrature of nonlinearities. Without the need for any additional filtering, explicit or implicit modelling, or artificial dissipation, our high-order schemes capture the turbulent flow at the considered Reynolds number range very well. Three classical large eddy simulation benchmark problems are considered: a circular cylinder flow at ReD=3900, a confined periodic hill flow at Reh=2800 and the transitional flow over a SD7003 airfoil at Rec=60,000. For all computations, the total number of degrees of freedom used for the discontinuous Galerkin spectral method simulations is chosen to be equal or considerably less than the reported data in literature. In all three cases, we achieve an equal or better match to direct numerical simulation results, compared with other schemes of lower order with explicitly or implicitly added subgrid scale models. Copyright © 2014 John Wiley & Sons, Ltd.

Journal ArticleDOI
TL;DR: In this paper, a spiral galaxy infalling towards the center of the massive Norma cluster at z ∼ 0.0162 was observed to have an extended gaseous tail, traced by MUSE observations to >30 kpc from the galaxy center.
Abstract: We present Multi Unit Spectroscopic Explorer (MUSE) observations of ESO137−001, a spiral galaxy infalling towards the centre of the massive Norma cluster at z ∼ 0.0162. During the high-velocity encounter of ESO137−001 with the intracluster medium, a dramatic ram-pressure stripping event gives rise to an extended gaseous tail, traced by our MUSE observations to >30 kpc from the galaxy centre. By studying the Hα surface brightness and kinematics in tandem with the stellar velocity field, we conclude that ram pressure has completely removed the interstellar medium from the outer disc, while the primary tail is still fed by gas from the inner regions. Gravitational interactions do not appear to be a primary mechanism for gas removal. The stripped gas retains the imprint of the disc rotational velocity to ∼20 kpc downstream, without a significant gradient along the tail, which suggests that ESO137−001 is fast moving along a radial orbit in the plane of the sky. Conversely, beyond ∼20 kpc, a greater degree of turbulence is seen, with velocity dispersion up to ≳100 km s−1. For a model-dependent infall velocity of vinf ∼ 3000 km s−1, we conclude that the transition from laminar to turbulent flow in the tail occurs on time-scales ≥6.5 Myr. Our work demonstrates the terrific potential of MUSE for detailed studies of how ram-pressure stripping operates on small scales, providing a deep understanding of how galaxies interact with the dense plasma of the cluster environment.

Journal ArticleDOI
TL;DR: In this article, the authors carried out a large-eddy simulation (LES) of the experimental flow to investigate the structure of turbulence in the wake of the turbine and elucidate the mechanism that gives rise to wake meandering.
Abstract: Laboratory experiments have yielded evidence suggestive of large-scale meandering motions in the wake of an axial flow hydrokinetic turbine in a turbulent open channel flow (Chamorro et al., J. Fluid Mech., vol. 716, 2013, pp. 658–670). We carry out a large-eddy simulation (LES) of the experimental flow to investigate the structure of turbulence in the wake of the turbine and elucidate the mechanism that gives rise to wake meandering. All geometrical details of the turbine structure are taken into account in the simulation using the curvilinear immersed boundary LES method with wall modelling (Kang et al., Adv. Water Resour., vol. 34(1), 2011, pp. 98–113). The simulated flow fields are in good agreement with the experimental measurements and confirm the theoretical model of turbine wakes (Joukowski, Tr. Otdel. Fizich. Nauk Obshch. Lyub. Estestv., vol. 16, 1912, no. 1), yielding a near-turbine wake that consists of two layers: the tip vortex (or outer) shear layer that rotates in the same direction as the rotor; and the inner layer counter-rotating hub vortex. Analysis of the calculated instantaneous flow fields reveals that the hub vortex undergoes spiral vortex breakdown and precesses slowly in the direction opposite to the turbine rotation. The precessing vortex core remains coherent for three to four rotor diameters, expands radially outwards, and intercepts the outer shear layer at approximately the location where wake meandering is initiated. The wake meandering manifests itself in terms of an elongated region of increased turbulence kinetic energy and Reynolds shear stress across the top tip wake boundary. The interaction of the outer region of the flow with the precessing hub vortex also causes the rotational component of the wake to decay completely at approximately the location where the wake begins to meander (four rotor diameters downstream of the turbine). To further investigate the importance of turbine geometry on far-wake dynamics, we carry out LES under the same flow conditions but using actuator disk and actuator line parametrizations of the turbine. While both actuator approaches yield a meandering wake, the actuator line model yields results that are in better overall agreement with the measurements. However, comparisons between the actuator line and the turbine-resolving LES reveal significant differences. Namely, in the actuator line LES model: (i) the hub vortex does not develop spiral instability and remains stable and columnar without ever intercepting the outer shear layer; (ii) wake rotation persists for much longer distance downstream than in the turbine-resolving LES; and (iii) the level of turbulence kinetic energy within and the overall size of the far-wake meandering region are considerably smaller (this discrepancy is even more pronounced for the actuator disk LES case) compared with the turbine-resolving LES. Our results identify for the first time the instability mechanism that amplified wake meandering in the experiment of Chamorro et al., show that computational models that do not take into account the geometrical details of the turbine cannot capture such phenomena, and point to the potential significance of the near-hub rotor design as a means for suppressing the instability of the hub vortex and diminishing the extent and intensity of the far-wake meandering region.

Journal ArticleDOI
TL;DR: In this article, the authors investigated the behavior of dense particle suspensions in the turbulent/inertial regime of a Newtonian fluid with solid neutrally buoyant spheres at relatively high volume fractions in a plane channel.
Abstract: Dense particle suspensions are widely encountered in many applications and in environmental flows. While many previous studies investigate their rheological properties in laminar flows, little is known on the behaviour of these suspensions in the turbulent/inertial regime. The present study aims to fill this gap by investigating the turbulent flow of a Newtonian fluid laden with solid neutrally-buoyant spheres at relatively high volume fractions in a plane channel. Direct Numerical Simulation are performed in the range of volume fractions Phi=0-0.2 with an Immersed Boundary Method used to account for the dispersed phase. The results show that the mean velocity profiles are significantly altered by the presence of a solid phase with a decrease of the von Karman constant in the log-law. The overall drag is found to increase with the volume fraction, more than one would expect just considering the increase of the system viscosity due to the presence of the particles. At the highest volume fraction here investigated, Phi=0.2, the velocity fluctuation intensities and the Reynolds shear stress are found to decrease. The analysis of the mean momentum balance shows that the particle-induced stresses govern the dynamics at high Phi and are the main responsible of the overall drag increase. In the dense limit, we therefore find a decrease of the turbulence activity and a growth of the particle induced stress, where the latter dominates for the Reynolds numbers considered here.

01 May 2014
TL;DR: In this paper, a simple and versatile coaxial turbulent jet mixer that can synthesize a variety of NPs at high throughput up to 3 kg/d, while maintaining the advantages of homogeneity, reproducibility, and tunability that are normally accessible only in specialized microscale mixing devices is presented.
Abstract: High-throughput production of nanoparticles (NPs) with controlled quality is critical for their clinical translation into effective nanomedicines for diagnostics and therapeutics. Here we report a simple and versatile coaxial turbulent jet mixer that can synthesize a variety of NPs at high throughput up to 3 kg/d, while maintaining the advantages of homogeneity, reproducibility, and tunability that are normally accessible only in specialized microscale mixing devices. The device fabrication does not require specialized machining and is easy to operate. As one example, we show reproducible, high-throughput formulation of siRNA-polyelectrolyte polyplex NPs that exhibit effective gene knockdown but exhibit significant dependence on batch size when formulated using conventional methods. The coaxial turbulent jet mixer can accelerate the development of nanomedicines by providing a robust and versatile platform for preparation of NPs at throughputs suitable for in vivo studies, clinical trials, and industrial-scale production.

Journal ArticleDOI
TL;DR: In this paper, the exact Reynolds-averaged (RA) equations for the particle phase in a collisional fluid-particle flow are derived from a kinetic theory (KT) model for monodisperse granular flow.
Abstract: Starting from a kinetic theory (KT) model for monodisperse granular flow, the exact Reynolds-averaged (RA) equations are derived for the particle phase in a collisional fluid–particle flow. The corresponding equations for a constant-density fluid phase are derived from a model that includes drag and buoyancy coupling with the particle phase. The fully coupled macroscale/hydrodynamic model, rigorously derived from a kinetic equation for the particles, is written in terms of the particle-phase volume fraction, the particle-phase velocity and the granular temperature (or total granular energy). As derived from the hydrodynamic model, the RA turbulence model solves for the RA particle-phase volume fraction, the phase-averaged (PA) particle-phase velocity, the PA granular temperature and the PA turbulent kinetic energy of the particle phase. Thus, unlike in most previous derivations of macroscale turbulence models for moderately dense granular flows, a clear distinction is made between the PA granular temperature , which appears in the KT constitutive relations, and the particle-phase turbulent kinetic energy , which appears in the turbulent transport coefficients. The exact RA equations contain unclosed terms due to nonlinearities in the hydrodynamic model and we briefly discuss the available closures for these terms. Finally, we demonstrate by comparing model predictions with direct numerical simulation results that even for non-collisional fluid–particle flows it is necessary to provide separate models for and in order to correctly account for the effect of the particle Stokes number and mass loading.

Journal ArticleDOI
TL;DR: In this paper, a pragmatic approach for representing partially resolved turbulence in numerical weather prediction models is introduced and tested, which blends a conventional boundary layer parameterization, suitable for large grid lengths, with a sub-grid turbulence scheme suitable for a large-eddy simulation.
Abstract: A pragmatic approach for representing partially resolved turbulence in numerical weather prediction models is introduced and tested The method blends a conventional boundary layer parameterization, suitable for large grid lengths, with a subgrid turbulence scheme suitable for large-eddy simulation The key parameter for blending the schemes is the ratio of grid length to boundary layer depth The new parameterization is combined with a scale-aware microphysical parameterization and tested on a case study forecast of stratocumulus evolution Simulations at a range of model grid lengths between 1 km and 100 m are compared to aircraft observations The improved microphysical representation removes the correlation between precipitation rate and model grid length, while the new turbulence parameterization improves the transition from unresolved to resolved turbulence as grid length is reduced

Journal ArticleDOI
TL;DR: The results of a finely resolved large-eddy simulation (LES) of a spatially developing zero-pressure-gradient turbulent boundary layer up to a Reynolds number of Re θ = 8300 are presented in this article.

Journal ArticleDOI
TL;DR: In this article, a numerical investigation on the heat transfer and fluid flow characteristics of fully developed turbulent flow in a rectangular duct having repeated transverse square sectioned rib roughness on the absorber plate has been carried out.

Journal ArticleDOI
TL;DR: In this paper, a non-equilibrium wall model based on unsteady 3D Reynolds-averaged Navier-Stokes (RANS) equations has been implemented in an unstructured mesh environment.
Abstract: A non-equilibrium wall-model based on unsteady 3D Reynolds-averaged Navier-Stokes (RANS) equations has been implemented in an unstructured mesh environment. The method is similar to that of the wall-model for structured mesh described by Wang and Moin [Phys. Fluids 14, 2043–2051 (2002)], but is supplemented by a new dynamic eddy viscosity/conductivity model that corrects the effect of the resolved Reynolds stress (resolved turbulent heat flux) on the skin friction (wall heat flux). This correction is crucial in predicting the correct level of the skin friction. Unlike earlier models, this eddy viscosity/conductivity model does not have a stress-matching procedure or a tunable free parameter, and it shows consistent performance over a wide range of Reynolds numbers. The wall-model is validated against canonical (attached) transitional and fully turbulent flows at moderate to very high Reynolds numbers: a turbulent channel flow at Reτ = 2000, an H-type transitional boundary layer up to Reθ = 3300, and a hig...

01 May 2014
TL;DR: In this paper, large-eddy simulation is combined with a turbine model to investigate the influence of atmospheric thermal stability on wind-turbine wakes, and the simulation results show that atmospheric stability has a significant effect on the spatial distribution of the mean velocity deficit and turbulence statistics in the wake region as well as the wake meandering characteristics downwind of the turbine.
Abstract: In this study, large-eddy simulation is combined with a turbine model to investigate the influence of atmospheric thermal stability on wind-turbine wakes. The simulation results show that atmospheric stability has a significant effect on the spatial distribution of the mean velocity deficit and turbulence statistics in the wake region as well as the wake meandering characteristics downwind of the turbine. In particular, the enhanced turbulence level associated with positive buoyancy under the convective condition leads to a relatively larger flow entrainment and, thus, a faster wake recovery. For the particular cases considered in this study, the growth rate of the wake is about 2.4 times larger for the convective case than for the stable one. Consistent with this result, for a given distance downwind of the turbine, wake meandering is also stronger under the convective condition compared with the neutral and stable cases. It is also shown that, for all the stability cases, the growth rate of the wake and wake meandering in the vertical direction is smaller compared with the ones in the lateral direction. This is mainly related to the different turbulence levels of the incoming wind in the different directions, together with the anisotropy imposed by the presence of the ground. It is also found that the wake velocity deficit is well characterized by a modified version of a recently proposed analytical model that is based on mass and momentum conservation and the assumption of a self-similar Gaussian distribution of the velocity deficit. Specifically, using a two-dimensional elliptical (instead of axisymmetric) Gaussian distribution allows to account for the different lateral and vertical growth rates, particularly in the convective case, where the non-axisymmetry of the wake is stronger. Detailed analysis of the resolved turbulent kinetic energy budget in the wake reveals also that thermal stratification considerably affects the magnitude and spatial distribution of the turbulence production, dissipation, and transport terms.

Journal ArticleDOI
TL;DR: In this article, it is shown that the hydraulic roughness length scale is related to the root-mean-square height (krms) and skewness (sk) of the surface elevation probability density function.
Abstract: This paper outlines the authors' experimental research in rough-wall-bounded turbulent flows that has spanned the past 15 years. The results show that, in general, roughness effects are confined to the inner layer. In accordance with Townsend's Reynolds number similarity hypothesis, the outer layer is insensitive to surface condition except in the role it plays in setting the length and velocity scales for the outer flow. An exception to this can be two-dimensional roughness which has been observed in some cases to suffer roughness effects far from the wall. However, recent results indicate that similarity also holds for two-dimensional roughness provided the Reynolds number is large, and there is sufficient scale separation between the roughness length scale and the boundary layer thickness. The concept of similarity between smooth- and rough-wall flows is of great practical importance as most computational and analytical modeling tools rely on it either explicitly or implicitly in predicting flows over rough walls. Because of the observed similarity, the roughness function (ΔU+), or shift in the log layer, is a useful way of characterizing the roughness effect on the mean flow and the frictional drag. In the fully rough regime, it is shown that the hydraulic roughness length scale is related to the root-mean-square height (krms) and skewness (sk) of the surface elevation probability density function. On the other hand, the onset of roughness effects is seen to be associated with the largest surface features which are typified by the peak-to-trough height (kt). Roughness function behavior in the transitionally rough regime varies significantly between roughness types. Since no “universal” roughness function exists, no single roughness length scale can characterize all roughness types in all the flow regimes. Despite this, research using roughness with a systematic variation in texture is ongoing in an effort to uncover surface parameters that lead to the variation in the frictional drag behavior witnessed in the transitionally rough regime.

Journal ArticleDOI
TL;DR: In this paper, the effects of rare gas flow by plasma generated with a plasma gun (PG) are demonstrated through simultaneous time-resolved ICCD imaging and schlieren visualization.
Abstract: Modifications of rare gas flow by plasma generated with a plasma gun (PG) are evidenced through simultaneous time-resolved ICCD imaging and schlieren visualization. The geometrical features of the capillary inside which plasma propagates before in-air expansion, the pulse repetition rate and the presence of a metallic target are playing a key role on the rare gas flow at the outlet of the capillary when the plasma is switched on. In addition to the previously reported upstream offset of the laminar to turbulent transition, we document the reverse action leading to the generation of long plumes at moderate gas flow rates together with the channeling of helium flow under various discharge conditions. For higher gas flow rates, in the l min−1 range, time-resolved diagnostics performed during the first tens of ms after the PG is turned on, evidence that the plasma plume does not start expanding in a laminar neutral gas flow. Instead, plasma ignition leads to a gradual laminar-like flow build-up inside which the plasma plume is generated. The impact of such phenomena for gas delivery on targets mimicking biological samples is emphasized, as well as their consequences on the production and diagnostics of reactive species.

Journal ArticleDOI
TL;DR: In this article, an analytical analysis has been performed to evaluate the performance of a minichannel-based solar collector using four different nanofluids including Cu/Water, Al2O3/water, TiO2/water and SiO2-water.

Journal ArticleDOI
TL;DR: This result verifies the notion that bifurcations can occur in high-dimensional flows (that is, very large Re) and questions Kolmogorov's paradigm.
Abstract: The ubiquity of turbulent flows in nature and technology makes it of utmost importance to fundamentally understand turbulence. Kolmogorov’s 1941 paradigm suggests that for strongly turbulent flows with many degrees of freedom and large fluctuations, there would only be one turbulent state as the large fluctuations would explore the entire higher dimensional phase space. Here we report the first conclusive evidence of multiple turbulent states for large Reynolds number, Re (106) (Taylor number Ta (1012)) Taylor–Couette flow in the regime of ultimate turbulence, by probing the phase space spanned by the rotation rates of the inner and outer cylinder. The manifestation of multiple turbulent states is exemplified by providing combined global torque- and local-velocity measurements. This result verifies the notion that bifurcations can occur in high-dimensional flows (that is, very large Re) and questions Kolmogorov’s paradigm.

Journal ArticleDOI
TL;DR: Although a review of measurements finds strong support for the influence of waves-and, in particular, for the predictions of large-eddy simulations, including the Craik-Leibovich vortex force-there are insufficient data to give definitive support to a new paradigm.
Abstract: Nearly all operational models of upper-ocean mixing assume that the turbulence responsible for this mixing is driven by the atmospheric fluxes of momentum, heat, and moisture and the shear imposed by the ocean circulation. This idealization is supported by historical measurements of dissipation rate within the boundary layer. Detailed measurements made recently by many investigators and supported by theoretical and numerical results have found significant deviations from this classical view attributable to the influence of surface waves. Although a review of these measurements finds strong support for the influence of waves-and, in particular, for the predictions of large-eddy simulations, including the Craik-Leibovich vortex force-there are insufficient data to give definitive support to a new paradigm.