scispace - formally typeset
Search or ask a question

Showing papers on "Water column published in 2016"


Journal ArticleDOI
TL;DR: The study identified significant quantities of plastics, ranging in shape, with hot spots found at confluence points within the Solent estuary, which identifies key local sources such as wastewater treatment plants and the plastics industry as being the dominant inputs.

186 citations


Journal ArticleDOI
TL;DR: Sediment pore waters were sampled from four different sites in the Chukchi-East Siberian Seas area to examine the bulk dissolved organic carbon (DOC) and their optical properties, finding a channel of generally bio-refractory and pre-aged DOM to the oceans.
Abstract: Little is known about the production of fluorescent dissolved organic matter (FDOM) in the anoxic oceanic sediments. In this study, sediment pore waters were sampled from four different sites in the Chukchi-East Siberian Seas area to examine the bulk dissolved organic carbon (DOC) and their optical properties. The production of FDOM, coupled with the increase of nutrients, was observed above the sulfate-methane-transition-zone (SMTZ). The presence of FDOM was concurrent with sulfate reduction and increased alkalinity (R2 > 0.96, p 0.95, p < 0.0001) between the net production of FDOM and the modeled degradation rates of particulate organic carbon sulfate reduction. The production of FDOM was more pronounced in a shallow shelf site S1 with a total net production ranging from 17.9 to 62.3 RU for different FDOM components above the SMTZ depth of ca. 4.1 mbsf, which presumably underwent more accumulation of particulate organic matter than the other three deeper sites. The sediments were generally found to be the sources of CDOM and FDOM to the overlying water column, unearthing a channel of generally bio-refractory and pre-aged DOM to the oceans.

136 citations


Journal ArticleDOI
TL;DR: In this paper, the authors analyzed physical and chemical variables and plankton communities of 40 man-made lakes in warm semiarid northeastern Brazil at the end of the wet and dry seasons.
Abstract: Many arid and semiarid regions are likely to become warmer and drier by the end of this century, due to human-induced climate change. We hypothesize that a reduction in water level caused by droughts will aggravate eutrophication, leading to higher cyanobacteria biomass and dominance in tropical regions. To test this hypothesis, we analyzed physical and chemical variables and plankton communities of 40 man-made lakes in warm semiarid northeastern Brazil at the end of the wet and dry seasons. We also constructed a predictive model of cyanobacteria biovolume in these lakes. The lakes had significantly lower water volume, transparency, and CO2 concentrations but higher water temperature, water column stability, electrical conductivity, pH, suspended solids, ammonium, total nitrogen concentrations, bacteria biomass, phytoplankton biomass, and cyanobacteria biomass and dominance in the dry than in the wet season. Our regression model suggested that cyanobacteria biovolume was positively related to water column stability, pH, and total nitrogen and negatively related to water transparency and concentrations of inorganic suspended solids. These results suggest that the projected warmer and drier climate in the future will reduce water quantity and quality of man-made lakes in the region, increasing the risks of salinization, anoxia, eutrophication, and cyanobacteria blooms.

123 citations


Journal ArticleDOI
TL;DR: Paleoecological records from Lake Tanganyika show that declines in commercially important fishes and endemic molluscs have accompanied lake warming, indicating that climate warming and intensifying stratification have almost certainly reduced potential fishery production, helping to explain ongoing declines in fish catches.
Abstract: Warming climates are rapidly transforming lake ecosystems worldwide, but the breadth of changes in tropical lakes is poorly documented. Sustainable management of freshwater fisheries and biodiversity requires accounting for historical and ongoing stressors such as climate change and harvest intensity. This is problematic in tropical Africa, where records of ecosystem change are limited and local populations rely heavily on lakes for nutrition. Here, using a ∼1,500-y paleoecological record, we show that declines in fishery species and endemic molluscs began well before commercial fishing in Lake Tanganyika, Africa's deepest and oldest lake. Paleoclimate and instrumental records demonstrate sustained warming in this lake during the last ∼150 y, which affects biota by strengthening and shallowing stratification of the water column. Reductions in lake mixing have depressed algal production and shrunk the oxygenated benthic habitat by 38% in our study areas, yielding fish and mollusc declines. Late-20th century fish fossil abundances at two of three sites were lower than at any other time in the last millennium and fell in concert with reduced diatom abundance and warming water. A negative correlation between lake temperature and fish and mollusc fossils over the last ∼500 y indicates that climate warming and intensifying stratification have almost certainly reduced potential fishery production, helping to explain ongoing declines in fish catches. Long-term declines of both benthic and pelagic species underscore the urgency of strategic efforts to sustain Lake Tanganyika's extraordinary biodiversity and ecosystem services.

122 citations


Journal ArticleDOI
TL;DR: A simple statistical model was used to predict occurrence of waterborne pathogens in water and streambed sediments using traditionally measured FIB, environmental parameters and source allocation, using MST markers as predictor variables.

117 citations


Journal ArticleDOI
TL;DR: In this article, the authors present new observational data for Nd isotopes and concentrations from twelve seawater depth profiles, which follow the flow path of North Atlantic Deep Water (NADW) from its formation region in the North Atlantic to the northern equatorial Atlantic.

116 citations


Journal ArticleDOI
TL;DR: Report of intense methane emissions from the near-shore southern region of the North Sea characterized by the presence of extensive areas with gassy sediments suggests that emissions could increase in response to warming of surface waters.
Abstract: Methane is the second most important greenhouse gas contributing to climate warming. The open ocean is a minor source of methane to the atmosphere. We report intense methane emissions from the near-shore southern region of the North Sea characterized by the presence of extensive areas with gassy sediments. The average flux intensities (~130 μmol m−2 d−1) are one order of magnitude higher than values characteristic of continental shelves (~30 μmol m−2 d−1) and three orders of magnitude higher than values characteristic of the open ocean (~0.4 μmol m−2 d−1). The high methane concentrations (up to 1,128 nmol L−1) that sustain these fluxes are related to the shallow and well-mixed water column that allows an efficient transfer of methane from the seafloor to surface waters. This differs from deeper and stratified seep areas where there is a large decrease of methane between bottom and surface by microbial oxidation or physical transport. Shallow well-mixed continental shelves represent about 33% of the total continental shelf area, so that marine coastal methane emissions are probably under-estimated. Near-shore and shallow seep areas are hot spots of methane emission, and our data also suggest that emissions could increase in response to warming of surface waters.

115 citations


Journal ArticleDOI
TL;DR: In this paper, the authors present a synthesis of living planktonic foraminifera abundance data in vertically resolved plankton net hauls taken in the eastern North Atlantic during 12 oceanographic campaigns between 1995 and 2012.
Abstract: . Planktonic foraminifera preserved in marine sediments archive the physical and chemical conditions under which they built their shells. To interpret the paleoceanographic information contained in fossil foraminifera, the recorded proxy signals have to be attributed to the habitat and life cycle characteristics of individual species. Much of our knowledge on habitat depth is based on indirect methods, which reconstruct the depth at which the largest portion of the shell has been calcified. However, habitat depth can be best studied by direct observations in stratified plankton nets. Here we present a synthesis of living planktonic foraminifera abundance data in vertically resolved plankton net hauls taken in the eastern North Atlantic during 12 oceanographic campaigns between 1995 and 2012. Live (cytoplasm-bearing) specimens were counted for each depth interval and the vertical habitat at each station was expressed as average living depth (ALD). This allows us to differentiate species showing an ALD consistently in the upper 100 m (e.g., Globigerinoides ruber white and pink), indicating a shallow habitat; species occurring from the surface to the subsurface (e.g., Globigerina bulloides, Globorotalia inflata, Globorotalia truncatulinoides); and species inhabiting the subsurface (e.g., Globorotalia scitula and Globorotalia hirsuta). For 17 species with variable ALD, we assessed whether their depth habitat at a given station could be predicted by mixed layer (ML) depth, temperature in the ML and chlorophyll a concentration in the ML. The influence of seasonal and lunar cycle on the depth habitat was also tested using periodic regression. In 11 out of the 17 tested species, ALD variation appears to have a predictable component. All of the tested parameters were significant in at least one case, with both seasonal and lunar cyclicity as well as the environmental parameters explaining up to > 50 % of the variance. Thus, G. truncatulinoides, G. hirsuta and G. scitula appear to descend in the water column towards the summer, whereas populations of Trilobatus sacculifer appear to descend in the water column towards the new moon. In all other species, properties of the mixed layer explained more of the observed variance than the periodic models. Chlorophyll a concentration seems least important for ALD, whilst shoaling of the habitat with deepening of the ML is observed most frequently. We observe both shoaling and deepening of species habitat with increasing temperature. Further, we observe that temperature and seawater density at the depth of the ALD were not equally variable among the studied species, and their variability showed no consistent relationship with depth habitat. According to our results, depth habitat of individual species changes in response to different environmental and ontogenetic factors and consequently planktonic foraminifera exhibit not only species-specific mean habitat depths but also species-specific changes in habitat depth.

112 citations


Journal ArticleDOI
TL;DR: The data show a high degree of specialization to micro-environments in the water column and highlight the importance of interdependencies particularly between free-living bacteria in the upper layers of the epipelagic zone.
Abstract: We determined the taxonomic composition of the bacterioplankton of the epipelagic zone of the Atlantic Ocean along a latitudinal transect (51°S – 47°N) using Illumina sequencing of the V5-V6 region of the 16S rRNA gene and inferred co-occurrence networks. Bacterioplankon community composition was distinct for Longhurstian provinces and water depth. Free-living microbial communities (between 0.22-3 µm) were dominated by highly abundant and ubiquitous taxa with streamlined genomes (e.g. SAR11, SAR86, OM1, Prochlorococcus) and could clearly be separated from particle-associated communities which were dominated by Bacteroidetes, Planktomycetes, Verrucomicrobia and Roseobacters. From a total of 369 different communities we then inferred co-occurrence networks for each size fraction and depth layer of the plankton between bacteria and between bacteria and phototrophic micro-eukaryotes. The inferred networks showed a reduction of edges in the deepest layer of the photic zone. Networks comprised of free-living bacteria had a larger amount of connections per OTU when compared to the particle associated communities throughout the water column. Negative correlations accounted for roughly one third of the total edges in the free-living communities at all depths, while they decreased with depth in the particle associated communities where they amounted for roughly 10% of the total in the last part of the epipelagic zone. Co-occurrence networks of bacteria with phototrophic micro-eukaryotes were not taxon-specific, and dominated by mutual exclusion (~60%). The data show a high degree of specialization to micro-environments in the water column and highlight the importance of interdependencies particularly between free-living bacteria in the upper layers of the epipelagic zone.

110 citations


Journal ArticleDOI
TL;DR: In this paper, a unique oceanographic and meteorological data set focus on the deep convection processes is presented, which is essentially based on in situ data (mooring, research vessel, glider, and profiling float) collected from a multiplatform and integrated monitoring system (MOOSE: Mediterranean Ocean Observing System on Environment), which monitored continuously the northwestern Mediterranean Sea since 2007, and in particular high-frequency potential temperature, salinity, and current measurements from the mooring LION located within the convection region.
Abstract: We present here a unique oceanographic and meteorological data set focus on the deep convection processes. Our results are essentially based on in situ data (mooring, research vessel, glider, and profiling float) collected from a multiplatform and integrated monitoring system (MOOSE: Mediterranean Ocean Observing System on Environment), which monitored continuously the northwestern Mediterranean Sea since 2007, and in particular high-frequency potential temperature, salinity, and current measurements from the mooring LION located within the convection region. From 2009 to 2013, the mixed layer depth reaches the seabed, at a depth of 2330m, in February. Then, the violent vertical mixing of the whole water column lasts between 9 and 12 days setting up the characteristics of the newly formed deep water. Each deep convection winter formed a new warmer and saltier “vintage” of deep water. These sudden inputs of salt and heat in the deep ocean are responsible for trends in salinity (3.3 ± 0.2 × 10−3/yr) and potential temperature (3.2 ± 0.5 × 10−3 C/yr) observed from 2009 to 2013 for the 600–2300 m layer. For the first time, the overlapping of the three “phases” of deep convection can be observed, with secondary vertical mixing events (2–4 days) after the beginning of the restratification phase, and the restratification/spreading phase still active at the beginning of the following deep convection event.

106 citations


Journal ArticleDOI
TL;DR: A comprehensive dynamic phosphorus (P) model that integrates hydrodynamic, wind wave and sediment transport is proposed to assess the importance of internal P cycling due to sediment resuspension on water column P levels and demonstrates that internal cycling in the lake is a dominant factor in theLake P and must be considered when trying to manage water quality.

Journal ArticleDOI
TL;DR: Zn and Ni isotope data are presented and it is suggested that a similar, non-quantitative, process, operating in porewaters, explains the Zn data from organic carbon-rich sediments, at least for Zn.
Abstract: Isotopic data collected to date as part of the GEOTRACES and other programmes show that the oceanic dissolved pool is isotopically heavy relative to the inputs for zinc (Zn) and nickel (Ni). All Zn sinks measured until recently, and the only output yet measured for Ni, are isotopically heavier than the dissolved pool. This would require either a non-steady state ocean or other unidentified sinks. Recently, isotopically light Zn has been measured in organic carbon-rich sediments from productive upwelling margins, providing a potential resolution of this issue, at least for Zn. However, the origin of the isotopically light sedimentary Zn signal is uncertain. Cellular uptake of isotopically light Zn followed by transfer to sediment does not appear to be a quantitatively important process. Here, we present Zn and Ni isotope data for the water column and sediments of the Black Sea. These data demonstrate that isotopically light Zn and Ni are extracted from the water column, likely through an equilibrium fractionation between different dissolved species followed by sequestration of light Zn and Ni in sulphide species to particulates and the sediment. We suggest that a similar, non-quanitative, process, operating in porewaters, explains the Zn data from organic carbon-rich sediments.

Journal ArticleDOI
TL;DR: In this article, water and sediment samples were collected from the Changjiang (Yangtze River) estuary and the adjacent East China Sea during impoundment of the river at the Three Gorges Dam.

Journal ArticleDOI
TL;DR: In this article, the presence and enrichment of organic compounds in the sea-surface microlayer (SML) have been suggested to influence air-sea gas exchange processes as well as the emission of primary organic aerosols.
Abstract: . The sea-surface microlayer (SML) is at the uppermost surface of the ocean, linking the hydrosphere with the atmosphere. The presence and enrichment of organic compounds in the SML have been suggested to influence air–sea gas exchange processes as well as the emission of primary organic aerosols. Here, we report on organic matter components collected from an approximately 50 µm thick SML and from the underlying water (ULW), ∼ 20 cm below the SML, in December 2012 during the SOPRAN METEOR 91 cruise to the highly productive, coastal upwelling regime off the coast of Peru. Samples were collected at 37 stations including coastal upwelling sites and off-shore stations with less organic matter and were analyzed for total and dissolved high molecular weight (> 1 kDa) combined carbohydrates (TCCHO, DCCHO), free amino acids (FAA), total and dissolved hydrolyzable amino acids (THAA, DHAA), transparent exopolymer particles (TEP), Coomassie stainable particles (CSPs), total and dissolved organic carbon (TOC, DOC), total and dissolved nitrogen (TN, TDN), as well as bacterial and phytoplankton abundance. Our results showed a close coupling between organic matter concentrations in the water column and in the SML for almost all components except for FAA and DHAA that showed highest enrichment in the SML on average. Accumulation of gel particles (i.e., TEP and CSP) in the SML differed spatially. While CSP abundance in the SML was not related to wind speed, TEP abundance decreased with wind speed, leading to a depletion of TEP in the SML at about 5 m s−1. Our study provides insight to the physical and biological control of organic matter enrichment in the SML, and discusses the potential role of organic matter in the SML for air–sea exchange processes.

Journal ArticleDOI
TL;DR: This study gives a first view on how glacier-fed lake bacterial communities are affected by the melting of glaciers and indicates that diversity and community composition significantly change when hydrological connectivity to the glacier is lost and lakes turn clear.
Abstract: Global climate change is causing a wastage of glaciers and threatening biodiversity in glacier-fed ecosystems. The high turbidity typically found in those ecosystems, which is caused by inorganic particles and result of the erosive activity of glaciers is a key environmental factor influencing temperature and light availability, as well as other factors in the water column. Once these lakes loose hydrological connectivity to glaciers and turn clear, the accompanying environmental changes could represent a potential bottleneck for the established local diversity with yet unknown functional consequences. Here, we study three lakes situated along a turbidity gradient as well as one clear unconnected lake and evaluate seasonal changes in their bacterial community composition and diversity. Further, we assess potential consequences for community functioning. Glacier runoff represented a diverse source community for the lakes and several taxa were able to colonize downstream turbid habitats, although they were not found in the clear lake. Operational taxonomic unit-based alpha diversity and phylogenetic diversity decreased along the turbidity gradient, but metabolic functional diversity was negatively related to turbidity. No evidence for multifunctional redundancy, which may allow communities to maintain functioning upon alterations in diversity, was found. Our study gives a first view on how glacier-fed lake bacterial communities are affected by the melting of glaciers and indicates that diversity and community composition significantly change when hydrological connectivity to the glacier is lost and lakes turn clear.

Journal ArticleDOI
TL;DR: It is shown for the first time that methylmercury can be produced in particles sinking through oxygenated water column of lakes, and the prominent role of biological sulfate-reduction in the process is demonstrated.
Abstract: As the methylation of inorganic mercury to neurotoxic methylmercury has been attributed to the activity of anaerobic bacteria, the formation of methylmercury in the oxic water column of marine ecosystems has puzzled scientists over the past years. Here we show for the first time that methylmercury can be produced in particles sinking through oxygenated water column of lakes. Total mercury and methylmercury concentrations were measured in the settling particles and in surface sediments of the largest freshwater lake in Western Europe (Lake Geneva). While total mercury concentration differences between sediments and settling particles were not significant, methylmercury concentrations were about ten-fold greater in settling particles. Methylmercury demethylation rate constants (kd) were of similar magnitude in both compartments. In contrast, mercury methylation rate constants (km) were one order of magnitude greater in settling particles. The net potential for methylmercury formation, assessed by the ratio ...

Journal ArticleDOI
TL;DR: In this paper, the authors explored the sediment and water in the oxygen minimum zone off Peru and found that the water column featured two distinct redox boundaries separating oxic from nitrate-reducing water and nitrogenous from weakly sulfidic water.

Journal ArticleDOI
Abstract: Climate change can promote harmful cyanobacteria blooms in eutrophic waters through increased droughts or flooding. In this paper, we explore how water-level fluctuations affect the occurrence of cyanobacterial blooms, and based on the observations from case studies, we discuss the options and pitfalls to use water-level fluctuations for lake and reservoir management. A drawdown in summer causes an increase in retention time and increased water column nutrient concentrations and temperature of shallow water layers, which may lead to severe cyanobacterial blooms. This effect can potentially be counteracted by the positive response of submerged macrophytes, which compete for nutrients with cyanobacteria, with a higher chance of cyanobacterial blooms under eutrophic conditions. The balance between dominance by submerged macrophytes or cyanobacteria is temperature sensitive with stronger positive effects of drawdown as inhibition of cyanobacterial blooms expected in colder climates. Complete drying out reduces the amount of cyanobacteria in the water column after refilling, with lower water nutrient concentrations, lower fish biomass, lower abundance of cyanobacteria, higher transparency, and higher cover of submerged plants compared to lakes and reservoirs that did not dry out. Water-level rise as response to flooding has contrasting effects on the abundance of cyanobacteria depending on water quality. We conclude that water-level fluctuation management has potential to mitigate cyanobacterial blooms. However, the success will depend strongly on ecosystem properties, including morphometry, sediment type, water retention time, quality of inlet water, presence of submerged vegetation or propagules, abundance of fish, and climate.

Journal ArticleDOI
TL;DR: In this article, a set of full water column dissolved Ba (DBa) isotope (δ137BaDBa), profiles from the South China Sea and the East China Sea that receives large freshwater inputs from the Changjiang (Yangtze River) were presented.

Journal ArticleDOI
TL;DR: Sedimentation with diatoms accumulated contaminants that were dispersed in the water column and transported them downward, where they were concentrated into the upper centimeters of the seafloor, potentially leading to sustained impact on benthic ecosystems.
Abstract: The 2010 Deepwater Horizon oil spill resulted in 1.6–2.6 × 1010 grams of petrocarbon accumulation on the seafloor. Data from a deep sediment trap, deployed 7.4 km SW of the well between August 2010 and October 2011, disclose that the sinking of spill-associated substances, mediated by marine particles, especially phytoplankton, continued at least 5 mo following the capping of the well. In August/September 2010, an exceptionally large diatom bloom sedimentation event coincided with elevated sinking rates of oil-derived hydrocarbons, black carbon, and two key components of drilling mud, barium and olefins. Barium remained in the water column for months and even entered pelagic food webs. Both saturated and polycyclic aromatic hydrocarbon source indicators corroborate a predominant contribution of crude oil to the sinking hydrocarbons. Cosedimentation with diatoms accumulated contaminants that were dispersed in the water column and transported them downward, where they were concentrated into the upper centimeters of the seafloor, potentially leading to sustained impact on benthic ecosystems.

Journal ArticleDOI
TL;DR: In this article, the authors found up to 40 times more transparent exopolymer particles (TEP), the foundation of any biofilm, in slicks compared to the underlying bulk water at multiple stations in the North Pacific, South China Sea, and Baltic Sea.

Journal ArticleDOI
28 May 2016-Water
TL;DR: In this article, a suite of factors which, from their experience, will determine how a particular shallow lake will respond to a future with global warming, flashier rainfall, prolonged droughts and stronger tropical cyclones are identified.
Abstract: Shallow lakes, particularly those in low-lying areas of the subtropics, are highly vulnerable to changes in climate associated with global warming. Many of these lakes are in tropical cyclone strike zones and they experience high inter-seasonal and inter-annual variation in rainfall and runoff. Both of those factors strongly modulate sediment–water column interactions, which play a critical role in shallow lake nutrient cycling, water column irradiance characteristics and cyanobacterial harmful algal bloom (CyanoHAB) dynamics. We illustrate this with three examples, using long-term (15–25 years) datasets on water quality and plankton from three shallow lakes: Lakes Okeechobee and George (Florida, USA) and Lake Taihu (China). Okeechobee and Taihu have been impacted repeatedly by tropical cyclones that have resulted in large amounts of runoff and sediment resuspension, and resultant increases in dissolved nutrients in the water column. In both cases, when turbidity declined, major blooms of the toxic CyanoHAB Microcystis aeruginosa occurred over large areas of the lakes. In Lake George, periods of high rainfall resulted in high dissolved color, reduced irradiance, and increased water turnover rates which suppress blooms, whereas in dry periods with lower water color and water turnover rates there were dense cyanobacteria blooms. We identify a suite of factors which, from our experience, will determine how a particular shallow lake will respond to a future with global warming, flashier rainfall, prolonged droughts and stronger tropical cyclones.

Journal ArticleDOI
TL;DR: In this paper, a high-frequency monitoring approach was used to develop a comprehensive conceptual model of P, Mn, and Fe dynamics across the sediment water continuum of a shallow bay in Lake Champlain (missisquoi bay, USA).
Abstract: The management of external nutrient inputs to eutrophic systems can be confounded due to a persistent pool of phosphorus (P) in lake sediments. The behaviors of P and trace metals depend largely on the reductive dissolution of amorphous iron (Fe) and manganese (Mn) (oxy)hydroxides in sediments; however, a holistic understanding of these dynamics in relation to the broader ecological and hydrodynamic conditions of the system remains elusive. We used a high-frequency monitoring approach to develop a comprehensive conceptual model of P, Mn, and Fe dynamics across the sediment water continuum of a shallow bay in Lake Champlain (Missisquoi Bay, USA). The greatest release of sediment P, Mn, and Fe occurred under stable hydrodynamic conditions, particularly during the onset of the cyanobacterial bloom and was associated with low available P and the accumulation of soluble Mn and Fe above the sediment–water interface (SWI). During the warmest part of the season, bloom severity and sediment P release was partially regulated by hydrodynamic drivers, which changed on hourly time scales to affect redox conditions at the SWI and bottom water concentrations of soluble P, Mn, and Fe. A geochemically distinct increase in soluble P and Fe concentrations, but not Mn, marked the influence of riverine inputs during a late season storm disturbance. Despite continued depletion of the reactive sediment P and metals pool into the bloom period, declining temperatures and a well-mixed water column resulted in bloom senescence and the return of P, Mn, and Fe to surface sediments. The closed cycling of P and metals in Missisquoi Bay poses a significant challenge for the long-term removal of P from this system. Multiple time-scale measures of physical and biogeochemical changes provide a basis for understanding P and trace metals behavior across sediments and the water column, which shape seasonally variable cyanobacterial blooms in shallow eutrophic systems.

Journal ArticleDOI
TL;DR: Contrary to previous studies, it is demonstrated that fine sediments do not interfere with filtration by mussels and that mussels have a great influence on water purification, providing a valuable ecosystem service.

Journal ArticleDOI
TL;DR: In this article, the impacts of climate change on thermal properties, stability intensity, length of stratification, and deep mixing dynamics of Lake Tahoe using a modified stability index (SI) were analyzed.
Abstract: Using water column temperature records collected since 1968, we analyzed the impacts of climate change on thermal properties, stability intensity, length of stratification, and deep mixing dynamics of Lake Tahoe using a modified stability index (SI). This new SI is easier to produce and is a more informative measure of deep lake stability than commonly used stability indices. The annual average SI increased at 16.62 kg/m 2 /decade although the summer (May-October) average SI increased at a higher rate (25.42 kg/m 2 /decade) during the period 1968-2014. This resulted in the lengthening of the stratification season by approximately 24 d. We simulated the lake thermal structure over a future 100 yr period using a lake hydrodynamic model driven by statistically downscaled outputs of the Geophysical Fluid Dynamics Laboratory Model (GFDL) for two different green house gas emission scenarios (the A2 in which greenhouse-gas emissions increase rapidly throughout the 21 st Century, and the B1 in which emissions slow and then level off by the late 21 st Century). The results suggest a continuation and intensification of the already observed trends. The length of stratification duration and the annual average lake stability are projected to increase by 38 d and 12 d and 30.25 kg/m 2 /decade and 8.66 kg/m 2 /decade, respectively for GFDLA2 and GFDLB1, respectively during 2014-2098. The consequences of this change bear the hallmarks of climate change induced lake warming and possible exacerbation of existing water quality, quantity and ecosystem changes. The developed methodology could be extended and applied to other lakes as a tool to predict changes in stratification and mixing dynamics.

Journal ArticleDOI
TL;DR: In this article, the isotope compositions of surface water and sediments of 8 freshwater lakes in Ontario, Canada have been investigated and the authors concluded that the source of Hg in lake surface water is likely dominated by direct atmospheric precipitation, while the Hg content in lake sediments is primarily derived from watershed inputs of terrestrial particles.

Journal ArticleDOI
TL;DR: High partition coefficients (Kd) of both inorganic and organic P and their significant negative correlation with suspended particulate matter concentrations indicated the particle-reactive nature of P in freshwater environments and may imply that DOP could also be bioavailable under P-limitation.

Journal ArticleDOI
TL;DR: The prevalence of Methylobacter in surficial lake sediments combined with the detection of methanogenic taxa in the deepest sediment horizons analyzed supported the hypothesis that methane cycling occurs beneath the West Antarctic Ice Sheet.
Abstract: Subglacial Lake Whillans (SLW), located beneath ~800 m of ice on the Whillans Ice Stream in West Antarctica was sampled in January of 2013, providing the first opportunity to directly examine water and sediments from an Antarctic subglacial lake. To minimize the introduction of surface contaminants to SLW during its exploration, an access borehole was created using a microbiologically clean hot water drill designed to reduce the number and viability of microorganisms in the drilling water. Analysis of 16S rRNA genes (rDNA) amplified from samples of the drilling and borehole water allowed an evaluation of the efficacy of this approach and enabled a confident assessment of the SLW ecosystem inhabitants. Based on an analysis of 16S rDNA and rRNA (i.e., reverse-transcribed rRNA molecules) data, the SLW community was found to be bacterially dominated and compositionally distinct from the assemblages identified in the drill system. The abundance of bacteria (e.g., Candidatus Nitrotoga, Sideroxydans, Thiobacillus, and Albidiferax) and archaea (Candidatus Nitrosoarcheaum) related to chemolithoautotrophs was consistent with the oxidation of reduced iron, sulfur, and nitrogen compounds having important roles as pathways for primary production in this permanently dark ecosystem. Further, the prevalence of Methylobacter in surficial lake sediments combined with the detection of methanogenic taxa in the deepest sediment horizons analyzed (34-36 cm) provided evidence for methane cycling beneath the West Antarctic Ice Sheet. Large ratios of rRNA to rDNA were observed for several OTUs abundant in the water column and sediments (e.g., Albidiferax, Methylobacter, Candidatus Nitrotoga, Sideroxydans, and Smithella), suggesting a potentially active role for these taxa in the SLW ecosystem. Our findings are consistent with chemosynthetic microorganisms serving as the ecological foundation in this dark subsurface environment, providing new organic matter that sustains a microbial ecosystem beneath the West Antarctic Ice Sheet.

Journal ArticleDOI
TL;DR: In this paper, the first dataset of 236U/238U in the water column of the Arctic Ocean (AO) is presented and shows the widest range of ratios reported so far in the open ocean, from (5±55±5) to (3840±260)×10−12(3840 ±260)

Journal ArticleDOI
TL;DR: In this paper, the authors used membrane-inlet mass spectrometry and microcosm incubations to quantify net N2 and oxygen flux from the sediment and water column of five Midwestern rivers spanning a land use gradient.
Abstract: Riverine biogeochemical processes are understudied relative to headwaters, and reach-scale processes in rivers reflect both the water column and sediment. Denitrification in streams is difficult to measure, and is often assumed to occur only in sediment, but the water column is potentially important in rivers. Dissolved nitrogen (N) gas flux (as dinitrogen (N2)) and open-channel N2 exchange methods avoid many of the artificial conditions and expenses of common denitrification methods like acetylene block and 15N-tracer techniques. We used membrane-inlet mass spectrometry and microcosm incubations to quantify net N2 and oxygen flux from the sediment and water column of five Midwestern rivers spanning a land use gradient. Sediment and water column denitrification ranged from below detection to 1.8 mg N m−2 h−1 and from below detection to 4.9 mg N m−2 h−1, respectively. Water column activity was variable across rivers, accounting for 0–85% of combined microcosm denitrification and 39–85% of combined microcosm respiration. Finally, we estimated reach-scale denitrification at one Midwestern river using a diel, open-channel N2 exchange approach based on reach-scale metabolism methods, providing an integrative estimate of riverine denitrification. Reach-scale denitrification was 8.8 mg N m−2 h−1 (95% credible interval: 7.8–9.7 mg N m−2 h−1), higher than combined sediment and water column microcosm estimates from the same river (4.3 mg N m−2 h−1) and other estimates of reach-scale denitrification from streams. Our denitrification estimates, which span habitats and spatial scales, suggest that rivers can remove N via denitrification at equivalent or higher rates than headwater streams.