scispace - formally typeset
C

Carl S. Kashuk

Researcher at Johns Hopkins University

Publications -  19
Citations -  19982

Carl S. Kashuk is an academic researcher from Johns Hopkins University. The author has contributed to research in topics: Human genome & Population. The author has an hindex of 16, co-authored 19 publications receiving 19212 citations. Previous affiliations of Carl S. Kashuk include Johns Hopkins University School of Medicine & Case Western Reserve University.

Papers
More filters
Journal ArticleDOI

The International HapMap Project

John W. Belmont, +145 more
- 18 Dec 2003 - 
TL;DR: The HapMap will allow the discovery of sequence variants that affect common disease, will facilitate development of diagnostic tools, and will enhance the ability to choose targets for therapeutic intervention.
Journal ArticleDOI

A haplotype map of the human genome

John W. Belmont, +232 more
TL;DR: A public database of common variation in the human genome: more than one million single nucleotide polymorphisms for which accurate and complete genotypes have been obtained in 269 DNA samples from four populations, including ten 500-kilobase regions in which essentially all information about common DNA variation has been extracted.
Journal ArticleDOI

A second generation human haplotype map of over 3.1 million SNPs

Kelly A. Frazer, +237 more
- 18 Oct 2007 - 
TL;DR: The Phase II HapMap is described, which characterizes over 3.1 million human single nucleotide polymorphisms genotyped in 270 individuals from four geographically diverse populations and includes 25–35% of common SNP variation in the populations surveyed, and increased differentiation at non-synonymous, compared to synonymous, SNPs is demonstrated.
Journal ArticleDOI

Genome-wide detection and characterization of positive selection in human populations

Pardis C. Sabeti, +258 more
- 18 Oct 2007 - 
TL;DR: ‘Long-range haplotype’ methods, which were developed to identify alleles segregating in a population that have undergone recent selection, and new methods that are based on cross-population comparisons to discover alleles that have swept to near-fixation within a population are developed.