scispace - formally typeset
Search or ask a question

Showing papers by "Fabian Walter published in 2014"


Journal ArticleDOI
TL;DR: In this article, the scaling relations of molecular gas depletion time scale (tdepl) and gas to stellar mass ratio (Mmolgas/M*) of star forming galaxies (SFGs) near the star formation main-sequence with redshift, specific star formation rate (sSFR) and stellar mass (M*) were investigated.
Abstract: We combine molecular gas masses inferred from CO emission in 500 star forming galaxies (SFGs) between z=0 and 3, from the IRAM-COLDGASS, PHIBSS1/2 and other surveys, with gas masses derived from Herschel far-IR dust measurements in 512 galaxy stacks over the same stellar mass/redshift range. We constrain the scaling relations of molecular gas depletion time scale (tdepl) and gas to stellar mass ratio (Mmolgas/M*) of SFGs near the star formation main-sequence with redshift, specific star formation rate (sSFR) and stellar mass (M*). The CO- and dust-based scaling relations agree remarkably well. This suggests that the CO-H2 mass conversion factor varies little within 0.6dex of the main sequence (sSFR(ms,z,M*)), and less than 0.3dex throughout this redshift range. This study builds on and strengthens the results of earlier work. We find that tdepl scales as (1+z)^-0.3 *(sSFR/sSFR(ms,z,M*))^-0.5, with little dependence on M*. The resulting steep redshift dependence of Mmolgas/M* ~(1+z)^3 mirrors that of the sSFR and probably reflects the gas supply rate. The decreasing gas fractions at high M* are driven by the flattening of the SFR-M* relation. Throughout the redshift range probed a larger sSFR at constant M* is due to a combination of an increasing gas fraction and a decreasing depletion time scale. As a result galaxy integrated samples of the Mmolgas-SFR rate relation exhibit a super-linear slope, which increases with the range of sSFR. With these new relations it is now possible to determine Mmolgas with an accuracy of 0.1dex in relative terms, and 0.2dex including systematic uncertainties.

534 citations


Journal ArticleDOI
TL;DR: In this article, the authors exploit the Atacama Large Millimeter Array (ALMA) 870 mu m observations of sub-millimetre sources in the Extended Chandra Deep Field South (EDF South) to investigate the far-infrared properties of high-redshift sub millimetre galaxies (SMGs).
Abstract: We exploit Atacama Large Millimeter Array (ALMA) 870 mu m observations of sub-millimetre sources in the Extended Chandra Deep Field South to investigate the far-infrared properties of high-redshift sub-millimetre galaxies (SMGs). Using the precisely located 870 mu m ALMA positions of 99 SMGs, together with 24 mu m and radio imaging, we deblend the Herschel/SPIRE imaging to extract their far-infrared fluxes and colours. The median redshifts for ALMA LESS (ALESS) SMGs which are detected in at least two SPIRE bands increases with wavelength of the peak in their spectral energy distributions (SEDs), with z = 2.3 +/- 0.2, 2.5 +/- 0.3 and 3.5 +/- 0.5 for the 250, 350 and 500 mu m peakers, respectively. 34 ALESS SMGs do not have a >3 sigma counterpart at 250, 350 or 500 mu m. These galaxies have a median photometric redshift derived from the rest-frame UV-mid-infrared SEDs of z = 3.3 +/- 0.5, which is higher than the full ALESS SMG sample; z = 2.5 +/- 0.2. We estimate the far-infrared luminosities and characteristic dust temperature of each SMG, deriving L-IR = (3.0 +/- 0.3) x 10(12) L-circle dot (SFR = 300 +/- 30 M-circle dot yr(-1)) and T-d = 32 +/- 1 K. The characteristic dust temperature of these high-redshift SMGs is Delta T-d = 3-5K lower than comparably luminous galaxies at z = 0, reflecting the more extended star formation in these systems. We show that the contribution of S-870 mu m >= 1 mJy SMGs to the cosmic star formation budget is 20 per cent of the total over the redshift range z similar to 1-4. Adopting an appropriate gas-to-dust ratio, we estimate a typical molecular mass of the ALESS SMGs of M-H2 = (4.2 +/- 0.4) x 10(10) M-circle dot. Finally, we show that SMGs with S-870 mu m > 1 mJy (L-IR greater than or similar to 10(12) L-circle dot) contain similar to 10 per cent of the z similar to 2 volume-averaged H-2 mass density.

355 citations


Journal ArticleDOI
TL;DR: In this article, the authors presented the first photometric redshift distribution for a large sample of 870 mu m submillimeter galaxies (SMGs) with robust identifications based on observations with ALMA.
Abstract: We present the first photometric redshift distribution for a large sample of 870 mu m submillimeter galaxies (SMGs) with robust identifications based on observations with ALMA. In our analysis we consider 96 SMGs in the Extended Chandra Deep Field South, 77 of which have 4-19 band photometry. We model the SEDs for these 77 SMGs, deriving a median photometric redshift of z(phot) = 2.3 +/- 0.1. The remaining 19 SMGs have insufficient photometry to derive photometric redshifts, but a stacking analysis of Herschel observations confirms they are not spurious. Assuming that these SMGs have an absolute H-band magnitude distribution comparable to that of a complete sample of z similar to 1-2 SMGs, we demonstrate that they lie at slightly higher redshifts, raising the median redshift for SMGs to zphot = 2.5 +/- 0.2. Critically we show that the proportion of galaxies undergoing an SMG-like phase at z >= 3 is at most 35% +/- 5% of the total population. We derive a median stellar mass of M star = (8 +/- 1) x 10(10) M circle dot, although there are systematic uncertainties of up to 5 x for individual sources. Assuming that the star formation activity in SMGs has a timescale of similar to 100 Myr, we show that their descendants at z similar to 0 would have a space density and MH distribution that are in good agreement with those of local ellipticals. In addition, the inferred mass-weighted ages of the local ellipticals broadly agree with the look-back times of the SMG events. Taken together, these results are consistent with a simple model that identifies SMGs as events that form most of the stars seen in the majority of luminous elliptical galaxies at the present day.

281 citations


Journal ArticleDOI
TL;DR: In this paper, the authors present the analysis of optical and near-infrared spectra of the only four z > 6.5 quasars known to date, discovered in the UKIDSS-LAS and VISTA-VIKING surveys.
Abstract: We present the analysis of optical and near-infrared spectra of the only four z > 6.5 quasars known to date, discovered in the UKIDSS-LAS and VISTA-VIKING surveys. Our data set consists of new Very Large Telescope/X-Shooter and Magellan/FIRE observations. These are the best optical/NIR spectroscopic data that are likely to be obtained for the z > 6.5 sample using current 6-10 m facilities. We estimate the black hole (BH) mass, the Eddington ratio, and the Si IV/C IV, C III]/C IV, and Fe II/Mg II emission-line flux ratios. We perform spectral modeling using a procedure that allows us to derive a probability distribution for the continuum components and to obtain the quasar properties weighted upon the underlying distribution of continuum models. The z > 6.5 quasars show the same emission properties as their counterparts at lower redshifts. The z > 6.5 quasars host BHs with masses of ∼10{sup 9} M{sub ☉} that are accreting close to the Eddington luminosity ((log(L{sub Bol}/L{sub Edd})) = –0.4 ± 0.2), in agreement with what has been observed for a sample of 4.0 < z < 6.5 quasars. By comparing the Si IV/C IV and C III]/C IV flux ratios with the results obtained frommore » luminosity-matched samples at z ∼ 6 and 2 ≤ z ≤ 4.5, we find no evidence of evolution of the line ratios with cosmic time. We compare the measured Fe II/Mg II flux ratios with those obtained for a sample of 4.0 < z < 6.4 sources. The two samples are analyzed using a consistent procedure. There is no evidence that the Fe II/Mg II flux ratio evolves between z = 7 and z = 4. Under the assumption that the Fe II/Mg II traces the Fe/Mg abundance ratio, this implies the presence of major episodes of chemical enrichment in the quasar hosts in the first ∼0.8 Gyr after the Big Bang.« less

233 citations


Journal ArticleDOI
TL;DR: In this article, the authors investigated the relation of [CII] surface brightness and luminosity with SFR and showed that surface brightness relations are better behaved than the luminosity relations because the former is more closely related to the local far-UV field strength, most likely the main parameter controlling the efficiency of the conversion of farUV radiation into gas heating.
Abstract: The [CII] 157.74 $\mu$m transition is the dominant coolant of the neutral interstellar gas, and has great potential as a star formation rate (SFR) tracer. Using the Herschel KINGFISH sample of 46 nearby galaxies, we investigate the relation of [CII] surface brightness and luminosity with SFR. We conclude that [CII] can be used for measurements of SFR on both global and kiloparsec scales in normal star-forming galaxies in the absence of strong active galactic nuclei (AGN). The uncertainty of the $\Sigma_{\rm [CII]}-\Sigma_{\rm SFR}$ calibration is $\pm$0.21 dex. The main source of scatter in the correlation is associated with regions that exhibit warm IR colors, and we provide an adjustment based on IR color that reduces the scatter. We show that the color-adjusted $\Sigma_{\rm[CII]}-\Sigma_{\rm SFR}$ correlation is valid over almost 5 orders of magnitude in $\Sigma_{\rm SFR}$, holding for both normal star-forming galaxies and non-AGN luminous infrared galaxies. Using [CII] luminosity instead of surface brightness to estimate SFR suffers from worse systematics, frequently underpredicting SFR in luminous infrared galaxies even after IR color adjustment (although this depends on the SFR measure employed). We suspect that surface brightness relations are better behaved than the luminosity relations because the former are more closely related to the local far-UV field strength, most likely the main parameter controlling the efficiency of the conversion of far-UV radiation into gas heating. A simple model based on Starburst99 population-synthesis code to connect SFR to [CII] finds that heating efficiencies are $1\%-3\%$ in normal galaxies.

185 citations


Journal ArticleDOI
TL;DR: In this article, the authors presented a candidate selection criteria from the Panoramic Survey Telescope & Rapid Response System 1 and follow-up strategy to discover quasars in the redshift range 5.7 lsim z lsim 6.2.
Abstract: High-redshift quasars are currently the only probes of the growth of supermassive black holes and potential tracers of structure evolution at early cosmic time. Here we present our candidate selection criteria from the Panoramic Survey Telescope & Rapid Response System 1 and follow-up strategy to discover quasars in the redshift range 5.7 lsim z lsim 6.2. With this strategy we discovered eight new 5.7 ≤ z ≤ 6.0 quasars, increasing the number of known quasars at z > 5.7 by more than 10%. We additionally recovered 18 previously known quasars. The eight quasars presented here span a large range of luminosities (–27.3 ≤ M 1450 ≤ –25.4; 19.6 ≤ z P1 ≤ 21.2) and are remarkably heterogeneous in their spectral features: half of them show bright emission lines whereas the other half show a weak or no Lyα emission line (25% with rest-frame equivalent width of the Lyα +N V line lower than 15 A). We find a larger fraction of weak-line emission quasars than in lower redshift studies. This may imply that the weak-line quasar population at the highest redshifts could be more abundant than previously thought. However, larger samples of quasars are needed to increase the statistical significance of this finding.

171 citations


Journal ArticleDOI
TL;DR: In this paper, the authors present FIR [50-300 mu m]-CO luminosity relations (i.e., log L-FIR = alpha log L'(CO) + beta) for the full CO rotational ladder from J = 1-0 up to J = 13-12 for a sample of 62 local (z 10(11) L-circle dot) LIRGs using data from Herschel SPIRE-FTS and ground-based telescopes.
Abstract: We present FIR [50-300 mu m]-CO luminosity relations (i.e., log L-FIR = alpha log L'(CO) + beta) for the full CO rotational ladder from J = 1-0 up to J = 13-12 for a sample of 62 local (z 10(11) L-circle dot) using data from Herschel SPIRE-FTS and ground-based telescopes. We extend our sample to high redshifts (z > 1) by including 35 submillimeter selected dusty star forming galaxies from the literature with robust CO observations, and sufficiently well-sampled FIR/submillimeter spectral energy distributions (SEDs), so that accurate FIR luminosities can be determined. The addition of luminous starbursts at high redshifts enlarge the range of the FIR-CO luminosity relations toward the high-IR-luminosity end, while also significantly increasing the small amount of mid-J/high-J CO line data (J = 5-4 and higher) that was available prior to Herschel. This new data set (both in terms of IR luminosity and J-ladder) reveals linear FIR-CO luminosity relations (i.e., a similar or equal to 1) for J = 1-0 up to J = 5-4, with a nearly constant normalization (beta similar to 2). In the simplest physical scenario, this is expected from the (also) linear FIR-(molecular line) relations recently found for the dense gas tracer lines (HCN and CS), as long as the dense gas mass fraction does not vary strongly within our (merger/starburst)-dominated sample. However, from J = 6-5 and up to the J = 13-12 transition, we find an increasingly sublinear slope and higher normalization constant with increasing J. We argue that these are caused by a warm (similar to 100 K) and dense (>10(4) cm(-3)) gas component whose thermal state is unlikely to be maintained by star-formation-powered far-UV radiation fields (and thus is no longer directly tied to the star formation rate). We suggest that mechanical heating (e.g., supernova-driven turbulence and shocks), and not cosmic rays, is the more likely source of energy for this component. The global CO spectral line energy distributions, which remain highly excited from J = 6-5 up to J = 13-12, are found to be a generic feature of the (U)LIRGs in our sample, and further support the presence of this gas component.

166 citations


Journal ArticleDOI
TL;DR: In this paper, the authors investigated the CO excitation of normal star forming disk galaxies at z = 1.5 using IRAM PdBI observations of the CO[2-1], CO[3-2] and CO[5-4] transitions for 4 galaxies, including VLA observations of CO[1-0] for 3 of them, with the aim of constraining the average state of H2 gas.
Abstract: We investigate the CO excitation of normal star forming disk galaxies at z=1.5 using IRAM PdBI observations of the CO[2-1], CO[3-2] and CO[5-4] transitions for 4 galaxies, including VLA observations of CO[1-0] for 3 of them, with the aim of constraining the average state of H2 gas. Exploiting prior knowledge of the velocity range, spatial extent and size of the CO emission we measure reliable line fluxes with S/N>4-7 for individual transitions. While the average CO Spectral Line Energy Distribution (SLED) has a sub-thermal excitation similar to the Milky Way (MW) up to CO[3-2], we show that the average CO[5-4] emission is four times stronger than assuming MW excitation. This demonstrates the presence of an additional component of more excited, denser and possibly warmer molecular gas. The ratio of CO[5-4] to lower-J CO emission is lower than in local (U)LIRGs and high-redshift SMGs, correlating closely with the average intensity of the radiation field and with the star formation surface density, but not with the SF efficiency (SFE). The CO[5-4] luminosity correlates linearly with LIR over 4 orders of magnitudes, with z=1.5 BzK galaxies following the same trend as local spirals and (U)LIRGs and high redshift star bursting SMGs. The CO[5-4] luminosity is thus empirically related to the dense gas, and might be a more convenient way to probe it than standard high--density tracers that are much fainter than CO. We see excitation variations among our sample galaxies, that can be linked to their evolutionary state and clumpiness in optical rest frame images. In one galaxy we see spatially resolved excitation variations, where the more highly excited part of the galaxy corresponds to the location of massive SF clumps. This supports to models that suggest that giant clumps are the main source of the high excitation CO emission in high redshift disk-like galaxies.

163 citations


Journal ArticleDOI
TL;DR: In this article, spectral energy distributions of 69 QSOs at z > 5, covering a rest frame wavelength range of 0.1 μm to ~80 μm, were presented.
Abstract: We present spectral energy distributions (SEDs) of 69 QSOs at z > 5, covering a rest frame wavelength range of 0.1 μm to ~80 μm, and centered on new Spitzer and Herschel observations. The detection rate of the QSOs with Spitzer is very high (97% at λrest 4 μm), but drops toward the Herschel bands with 30% detected in PACS (rest frame mid-infrared) and 15% additionally in the SPIRE (rest frame far-infrared; FIR). We perform multi-component SED fits for Herschel-detected objects and confirm that to match the observed SEDs, a clumpy torus model needs to be complemented by a hot (~1300 K) component and, in cases with prominent FIR emission, also by a cold (~50 K) component. In the FIR-detected cases the luminosity of the cold component is of the order of 1013 L ☉ which is likely heated by star formation. From the SED fits we also determine that the active galactic nucleus (AGN) dust-to-accretion disk luminosity ratio declines with UV/optical luminosity. Emission from hot (~1300 K) dust is common in our sample, showing that nuclear dust is ubiquitous in luminous QSOs out to redshift 6. However, about 15% of the objects appear under-luminous in the near infrared compared to their optical emission and seem to be deficient in (but not devoid of) hot dust. Within our full sample, the QSOs detected with Herschel are found at the high luminosity end in L UV/opt and L NIR and show low equivalent widths (EWs) in Hα and in Lyα. In the distribution of Hα EWs, as determined from the Spitzer photometry, the high-redshift QSOs show little difference to low-redshift AGN.

158 citations


Journal ArticleDOI
TL;DR: In this article, the authors present FIR-CO luminosity relations for the full CO rotational ladder from J=1-0 to J=13-12 for 62 local (z 1) by including 35 (sub-millimeter selected dusty star forming galaxies from the literature with robust CO observations.
Abstract: We present FIR-CO luminosity relations ($\log L_{\rm FIR} = \alpha \log L'_{\rm CO} + \beta$) for the full CO rotational ladder from J=1-0 to J=13-12 for 62 local (z 1) by including 35 (sub)-millimeter selected dusty star forming galaxies from the literature with robust CO observations. The addition of luminous starbursts at high redshifts enlarge the range of the FIR-CO luminosity relations towards the high-IR-luminosity end while also significantly increasing the small amount of mid-/high-J CO line data available prior to Herschel. This new data-set (both in terms of IR luminosity and J-ladder) reveals linear FIR-CO luminosity relations ($\alpha \sim 1$) for J=1-0 up to J=5-4, with a nearly constant normalisation ($\beta \sim 2$). This is expected from the (also) linear FIR-(molecular line) relations found for the dense gas tracer lines (HCN and CS), as long as the dense gas mass fraction does not vary strongly within our (merger/starburst)-dominated sample. However from J=6-5 and up to J=13-12 we find an increasingly sub-linear slope and higher normalization constant with increasing J. We argue that these are caused by a warm (~100K) and dense ($>10^4{\rm cm^{-3}}$) gas component whose thermal state is unlikely to be maintained by star formation powered far-UV radiation fields (and thus is no longer directly tied to the star formation rate). We suggest that mechanical heating (e.g., supernova driven turbulence and shocks), and not cosmic rays, is the more likely source of energy for this component. The global CO spectral line energy distributions (SLEDs), which remain highly excited from J=6-5 up to J=13-12, are found to be a generic feature of the (U)LIRGs in our sample, and further support the presence of this gas component.

156 citations


Journal ArticleDOI
TL;DR: In this article, high-resolution observations of the 880 μm (rest-frame FIR) continuum emission in the z = 4.05 submillimeter galaxy GN20 from the IRAM Plateau de Bure Interferometer (PdBI) were presented.
Abstract: We present high-resolution observations of the 880 μm (rest-frame FIR) continuum emission in the z = 4.05 submillimeter galaxy GN20 from the IRAM Plateau de Bure Interferometer (PdBI). These data resolve the obscured star formation (SF) in this unlensed galaxy on scales of 0.''3 × 0.''2 (∼2.1 × 1.3 kpc). The observations reveal a bright (16 ± 1 mJy) dusty starburst centered on the cold molecular gas reservoir and showing a bar-like extension along the major axis. The striking anti-correlation with the Hubble Space Telescope/Wide Field Camera 3 imaging suggests that the copious dust surrounding the starburst heavily obscures the rest-frame UV/optical emission. A comparison with 1.2 mm PdBI continuum data reveals no evidence for variations in the dust properties across the source within the uncertainties, consistent with extended SF, and the peak star formation rate surface density (119 ± 8 M {sub ☉} yr{sup –1} kpc{sup –2}) implies that the SF in GN20 remains sub-Eddington on scales down to 3 kpc{sup 2}. We find that the SF efficiency (SFE) is highest in the central regions of GN20, leading to a resolved SF law with a power-law slope of Σ{sub SFR} ∼ Σ{sub H{sub 2}{sup 2.1±1.0}}, and that GN20 lies above the sequence of normal star-forming disks, implying that the dispersion in the SFmore » law is not due solely to morphology or choice of conversion factor. These data extend previous evidence for a fixed SFE per free-fall time to include the star-forming medium on ∼kiloparsec scales in a galaxy 12 Gyr ago.« less

Journal ArticleDOI
TL;DR: In this paper, the Atacama Large Millimeter/submillimeter Array (ALMA) [Cii] observations of the z = 4.7555 submillimetre galaxy, ALESS 73.1.
Abstract: We present spatially resolved Atacama Large Millimeter/submillimeter Array (ALMA) [Cii] observations of the z = 4.7555 submillimetre galaxy, ALESS 73.1. Our 0. �� 5 FWHM map resolves the [Cii] emitting gas which is centred close to the active galactic nucleus (AGN). The gas kinematics are dominated by rotation but with high turbulence, vrot/σint ∼ 3.1, and a Toomre Q parameter <1 throughout the disk. By fitting three independent thin rotating disk models to our data, we derive a total dynamical mass of 3 ± 2 × 10 10 M� . This is close to the molecular gas mass derived from previous CO(2-1) observations, and implies a CO to H2 conversion factor αCO < 2.3 M� (K km s −1 pc 2 ) −1 . The mass budget also constrains the stellar mass to <3.1 × 10 10 M� , and entails a gas fraction of

Journal ArticleDOI
TL;DR: In this article, high-resolution observations of the 880 µm (rest-frame FIR) continuum emission in the z$=$4.05 submillimeter galaxy GN20 from the IRAM Plateau de Bure Interferometer (PdBI) were presented.
Abstract: We present high-resolution observations of the 880 $\mu$m (rest-frame FIR) continuum emission in the z$=$4.05 submillimeter galaxy GN20 from the IRAM Plateau de Bure Interferometer (PdBI). These data resolve the obscured star formation in this unlensed galaxy on scales of 0.3$^{\prime\prime}$$\times$0.2$^{\prime\prime}$ ($\sim$2.1$\times$1.3 kpc). The observations reveal a bright (16$\pm$1 mJy) dusty starburst centered on the cold molecular gas reservoir and showing a bar-like extension along the major axis. The striking anti-correlation with the HST/WFC3 imaging suggests that the copious dust surrounding the starburst heavily obscures the rest-frame UV/optical emission. A comparison with 1.2 mm PdBI continuum data reveals no evidence for variations in the dust properties across the source within the uncertainties, consistent with extended star formation, and the peak star formation rate surface density (119$\pm$8 M$_{\odot}$ yr$^{-1}$ kpc$^{-2}$) implies that the star formation in GN20 remains sub-Eddington on scales down to 3 kpc$^2$. We find that the star formation efficiency is highest in the central regions of GN20, leading to a resolved star formation law with a power law slope of $\Sigma_{\rm SFR}$ $\sim$ $\Sigma_{\rm H_2}^{\rm 2.1\pm1.0}$, and that GN20 lies above the sequence of normal star-forming disks, implying that the dispersion in the star formation law is not due solely to morphology or choice of conversion factor. These data extend previous evidence for a fixed star formation efficiency per free-fall time to include the star-forming medium on $\sim$kpc-scales in a galaxy 12 Gyr ago.

Journal ArticleDOI
TL;DR: In this article, the authors presented ALMA observations of the [C II] line and far-infrared (FIR) continuum of a normally star-forming galaxy in the reionization epoch, the z = 6.96 Lyα emitter (LAE) IOK-1.
Abstract: We present ALMA observations of the [C II] line and far-infrared (FIR) continuum of a normally star-forming galaxy in the reionization epoch, the z = 6.96 Lyα emitter (LAE) IOK-1. Probing to sensitivities of σ{sub line} = 240 μJy beam{sup –1} (40 km s{sup –1} channel) and σ{sub cont} = 21 μJy beam{sup –1}, we found the galaxy undetected in both [C II] and continuum. Comparison of ultraviolet (UV)-FIR spectral energy distribution (SED) of IOK-1, including our ALMA limit, with those of several types of local galaxies (including the effects of the cosmic microwave background, CMB, on the FIR continuum) suggests that IOK-1 is similar to local dwarf/irregular galaxies in SED shape rather than highly dusty/obscured galaxies. Moreover, our 3σ FIR continuum limit, corrected for CMB effects, implies intrinsic dust mass M {sub dust} < 6.4 × 10{sup 7} M {sub ☉}, FIR luminosity L {sub FIR} < 3.7 × 10{sup 10} L {sub ☉} (42.5-122.5 μm), total IR luminosity L {sub IR} < 5.7 × 10{sup 10} L {sub ☉} (8-1000 μm), and dust-obscured star formation rate (SFR) < 10 M {sub ☉} yr{sup –1}, if we assume that IOK-1 has a dust temperature and emissivity index typical ofmore » local dwarf galaxies. This SFR is 2.4 times lower than one estimated from the UV continuum, suggesting that <29% of the star formation is obscured by dust. Meanwhile, our 3σ [C II] flux limit translates into [C II] luminosity, L {sub [C} {sub II]} < 3.4 × 10{sup 7} L {sub ☉}. Locations of IOK-1 and previously observed LAEs on the L {sub [C} {sub II]} versus SFR and L {sub [C} {sub II]}/L {sub FIR} versus L {sub FIR} diagrams imply that LAEs in the reionization epoch have significantly lower gas and dust enrichment than AGN-powered systems and starbursts at similar/lower redshifts, as well as local star-forming galaxies.« less

Journal ArticleDOI
TL;DR: In this paper, the Atacama Large Millimeter/submillimeter Array (ALMA) [CII] observations of the z=4.7555 submillimetre galaxy, ALESS 73.1, were presented.
Abstract: We present spatially resolved Atacama Large Millimeter/submillimeter Array (ALMA) [CII] observations of the z=4.7555 submillimetre galaxy, ALESS 73.1. Our 0.5" FWHM map resolves the [CII] emitting gas which is centred close to the active galactic nucleus (AGN). The gas kinematics are dominated by rotation but with high turbulence, v_rot/sigma_int~3.1, and a Toomre Q parameter ~0.4. The diameter of the dust continuum emission is 80 Gyr^{-1}, especially since there are no clear indications of recent merger activity. Finally, our high signal-to-noise [CII] measurement revises the observed [NII]/[CII] ratio, which suggests a close to solar metallicity, unless the [CII] flux contains significant contributions from HII regions. Our observations suggest that ALESS73.1 is a nascent galaxy undergoing its first major burst of star formation, embedded within an unstable but metal-rich gas disk.

Journal ArticleDOI
TL;DR: In this paper, spectral energy distributions of 69 QSOs at z>5, covering a rest frame wavelength range of 0.1mu to ~80mu, and centered on new Spitzer and Herschel observations are presented.
Abstract: We present spectral energy distributions (SEDs) of 69 QSOs at z>5, covering a rest frame wavelength range of 0.1mu to ~80mu, and centered on new Spitzer and Herschel observations. The detection rate of the QSOs with Spitzer is very high (97% at lambda_rest ~< 4mu), but drops towards the Herschel bands with 30% detected in PACS (rest frame mid-infrared) and 15% additionally in the SPIRE (rest frame far-infrared; FIR). We perform multi-component SED fits for Herschel-detected objects and confirm that to match the observed SEDs, a clumpy torus model needs to be complemented by a hot (~1300K) component and, in cases with prominent FIR emission, also by a cold (~50K) component. In the FIR detected cases the luminosity of the cold component is on the order of 10^13 L_sun which is likely heated by star formation. From the SED fits we also determine that the AGN dust-to-accretion disk luminosity ratio declines with UV/optical luminosity. Emission from hot (~1300K) dust is common in our sample, showing that nuclear dust is ubiquitous in luminous QSOs out to redshift 6. However, about 15% of the objects appear under-luminous in the near infrared compared to their optical emission and seem to be deficient in (but not devoid of) hot dust. Within our full sample, the QSOs detected with Herschel are found at the high luminosity end in L_UV/opt and L_NIR and show low equivalent widths (EWs) in H_alpha and in Ly_alpha. In the distribution of H_alpha EWs, as determined from the Spitzer photometry, the high-redshift QSOs show little difference to low redshift AGN.

Journal ArticleDOI
TL;DR: In this paper, the mass, length, and time scales associated with the nuclear starburst in NGC 253 were derived using ALMA to derive the mass and length of the starburst.
Abstract: We use ALMA to derive the mass, length, and time scales associated with the nuclear starburst in NGC 253. This region forms ~2 M_sun/yr of stars and resembles other starbursts in scaling relations, with star formation consuming the gas reservoir 10 times faster than in galaxy disks. We present observations of CO, the high effective density transitions HCN(1-0), HCO+(1-0), CS(2-1), and their isotopologues. We identify ten clouds that appear as peaks in line emission and enhancements in the HCN-to-CO ratio. These clouds are massive (~10^7 M_sun) structures with sizes (~30 pc) similar to GMCs in other systems. Compared to disk galaxy GMCs, they show high line widths (~20-40 km/s) given their size, with implied Mach numbers ~90. The clouds also show high surface (~6,000 M_sun/pc^2) and volume densities (n_H2~2,000 cm^-3). Given these, self-gravity can explain the line widths. This short free fall time (~0.7 Myr) helps explain the more efficient star formation in NGC 253. We also consider the starburst region as a whole. The geometry is confused by the high inclination, but simple models support a non-axisymmetric, bar-like geometry with a compact, clumpy region of high gas density embedded in an extended CO distribution. Even for the whole region, the surface density still exceeds that of a disk galaxy GMC. The orbital time (~10 Myr), disk free fall time (<~ 3 Myr), and disk crossing time (<~ 3 Myr) are each much shorter than in a normal spiral galaxy disk. Some but not all aspects of the structure correspond to predictions from assuming vertical dynamical equilibrium or a marginally stable rotating disk. Finally, the CO-to-H2 conversion factor implied by our cloud calculations is approximately Galactic, contrasting with results showing a low value for the whole starburst region. The contrast provides resolved support for the idea of mixed molecular ISM phases in starburst galaxies.

Journal ArticleDOI
09 Jan 2014-Nature
TL;DR: Observations of dust emission from I’Zw’18 are reported, from which it is determined its dust mass to be 450–1,800 solar masses, yielding a dust-to-stellar mass ratio of about 10−6 to 10−5 and a Dust-To-gasmass ratio of 3.2–13 × 10−6.
Abstract: Observations of local galaxy I Zw 18 imply that the dust mass in star-forming, metal-poor environments is much lower than expected, and, therefore, that the amount of dust in young galaxies of the early Universe, such as redshift-6.6 galaxy Himiko, is probably a factor of about 100 less than previously thought. 'Normal' galaxies observed at redshifts greater than 6, when the Universe was less than 1 billion years old, have so far shown no evidence of the cold dust that accompanies star formation the local Universe. Himiko (z = 6.6) is typical of such galaxies, estimated to have a low fraction of elements heavier than helium (metallicity), and a dust-to-stellar mass ratio constrained to be less than 0.05%. Its gas mass cannot be determined at this time so to understand the physical conditions under which stars form in these primitive systems it is necessary to study local analogues. One such is I Zw 18, a nearby galaxy with one of the lowest gas-phase heavy-element abundances known. Here David Fisher et al. report new, deep observations from the Herschel Space Observatory that show that I Zw 18 has an extremely low dust mass and dust-to-gas ratio. By applying the dust mass, dust-to-stellar mass ratio and dust-to-gas mass ratio of I Zw 18 to Himiko, the authors calculate that the dust mass for such galaxies is around 50,000 solar masses, roughly 100 times smaller than conventional predictions. If most high-z galaxies are like Himiko, then the prospects for detecting the gas and dust in them are remote. Galaxies observed at redshift z > 6, when the Universe was less than a billion years old, thus far very rarely show evidence1,2,3 of the cold dust that accompanies star formation in the local Universe, where the dust-to-gas mass ratio is around one per cent. A prototypical example is the galaxy Himiko (z = 6.6), which—a mere 840 million years after the Big Bang—is forming stars at a rate of 30–100 solar masses per year, yielding a mass assembly time of about 150 × 106 years. Himiko is thought to have a low fraction (2–3 per cent of the Sun’s) of elements heavier than helium (low metallicity), and although its gas mass cannot yet be determined its dust-to-stellar mass ratio is constrained3 to be less than 0.05 per cent. The local dwarf galaxy I Zwicky 18, which has a metallicity about 4 per cent that of the Sun’s4 and is forming stars less rapidly (assembly time about 1.6 × 109 years) than Himiko but still vigorously for its mass5, is also very dust deficient and is perhaps one of the best analogues of primitive galaxies accessible to detailed study. Here we report observations of dust emission from I Zw 18, from which we determine its dust mass to be 450–1,800 solar masses, yielding a dust-to-stellar mass ratio of about 10−6 to 10−5 and a dust-to-gas mass ratio of 3.2–13 × 10−6. If I Zw 18 is a reasonable analogue of Himiko, then Himiko’s dust mass must be around 50,000 solar masses, a factor of 100 below the current upper limit. These numbers are quite uncertain, but if most high-z galaxies are more like Himiko than like the very-high-dust-mass galaxy SDSS J114816.64 + 525150.3 at z ≈ 6, which hosts a quasar6, then our prospects for detecting the gas and dust inside such galaxies are much poorer than hitherto anticipated.

Journal ArticleDOI
TL;DR: In this article, the authors presented ALMA observations of the [CII] line and far-infrared (FIR) continuum of a normally star-forming galaxy in the reionization epoch, the z=6.96 Ly-alpha emitter (LAE) IOK-1.
Abstract: We present ALMA observations of the [CII] line and far-infrared (FIR) continuum of a normally star-forming galaxy in the reionization epoch, the z=6.96 Ly-alpha emitter (LAE) IOK-1. Probing to sensitivities of sigma_line = 240 micro-Jy/beam (40 km/s channel) and sigma_cont = 21 micro-Jy/beam, we found the galaxy undetected in both [CII] and continuum. Comparison of UV - FIR spectral energy distribution (SED) of IOK-1, including our ALMA limit, with those of several types of local galaxies (including the effects of the cosmic microwave background, CMB, on the FIR continuum) suggests that IOK-1 is similar to local dwarf/irregular galaxies in SED shape rather than highly dusty/obscured galaxies. Moreover, our 3 sigma FIR continuum limit, corrected for CMB effects, implies intrinsic dust mass M_dust < 6.4 x 10^7 M_sun, FIR luminosity L_FIR < 3.7 x 10^{10} L_sun (42.5 - 122.5 micron), total IR luminosity L_IR < 5.7 x 10^{10} L_sun (8 - 1000 micron) and dust-obscured star formation rate (SFR) < 10 M_sun/yr, if we assume that IOK-1 has a dust temperature and emissivity index typical of local dwarf galaxies. This SFR is 2.4 times lower than one estimated from the UV continuum, suggesting that < 29% of the star formation is obscured by dust. Meanwhile, our 3 sigma [CII] flux limit translates into [CII] luminosity, L_[CII] < 3.4 x 10^7 L_sun. Locations of IOK-1 and previously observed LAEs on the L_[CII] vs. SFR and L_[CII]/L_FIR vs. L_FIR diagrams imply that LAEs in the reionization epoch have significantly lower gas and dust enrichment than AGN-powered systems and starbursts at similar/lower redshifts, as well as local star-forming galaxies.

Journal ArticleDOI
TL;DR: The Allsmog Legacy Survey for MOlecular Gas (ALLSMOG) as mentioned in this paper was designed to observe the CO(2-1) emission line with the APEX telescope, in a sample of local galaxies (0.01 < z < 0.03), with stellar masses in the range 8.4 - 0.7 Gyr.
Abstract: We present ALLSMOG, the APEX Low-redshift Legacy Survey for MOlecular Gas. ALLSMOG is a survey designed to observe the CO(2-1) emission line with the APEX telescope, in a sample of local galaxies (0.01 < z < 0.03), with stellar masses in the range 8.5 < log(M*/Msun) < 10. This paper is a data release and initial analysis of the first two semesters of observations, consisting of 42 galaxies observed in CO(2-1). By combining these new CO(2-1) emission line data with archival HI data and SDSS optical spectroscopy, we compile a sample of low-mass galaxies with well defined molecular gas masses, atomic gas masses, and gas-phase metallicities. We explore scaling relations of gas fraction and gas consumption timescale, and test the extent to which our findings are dependent on a varying CO/H2 conversion factor. We find an increase in the H2/HI mass ratio with stellar mass which closely matches semi-analytic predictions. We find a mean molecular gas fraction for ALLSMOG galaxies of MH2/M* = (0.09 - 0.13), which decreases with stellar mass. We measure a mean molecular gas consumption timescale for ALLSMOG galaxies of 0.4 - 0.7 Gyr. We also confirm the non-universality of the molecular gas consumption timescale, which varies (with stellar mass) from ~100 Myr to ~2 Gyr. Importantly, we find that the trends in the H2/HI mass ratio, gas fraction, and the non-universal molecular gas consumption timescale are all robust to a range of recent metallicity-dependent CO/H2 conversion factors.

Journal ArticleDOI
TL;DR: In this paper, the authors presented candidate selection criteria from the Panoramic Survey Telescope & Rapid Response System 1 and follow-up strategy to discover quasars in the redshift range 5.7 by more than 10%.
Abstract: High-redshift quasars are currently the only probes of the growth of supermassive black holes and potential tracers of structure evolution at early cosmic time. Here we present our candidate selection criteria from the Panoramic Survey Telescope & Rapid Response System 1 and follow-up strategy to discover quasars in the redshift range 5.7 5.7 by more than 10%. We additionally recovered 18 previously known quasars. The eight quasars presented here span a large range of luminosities (-27.3 < M_{1450} < -25.4; 19.6 < z_ps1 < 21.2) and are remarkably heterogeneous in their spectral features: half of them show bright emission lines whereas the other half show a weak or no Ly$\alpha$ emission line (25% with rest-frame equivalent width of the Ly$\alpha$ + Nv line lower than 15{\AA}). We find a larger fraction of weak-line emission quasars than in lower redshift studies. This may imply that the weak-line quasar population at the highest redshifts could be more abundant than previously thought. However, larger samples of quasars are needed to increase the statistical significance of this finding.

Journal ArticleDOI
TL;DR: In this paper, the authors measured the dust and gas content of the three sub-millimeter galaxies (SMGs) in the GN20 proto-cluster at z=405 using new IRAM Plateau de Bure interferometer (PdBI) CO(4-3) and 12-33mm continuum observations.
Abstract: We measure the dust and gas content of the three sub-millimeter galaxies (SMGs) in the GN20 proto-cluster at z=405 using new IRAM Plateau de Bure interferometer (PdBI) CO(4-3) and 12-33mm continuum observations All these three SMGs are heavily dust obscured, with UV-based star formation rate (SFR) estimates significantly smaller than the ones derived from the bolometric IR, consistent with the spatial offsets revealed by HST and CO imaging Based also on evaluations of the specific SFR, CO-to-H2 conversion factor and gas depletion timescale, we classify all the three galaxies as starbursts (SBs), although with a lower confidence for GN202b that might be a later stage merging event We place our measurements in the context of the evolutionary properties of main sequence (MS) and SB galaxies ULIRGs have 3-5 times larger L′CO/Mdust and Mdust/M⋆ ratios than z=0 MS galaxies, but by z∼2 the difference appears to be blurred, probably due to differential metallicity evolution SB galaxies appear to slowly evolve in their L′CO/Mdust and Mdust/M⋆ ratios all the way to z>6 (consistent with rapid enrichment of SB events), while MS galaxies rapidly increase in Mdust/M⋆ from z=0 to 2 (due to gas fraction increase, compensated by a decrease of metallicities) While no IR/submm continuum detection is available for indisputably normal massive galaxies at z>25, we show that if metallicity indeed decrease rapidly for these systems at z>3 as claimed in the literature, we should expect a strong decrease of their Mdust/M⋆, consistent with recent PdBI and ALMA upper limits We conclude that the Mdust/M⋆ ratio could be a powerful tool for distinguishing starbursts from normal galaxies at z>4

Journal ArticleDOI
TL;DR: In this article, the authors measured the dust and gas content of the three sub-millimeter galaxies (SMGs) in the GN20 proto-cluster at $z=4.05$ using new IRAM Plateau de Bure interferometer (PdBI) CO(4-3) and 1.2-3.3 mm continuum observations.
Abstract: We measure the dust and gas content of the three sub-millimeter galaxies (SMGs) in the GN20 proto-cluster at $z=4.05$ using new IRAM Plateau de Bure interferometer (PdBI) CO(4-3) and 1.2-3.3 mm continuum observations. All these three SMGs are heavily dust obscured, with UV-based star formation rate (SFR) estimates significantly smaller than the ones derived from the bolometric infrared (IR), consistent with the spatial offsets revealed by HST and CO imaging. Based also on evaluations of the specific SFR, CO-to-H$_2$ conversion factor and gas depletion timescale, we classify all the three galaxies as starbursts (SBs), although with a lower confidence for GN20.2b that might be a later stage merging event. We place our measurements in the context of the evolutionary properties of main sequence (MS) and SB galaxies. ULIRGs have 3-5 times larger $L'_{\rm CO}/M_{\rm dust}$ and $M_{\rm dust}/M_\star$ ratios than $z=0$ MS galaxies, but by $z\sim2$ the difference appears to be blurred, probably due to differential metallicity evolution. SB galaxies appear to slowly evolve in their $L'_{\rm CO}/M_{\rm dust}$ and $M_{\rm dust}/M_\star$ ratios all the way to $z>6$ (consistent with rapid enrichment of SB events), while MS galaxies rapidly increase in $M_{\rm dust}/M_\star$ from $z=0$ to 2 (due to gas fraction increase, compensated by a decrease of metallicities). While no IR/submm continuum detection is available for indisputably normal massive galaxies at $z>2.5$, we show that if metallicity indeed decrease rapidly for these systems at $z>3$ as claimed in the literature, we should expect a strong decrease of their $M_{\rm dust}/M_\star$, consistent with recent PdBI and ALMA upper limits. We conclude that the $M_{\rm dust}/M_\star$ ratio could be a powerful tool for distinguishing starbursts from normal galaxies at $z>4$.

Journal ArticleDOI
TL;DR: In this paper, the authors presented a molecular line scan in the Hubble Deep Field North (HDF-N) that covers the entire 3 mm window (79-115 GHz) using the IRAM Plateau de Bure Interferometer.
Abstract: We present a molecular line scan in the Hubble Deep Field North (HDF-N) that covers the entire 3 mm window (79-115 GHz) using the IRAM Plateau de Bure Interferometer. Our CO redshift coverage spans z ≾ 0.45, 1 ≾ z ≾ 1.9 and all z ≳ 2. We reach a CO detection limit that is deep enough to detect essentially all z > 1 CO lines reported in the literature so far. We have developed and applied different line-searching algorithms, resulting in the discovery of 17 line candidates. We estimate that the rate of false positive line detections is ~2/17. We identify optical/NIR counterparts from the deep ancillary database of the HDF-N for seven of these candidates and investigate their available spectral energy distributions. Two secure CO detections in our scan are identified with star-forming galaxies at z = 1.784 and at z = 2.047. These galaxies have colors consistent with the "BzK" color selection and they show relatively bright CO emission compared with galaxies of similar dust continuum luminosity. We also detect two spectral lines in the submillimeter galaxy HDF 850.1 at z = 5.183. We consider an additional nine line candidates as high quality. Our observations also provide a deep 3 mm continuum map (1σ noise level = 8.6 μJy beam^(–1)). Via a stacking approach, we find that optical/MIR bright galaxies contribute only to <50% of the star formation rate density at 1 < z < 3, unless high dust temperatures are invoked. The present study represents a first, fundamental step toward an unbiased census of molecular gas in "normal" galaxies at high-z, a crucial goal of extragalactic astronomy in the ALMA era.

Journal ArticleDOI
TL;DR: In this article, the CO(J= 1-0) emission line was detected in a sample of four massive star-forming galaxies at z = 1.5-2.
Abstract: We present detections of the CO(J= 1-0) emission line in a sample of four massive star-forming galaxies at z~1.5-2.2 obtained with the Karl G. Jansky Very Large Array (VLA). Combining these observations with previous CO(2-1) and CO(3-2) detections of these galaxies, we study the excitation properties of the molecular gas in our sample sources. We find an average line brightness temperature ratios of R_{21}=0.70+\-0.16 and R_{31}=0.50+\-0.29, based on measurements for three and two galaxies, respectively. These results provide additional support to previous indications of sub-thermal gas excitation for the CO(3-2) line with a typically assumed line ratio R_{31}~0.5. For one of our targets, BzK-21000, we present spatially resolved CO line maps. At the resolution of 0.18'' (1.5 kpc), most of the emission is resolved out except for some clumpy structure. From this, we attempt to identify molecular gas clumps in the data cube, finding 4 possible candidates. We estimate that <40 % of the molecular gas is confined to giant clumps (~1.5 kpc in size), and thus most of the gas could be distributed in small fainter clouds or in fairly diffuse extended regions of lower brightness temperatures than our sensitivity limit.


Journal ArticleDOI
TL;DR: This paper measured quasar variability using the Panoramic Survey Telescope and Rapid Response System 1 Survey (PanSTARRS1 or PS1) and the Sloan Digital Sky Survey (SDSS) and established a method of selecting quasars via their variability in 10{sup 4} deg{sup 2} surveys.
Abstract: We measure quasar variability using the Panoramic Survey Telescope and Rapid Response System 1 Survey (Pan-STARRS1 or PS1) and the Sloan Digital Sky Survey (SDSS) and establish a method of selecting quasars via their variability in 10{sup 4} deg{sup 2} surveys. We use 10{sup 5} spectroscopically confirmed quasars that have been well measured in both PS1 and SDSS and take advantage of the decadal timescales that separate SDSS measurements and PS1 measurements. A power law model fits the data well over the entire time range tested, 0.01-10 yr. Variability in the current PS1-SDSS data set can efficiently distinguish between quasars and nonvarying objects. It improves the purity of a griz quasar color cut from 4.1% to 48% while maintaining 67% completeness. Variability will be very effective at finding quasars in data sets with no u band and in redshift ranges where exclusively photometric selection is not efficient. We show that quasars' rest-frame ensemble variability, measured as a root mean squared in Δ magnitudes, is consistent with V(z, L, t) = A {sub 0}(1 + z){sup 0.37}(L/L {sub 0}){sup –0.16}(t/1 yr){sup 0.246}, where L {sub 0} = 10{sup 46} erg s{sup –1} and A {sub 0} = 0.190, 0.162, 0.147, ormore » 0.141 in the g {sub P1}, r {sub P1}, i {sub P1}, or z {sub P1}filter, respectively. We also fit across all four filters and obtain median variability as a function of z, L, and λ as V(z, L, λ, t) = 0.079(1 + z){sup 0.15}(L/L {sub 0}){sup –0.2}(λ/1000 nm){sup –0.44}(t/1 yr){sup 0.246}.« less

Journal ArticleDOI
TL;DR: In this article, the IRAM interferometer of the redshifted C+ 158 μ m line and the 0.98mm dust continuum of HDF850.1 at z ǫ = 5.185 showed the source to have a blue-hifted northern component and a red-shifted southern component, with a projected separation of 0.3′′ or 2 kpc.
Abstract: New high-resolution maps with the IRAM interferometer of the redshifted C+ 158 μ m line and the 0.98mm dust continuum of HDF850.1 at z = 5.185 show the source to have a blueshifted northern component and a redshifted southern component, with a projected separation of 0.3′′, or 2 kpc. We interpret these components as primordial galaxies that are merging to form a larger galaxy. We think it is the resulting merger-driven starburst that makes HDF850.1 an ultraluminous infrared galaxy, with L IR ~ 1013 L ⊙ . The observed line and continuum brightness temperatures and the constant line-to-continuum ratio across the source imply (1) high C+ line optical depth, (2) a C+ excitation temperature of the same order as the dust temperature, and (3) dust continuum emission that is nearly optically thick at 158 μ m. These conclusions for HDF850.1 probably also apply to other high-redshift submillimeter galaxies and quasar hosts in which the C+ 158 μ m line has been detected, as indicated by their roughly constant C+ -to-158 μ m continuum ratios, in sharp contrast to the large dispersion in their C+ -to-FIR luminosity ratios. In brightness temperature units, the C+ line luminosity is about the same as the predicted CO(1–0) luminosity, implying that the C+ line can also be used to estimate the molecular gas mass, with the same assumptions as for CO.

Journal ArticleDOI
TL;DR: In this article, the properties of the interstellar medium in the interacting system BR1202-0725 at z = 4.7 via its [N II] and [C II] fine-structure line emission were studied.
Abstract: We study the properties of the interstellar medium in the interacting system BR1202-0725 at z = 4.7 via its [N II] and [C II] fine-structure line emission. This system consists of a QSO, a sub-mm galaxy (SMG), and two Lyα emitters (LAEs). Such a diversity in galaxy properties makes BR1202-0725 a unique laboratory of star formation and galaxy evolution at high redshift. We present ionized nitrogen ([N II] 205 μm) observations of this system, obtained with the IRAM Plateau de Bure Interferometer. We find no [N II] emission at the quasar location, but tentative [N II] line detections associated with the SMG and one of the LAEs. Together with available ionized carbon ([C II] 158 μm) Atacama Large Millimeter Array observations of this system, we find the following: the [C II]/[N II] luminosity ratio is >5.5 for the QSO and the SMG, but it is as low as ~2 in the LAE, suggesting that, in this source, most of the [C II] emission is associated with the ionized medium (H II regions) rather than the neutral one (photon-dominated regions). This study demonstrates the importance of combined studies of multiple fine-structure lines in order to pin down the physical properties of the interstellar medium in distant galaxies.

Journal ArticleDOI
TL;DR: In this article, the radio properties of 870 μm-selected submillimetre galaxies (SMGs), observed at high resolution with Atacama Large Millimeter Array (ALMA) in the Extended Chandra Deep Field South.
Abstract: We present a study of the radio properties of 870 μm-selected submillimetre galaxies (SMGs), observed at high resolution with Atacama Large Millimeter Array (ALMA) in the Extended Chandra Deep Field South. From our initial sample of 76 ALMA SMGs, we detect 52 SMGs at >3σ significance in Karl G. Jansky Very Large Array 1400 MHz imaging, of which 35 are also detected at >3σ in new 610 MHz Giant Metre-Wave Radio Telescope imaging. Within this sample of radio-detected SMGs, we measure a median radio spectral index α^(1400)_(610)=−0.79±0.06, (with inter-quartile range α = [−1.16, −0.56]) and investigate the far-infrared/radio correlation via the parameter qIR, the logarithmic ratio of the rest-frame 8–1000 μm flux and monochromatic radio flux. Our median qIR = 2.56 ± 0.05 (inter-quartile range qIR = [2.42, 2.78]) is higher than that typically seen in single-dish 870 μm-selected sources (qIR ∼ 2.4), which may reflect the fact that our ALMA-based study is not biased to radio-bright counterparts, as previous samples were. Finally, we search for evidence that qIR and α evolve with age in a codependent manner, as predicted by starburst models: the data populate the predicted region of parameter space, with the stellar mass tending to increase along tracks of qIR versus α in the direction expected, providing the first observational evidence in support of these models.