scispace - formally typeset
Search or ask a question

Showing papers by "Grant R. Tremblay published in 2018"


Journal ArticleDOI
Adrian M. Price-Whelan1, B. M. Sipőcz1, Hans Moritz Günther1, P. L. Lim1, Steven M. Crawford1, S. Conseil1, D. L. Shupe1, M. W. Craig1, N. Dencheva1, Adam Ginsburg1, Jacob T VanderPlas1, Larry Bradley1, David Pérez-Suárez1, M. de Val-Borro1, T. L. Aldcroft1, Kelle L. Cruz1, Thomas P. Robitaille1, E. J. Tollerud1, C. Ardelean1, Tomáš Babej1, Y. P. Bach1, Matteo Bachetti1, A. V. Bakanov1, Steven P. Bamford1, Geert Barentsen1, Pauline Barmby1, Andreas Baumbach1, Katherine Berry1, F. Biscani1, Médéric Boquien1, K. A. Bostroem1, L. G. Bouma1, G. B. Brammer1, E. M. Bray1, H. Breytenbach1, H. Buddelmeijer1, D. J. Burke1, G. Calderone1, J. L. Cano Rodríguez1, Mihai Cara1, José Vinícius de Miranda Cardoso1, S. Cheedella1, Y. Copin1, Lia Corrales1, Devin Crichton1, D. DÁvella1, Christoph Deil1, É. Depagne1, J. P. Dietrich1, Axel Donath1, M. Droettboom1, Nicholas Earl1, T. Erben1, Sebastien Fabbro1, Leonardo Ferreira1, T. Finethy1, R. T. Fox1, Lehman H. Garrison1, S. L. J. Gibbons1, Daniel A. Goldstein1, Ralf Gommers1, Johnny P. Greco1, P. Greenfield1, A. M. Groener1, Frédéric Grollier1, A. Hagen1, P. Hirst1, Derek Homeier1, Anthony Horton1, Griffin Hosseinzadeh1, L. Hu1, J. S. Hunkeler1, Ž. Ivezić1, A. Jain1, T. Jenness1, G. Kanarek1, Sarah Kendrew1, Nicholas S. Kern1, Wolfgang Kerzendorf1, A. Khvalko1, J. King1, D. Kirkby1, A. M. Kulkarni1, Ashok Kumar1, Antony Lee1, D. Lenz1, S. P. Littlefair1, Zhiyuan Ma1, D. M. Macleod1, M. Mastropietro1, C. McCully1, S. Montagnac1, Brett M. Morris1, M. Mueller1, Stuart Mumford1, D. Muna1, Nicholas A. Murphy1, Stefan Nelson1, G. H. Nguyen1, Joe Philip Ninan1, M. Nöthe1, S. Ogaz1, Seog Oh1, J. K. Parejko1, N. R. Parley1, Sergio Pascual1, R. Patil1, A. A. Patil1, A. L. Plunkett1, Jason X. Prochaska1, T. Rastogi1, V. Reddy Janga1, J. Sabater1, Parikshit Sakurikar1, Michael Seifert1, L. E. Sherbert1, H. Sherwood-Taylor1, A. Y. Shih1, J. Sick1, M. T. Silbiger1, Sudheesh Singanamalla1, Leo Singer1, P. H. Sladen1, K. A. Sooley1, S. Sornarajah1, Ole Streicher1, P. Teuben1, Scott Thomas1, Grant R. Tremblay1, J. Turner1, V. Terrón1, M. H. van Kerkwijk1, A. de la Vega1, Laura L. Watkins1, B. A. Weaver1, J. Whitmore1, Julien Woillez1, Victor Zabalza1, Astropy Contributors1 
TL;DR: The Astropy project as discussed by the authors is a Python project supporting the development of open-source and openly developed Python packages that provide commonly needed functionality to the astronomical community, including the core package astropy.
Abstract: The Astropy Project supports and fosters the development of open-source and openly developed Python packages that provide commonly needed functionality to the astronomical community. A key element of the Astropy Project is the core package astropy, which serves as the foundation for more specialized projects and packages. In this article, we provide an overview of the organization of the Astropy project and summarize key features in the core package, as of the recent major release, version 2.0. We then describe the project infrastructure designed to facilitate and support development for a broader ecosystem of interoperable packages. We conclude with a future outlook of planned new features and directions for the broader Astropy Project.

4,044 citations


Journal ArticleDOI
Adrian M. Price-Whelan, Brigitta Sipőcz, Hans Moritz Günther, P. L. Lim, Steven M. Crawford, Simon Conseil, David L. Shupe, Matt Craig, N. Dencheva, Adam Ginsburg, Jacob T VanderPlas, Larry Bradley, David Pérez-Suárez, M. de Val-Borro, T. L. Aldcroft, Kelle L. Cruz, Thomas P. Robitaille, Erik J. Tollerud, C. Ardelean, Tomáš Babej, Matteo Bachetti, A. V. Bakanov, Steven P. Bamford, Geert Barentsen, Pauline Barmby, Andreas Baumbach, Katherine Berry, F. Biscani, Médéric Boquien, K. A. Bostroem, L. G. Bouma, G. B. Brammer, Erik Bray, H. Breytenbach, H. Buddelmeijer, Douglas Burke, G. Calderone, J. L. Cano Rodríguez, Mihai Cara, José Vinícius de Miranda Cardoso, S. Cheedella, Y. Copin, Devin Crichton, D. DÁvella, Christoph Deil, Éric Depagne, J. P. Dietrich, Axel Donath, Michael Droettboom, Nicholas Earl, T. Erben, Sebastien Fabbro, Leonardo Ferreira, T. Finethy, R. T. Fox, Lehman H. Garrison, S. L. J. Gibbons, Daniel A. Goldstein, Ralf Gommers, Johnny P. Greco, Perry Greenfield, A. M. Groener, Frédéric Grollier, Alex Hagen, Paul Hirst, Derek Homeier, Anthony Horton, Griffin Hosseinzadeh, L. Hu, J. S. Hunkeler, Željko Ivezić, A. Jain, Tim Jenness, G. Kanarek, Sarah Kendrew, Nicholas S. Kern, Wolfgang Kerzendorf, A. Khvalko, J. King, D. Kirkby, A. M. Kulkarni, Ashok Kumar, Antony Lee, D. Lenz, S. P. Littlefair, Zhiyuan Ma, D. M. Macleod, M. Mastropietro, C. McCully, S. Montagnac, Brett M. Morris, Michael Mueller, Stuart Mumford, Demitri Muna, Nicholas A. Murphy, Stefan Nelson, G. H. Nguyen, Joe Philip Ninan, M. Nöthe, S. Ogaz, Seog Oh, John K. Parejko, N. R. Parley, Sergio Pascual, R. Patil, A. A. Patil, A. L. Plunkett, Jason X. Prochaska, T. Rastogi, V. Reddy Janga, Josep Sabater, Parikshit Sakurikar, Michael Seifert, L. E. Sherbert, H. Sherwood-Taylor, A. Y. Shih, J. Sick, M. T. Silbiger, Sudheesh Singanamalla, Leo Singer, P. H. Sladen, K. A. Sooley, S. Sornarajah, Ole Streicher, Peter Teuben, Scott Thomas, Grant R. Tremblay, J. Turner, V. Terrón, M. H. van Kerkwijk, A. de la Vega, Laura L. Watkins, B. A. Weaver, J. Whitmore, Julien Woillez, Victor Zabalza 
TL;DR: The Astropy project as discussed by the authors is an open-source and openly developed Python packages that provide commonly-needed functionality to the astronomical community, including the core package Astropy, which serves as the foundation for more specialized projects and packages.
Abstract: The Astropy project supports and fosters the development of open-source and openly-developed Python packages that provide commonly-needed functionality to the astronomical community. A key element of the Astropy project is the core package Astropy, which serves as the foundation for more specialized projects and packages. In this article, we provide an overview of the organization of the Astropy project and summarize key features in the core package as of the recent major release, version 2.0. We then describe the project infrastructure designed to facilitate and support development for a broader ecosystem of inter-operable packages. We conclude with a future outlook of planned new features and directions for the broader Astropy project.

2,286 citations


Journal ArticleDOI
TL;DR: In this paper, the authors propose a novel method to constrain turbulence and bulk motions in massive galaxies, galaxy groups, and clusters, exploring both simulations and observations, and show that all phases are tightly linked in terms of the ensemble (wide-aperture) velocity dispersion along the line of sight.
Abstract: We propose a novel method to constrain turbulence and bulk motions in massive galaxies, galaxy groups, and clusters, exploring both simulations and observations. As emerged in the recent picture of top-down multiphase condensation, hot gaseous halos are tightly linked to all other phases in terms of cospatiality and thermodynamics. While hot halos (~107 K) are perturbed by subsonic turbulence, warm (~104 K) ionized and neutral filaments condense out of the turbulent eddies. The peaks condense into cold molecular clouds (<100 K) raining in the core via chaotic cold accretion (CCA). We show that all phases are tightly linked in terms of the ensemble (wide-aperture) velocity dispersion along the line of sight. The correlation arises in complementary long-term AGN feedback simulations and high-resolution CCA runs, and is corroborated by the combined Hitomi and new Integral Field Unit measurements in the Perseus cluster. The ensemble multiphase gas distributions (from the UV to the radio band) are characterized by substantial spectral line broadening (σ v,los ≈ 100–200 $\mathrm{km}\,{{\rm{s}}}^{-1}$) with a mild line shift. On the other hand, pencil-beam detections (as H i absorption against the AGN backlight) sample the small-scale clouds displaying smaller broadening and significant line shifts of up to several 100 $\mathrm{km}\,{{\rm{s}}}^{-1}$ (for those falling toward the AGN), with increased scatter due to the turbulence intermittency. We present new ensemble σ v,los of the warm Hα+[N ii] gas in 72 observed cluster/group cores: the constraints are consistent with the simulations and can be used as robust proxies for the turbulent velocities, in particular for the challenging hot plasma (otherwise requiring extremely long X-ray exposures). Finally, we show that the physically motivated criterion C ≡ t cool/t eddy ≈ 1 best traces the condensation extent region and the presence of multiphase gas in observed clusters and groups. The ensemble method can be applied to many available spectroscopic data sets and can substantially advance our understanding of multiphase halos in light of the next-generation multiwavelength missions.

145 citations


Journal ArticleDOI
TL;DR: In this article, the authors present ALMA and MUSE observations of the Brightest Cluster Galaxy in Abell 2597, a nearby (z = 0:0821) cool core cluster of galaxies.
Abstract: We present ALMA and MUSE observations of the Brightest Cluster Galaxy in Abell 2597, a nearby (z = 0:0821) cool core cluster of galaxies. The data map the kinematics of a three billion solar mass filamentary nebula that spans the innermost 30 kpc of the galaxy’s core. Its warm ionized and cold molecular components are both cospatial and comoving, consistent with the hypothesis that the optical nebula traces the warm envelopes of many cold molecular clouds that drift in the velocity field of the hot X-ray atmosphere. The clouds are not in dynamical equilibrium, and instead show evidence for inflow toward the central supermassive black hole, outflow along the jets it launches, and uplift by the buoyant hot bubbles those jets inflate. The entire scenario is therefore consistent with a galaxy-spanning “fountain”, wherein cold gas clouds drain into the black hole accretion reservoir, powering jets and bubbles that uplift a cooling plume of low-entropy multiphase gas, which may stimulate additional cooling and accretion as part of a self-regulating feedback loop. All velocities are below the escape speed from the galaxy, and so these clouds should rain back toward the galaxy center from which they came, keeping the fountain long-lived. The data are consistent with major predictions of chaotic cold accretion, precipitation, and stimulated feedback models, and may trace processes fundamental to galaxy evolution at effectively all mass scales

96 citations


Journal ArticleDOI
TL;DR: In this paper, a study of 107 galaxies, groups, and clusters spanning 3 orders of magnitude in mass and 5 orders of order in the central galaxy star formation rate (SFR), is presented.
Abstract: We present a study of 107 galaxies, groups, and clusters spanning ~3 orders of magnitude in mass, ~5 orders of magnitude in central galaxy star formation rate (SFR), ~4 orders of magnitude in the classical cooling rate (dM/dt) of the intracluster medium (ICM), and ~5 orders of magnitude in the central black hole accretion rate. For each system in this sample, we measure dM/dt using archival Chandra X-ray data and acquire the SFR and systematic uncertainty in the SFR by combining over 330 estimates from dozens of literature sources. With these data, we estimate the efficiency with which the ICM cools and forms stars, finding e_cool = SFR/(dM/dt) = 1.4 +/- 0.4% for systems with dM/dt > 30 Msun/yr. For these systems, we measure a slope in the SFR-dM/dt relation greater than unity, suggesting that the systems with the strongest cool cores are also cooling more efficiently. We propose that this may be related to, on average, higher black hole accretion rates in the strongest cool cores, which could influence the total amount (saturating near the Eddington rate) and dominant mode (mechanical vs radiative) of feedback. For systems with dM/dt < 30 Msun/yr, we find that the SFR and dM/dt are uncorrelated, and show that this is consistent with star formation being fueled at a low (but dominant) level by recycled ISM gas in these systems. We find an intrinsic log-normal scatter in SFR at fixed dM/dt of 0.52 +/- 0.06 dex, suggesting that cooling is tightly self-regulated over very long timescales, but can vary dramatically on short timescales. There is weak evidence that this scatter may be related to the feedback mechanism, with the scatter being minimized (~0.4 dex) in systems for which the mechanical feedback power is within a factor of two of the cooling luminosity.

79 citations


Journal ArticleDOI
TL;DR: In this article, a study of 107 galaxies, groups, and clusters spanning 3 orders of magnitude in mass and 5 orders of order in the central galaxy star formation rate (SFR), is presented.
Abstract: We present a study of 107 galaxies, groups, and clusters spanning ~3 orders of magnitude in mass, ~5 orders of magnitude in central galaxy star formation rate (SFR), ~4 orders of magnitude in the classical cooling rate (dM/dt) of the intracluster medium (ICM), and ~5 orders of magnitude in the central black hole accretion rate. For each system in this sample, we measure dM/dt using archival Chandra X-ray data and acquire the SFR and systematic uncertainty in the SFR by combining over 330 estimates from dozens of literature sources. With these data, we estimate the efficiency with which the ICM cools and forms stars, finding e_cool = SFR/(dM/dt) = 1.4 +/- 0.4% for systems with dM/dt > 30 Msun/yr. For these systems, we measure a slope in the SFR-dM/dt relation greater than unity, suggesting that the systems with the strongest cool cores are also cooling more efficiently. We propose that this may be related to, on average, higher black hole accretion rates in the strongest cool cores, which could influence the total amount (saturating near the Eddington rate) and dominant mode (mechanical vs radiative) of feedback. For systems with dM/dt < 30 Msun/yr, we find that the SFR and dM/dt are uncorrelated, and show that this is consistent with star formation being fueled at a low (but dominant) level by recycled ISM gas in these systems. We find an intrinsic log-normal scatter in SFR at fixed dM/dt of 0.52 +/- 0.06 dex, suggesting that cooling is tightly self-regulated over very long timescales, but can vary dramatically on short timescales. There is weak evidence that this scatter may be related to the feedback mechanism, with the scatter being minimized (~0.4 dex) in systems for which the mechanical feedback power is within a factor of two of the cooling luminosity.

63 citations


Journal ArticleDOI
TL;DR: In this article, the authors present ALMA and MUSE observations of the Brightest Cluster Galaxy in Abell 2597, a nearby (z=0.0821) cool core cluster of galaxies.
Abstract: We present ALMA and MUSE observations of the Brightest Cluster Galaxy in Abell 2597, a nearby (z=0.0821) cool core cluster of galaxies. The data map the kinematics of a three billion solar mass filamentary nebula that spans the innermost 30 kpc of the galaxy's core. Its warm ionized and cold molecular components are both cospatial and comoving, consistent with the hypothesis that the optical nebula traces the warm envelopes of many cold molecular clouds that drift in the velocity field of the hot X-ray atmosphere. The clouds are not in dynamical equilibrium, and instead show evidence for inflow toward the central supermassive black hole, outflow along the jets it launches, and uplift by the buoyant hot bubbles those jets inflate. The entire scenario is therefore consistent with a galaxy-spanning "fountain", wherein cold gas clouds drain into the black hole accretion reservoir, powering jets and bubbles that uplift a cooling plume of low-entropy multiphase gas, which may stimulate additional cooling and accretion as part of a self-regulating feedback loop. All velocities are below the escape speed from the galaxy, and so these clouds should rain back toward the galaxy center from which they came, keeping the fountain long-lived. The data are consistent with major predictions of chaotic cold accretion, precipitation, and stimulated feedback models, and may trace processes fundamental to galaxy evolution at effectively all mass scales.

57 citations



Journal ArticleDOI
TL;DR: In this paper, the authors presented an analysis of newly acquired X-ray observations of 16 extragalactic radio sources, listed in the Third Cambridge Revised (3CR) catalog, and not previously observed by Chandra.
Abstract: The aim of this paper is to present an analysis of newly acquired X-ray observations of 16 extragalactic radio sources, listed in the Third Cambridge Revised (3CR) catalog, and not previously observed by Chandra. Observations were performed during Chandra Cycle 17, extending X-ray coverage for the 3CR extragalactic catalog up to $z$=1.5. Among the 16 targets, two lie at $z<$0.5 (i.e., 3CR27, at $z$=0.184 and 3CR69, at $z$=0.458), all the remaining 14 have redshifts between 1.0 and 1.5. In the current sample there are three compact steep spectrum (CSS) sources, three quasars and an FRI radio galaxy, while the other nine are FRII radio galaxies. All radio sources have an X-ray counterpart. We measured nuclear X-ray fluxes as well as X-ray emission associated with radio jet knots, hotspots or lobes in three energy bands: soft (0.5-1 keV), medium (1-2 keV) and hard (2-7 keV). We also performed standard X-ray spectral analysis for the four brightest nuclei. We discovered X-ray emission associated with: the radio lobe of 3CR124; a hotspot of the quasar 3CR220.2; another hotspot of the radio galaxy 3CR238; and the jet knot of 3CR297. We also detected extended X-ray emission around the nuclear region of 3CR124 and 3CR297 on scales of several tens of kpc. Finally, we present an update on the X-ray observations performed with Chandra and XMM-Newton on the entire 3CR extragalactic catalog.

36 citations


Journal ArticleDOI
TL;DR: In this article, the analysis of Chandra X-ray snapshot observations of a subsample of the extragalactic sources listed in the revised Third Cambridge radio catalog (3CR) was presented.
Abstract: This paper presents the analysis of Chandra X-ray snapshot observations of a subsample of the extragalactic sources listed in the revised Third Cambridge radio catalog (3CR), previously lacking X-ray observations and thus observed during Chandra Cycle 15. This data set extends the current Chandra coverage of the 3CR extragalactic catalog up to redshift $z$=1.0. Our sample includes 22 sources consisting of one compact steep spectrum (CSS) source, three quasars (QSOs), and 18 FR\,II radio galaxies. As in our previous analyses, here we report the X-ray detections of radio cores and extended structures (i.e., knots, hotspots and lobes) for all sources in the selected sample. We measured their X-ray intensities in three energy ranges: soft (0.5--1 keV), medium (1--2 keV) and hard (2-7 keV) and we also performed standard X-ray spectral analysis for brighter nuclei. All radio nuclei in our sample have an X-ray counterpart. We also discovered X-ray emission associated with the eastern knot of 3CR\,154, with radio hotspots in 3CR\,41, 3CR\,54 and 3CR\,225B and with the southern lobe of 3CR\,107. Extended X-ray radiation around the nuclei 3CR\,293.1 and 3CR\,323 on a scale of few tens kpc was also found. X-ray extended emission, potentially arising from the hot gas in the intergalactic medium and/or due to the high energy counterpart of lobes, is detected for 3CR\,93, 3CR\,154, 3CR\,292 and 3CR\, 323 over a few hundreds kpc-scale. Finally, this work also presents an update on the state-of-the-art of Chandra and XMM-Newton observations for the entire 3CR sample.

34 citations


Journal ArticleDOI
TL;DR: In this article, the Atacama Large Millimeter Array (ALMA) observations were used to detect CO (2-1) line emission with a total flux of (5.5 +/- 0.6) x 10(-18) erg s(-1) cm(-2).
Abstract: We present the results from Atacama Large Millimeter Array (ALMA) observations centred 40 arcsec (3 kpc in projection) south-east of the nucleus of M87. We report the detection of extended CO (2-1) line emission with a total flux of (5.5 +/- 0.6) x 10(-18) erg s(-1) cm(-2) and corresponding molecular gas mass M-H2 (4.7 +/- 0.4) x 10(5) M-circle dot, assuming a Galactic CO to H-2 conversion factor. ALMA data indicate a line-of-sight velocity of -129 +/- 3 km s(-1), in good agreement with measurements based on the [C-II] and H alpha+[N-II] lines, and a velocity dispersion of sigma = 27 +/- 3 km s(-1). The CO (2-1) emission originates only outside the radio lobe of the active galactic nucleus (AGN) seen in the 6 cm Very Large Array image, while the filament prolongs further inwards at other wavelengths. The molecular gas in M87 appears to be destroyed or excited by AGN activity, either by direct interaction with the radio plasma, or by the shock driven by the lobe into the X-ray emitting atmosphere. This is an important piece of the puzzle in understanding the impact of the central AGN on the amount of the coldest gas from which star formation can proceed.

Journal ArticleDOI
TL;DR: In this paper, the analysis of Chandra X-ray snapshot observations of a subsample of the extragalactic sources listed in the revised Third Cambridge radio catalog (3CR) was presented.
Abstract: This paper presents the analysis of Chandra X-ray snapshot observations of a subsample of the extragalactic sources listed in the revised Third Cambridge radio catalog (3CR), previously lacking X-ray observations and thus observed during Chandra Cycle 15. This data set extends the current Chandra coverage of the 3CR extragalactic catalog up to redshift $z$=1.0. Our sample includes 22 sources consisting of one compact steep spectrum (CSS) source, three quasars (QSOs), and 18 FR\,II radio galaxies. As in our previous analyses, here we report the X-ray detections of radio cores and extended structures (i.e., knots, hotspots and lobes) for all sources in the selected sample. We measured their X-ray intensities in three energy ranges: soft (0.5--1 keV), medium (1--2 keV) and hard (2-7 keV) and we also performed standard X-ray spectral analysis for brighter nuclei. All radio nuclei in our sample have an X-ray counterpart. We also discovered X-ray emission associated with the eastern knot of 3CR\,154, with radio hotspots in 3CR\,41, 3CR\,54 and 3CR\,225B and with the southern lobe of 3CR\,107. Extended X-ray radiation around the nuclei 3CR\,293.1 and 3CR\,323 on a scale of few tens kpc was also found. X-ray extended emission, potentially arising from the hot gas in the intergalactic medium and/or due to the high energy counterpart of lobes, is detected for 3CR\,93, 3CR\,154, 3CR\,292 and 3CR\, 323 over a few hundreds kpc-scale. Finally, this work also presents an update on the state-of-the-art of Chandra and XMM-Newton observations for the entire 3CR sample.

Journal ArticleDOI
TL;DR: In this paper, the Atacama Large Millimetre Array was used to detect a rare example of redshifted 12CO(2−1) absorption in PKS B1740−517, a young (t ∼ 1.6 × 103 yr) and luminous (L5GHz≈6.6×1043) radio galaxy at z = 0.44 that is undergoing a tidal interaction with at least one lower mass companion.
Abstract: Cold neutral gas is a key ingredient for growing the stellar and central black hole mass in galaxies throughout cosmic history. We have used the Atacama Large Millimetre Array to detect a rare example of redshifted 12CO (2–1) absorption in PKS B1740–517, a young (t ∼ 1.6 × 103 yr) and luminous (⁠L5GHz≈6.6×1043 erg s−1) radio galaxy at z = 0.44 that is undergoing a tidal interaction with at least one lower mass companion. The coincident H I 21-cm and molecular absorption have very similar line profiles and reveal a reservoir of cold gas (Mgas ∼ 107−108 M⊙), likely distributed in a disc or ring within a few kiloparsecs of the nucleus. A separate H I component is kinematically distinct and has a very narrow line width (ΔvFWHM ≲ 5 km s−1), consistent with a single diffuse cloud of cold (Tk ∼ 100 K) atomic gas. The 12CO (2–1) absorption is not associated with this component, which suggests that the cloud is either much smaller than 100 pc along our sight line and/or located in low-metallicity gas that was possibly tidally stripped from the companion. We argue that the gas reservoir in PKS B1740–517 may have accreted on to the host galaxy ∼ 50 Myr before the young radio AGN was triggered, but has only recently reached the nucleus. This is consistent with the paradigm that powerful luminous radio galaxies are triggered by minor mergers and interactions with low-mass satellites and represent a brief, possibly recurrent, active phase in the life cycle of massive early-type galaxies.

Journal ArticleDOI
TL;DR: In this paper, integral field spectroscopy of the GW recoiling black hole candidate 3C 186 was used to study the kinematics of the [O iii]5007 narrow emission-line region (NLR) of the quasar, and investigate the origin of the velocity offsets originally measured for different UV lines.
Abstract: We present the results of integral field spectroscopy of the gravitational wave (GW) recoiling black hole candidate 3C 186. The goal of the observation is to study the kinematics of the [O iii]5007 narrow emission-line region (NLR) of the quasar, and investigate the origin of the velocity offsets originally measured for different UV lines. The results show that (i) the spatial structure of the NLR is complex. The [O iii]5007 line shows significant velocity offsets with respect to the systemic redshift of the source. Different components at different velocities (−670, −100, +75 km s−1) are produced in different regions of the source. (ii) We detect both the narrow and the broad components of the Hβ line. The narrow component generally follows the kinematics of the [O iii] line, while the broad component is significantly blueshifted. The peak of the broad line is near the blue end, or possibly outside of the sensitivity band of the instrument, implying a velocity offset of 1800 km s−1. This result is in agreement with the interpretation of the quasar as a GW recoiling black hole. The properties of the NLR show that the observed outflows are most likely the effect of radiation pressure on the (photoionized) gas in the interstellar medium of the host galaxy.

Journal ArticleDOI
TL;DR: In this article, the effect of ram pressure on the cold clouds in the centers of cool core galaxy clusters, and in particular how it reduces cloud velocity and sometimes causes an offset between the cold gas and young stars, was discussed.
Abstract: We discuss the effect of ram pressure on the cold clouds in the centers of cool-core galaxy clusters, and in particular, how it reduces cloud velocity and sometimes causes an offset between the cold gas and young stars. The velocities of the molecular gas in both observations and our simulations fall in the range of $100-400$ km/s, much lower than expected if they fall from a few tens of kpc ballistically. If the intra-cluster medium (ICM) is at rest, the ram pressure of the ICM only slightly reduces the velocity of the clouds. When we assume that the clouds are actually "fluffier" because they are co-moving with a warm-hot layer, the velocity becomes smaller. If we also consider the AGN wind in the cluster center by adding a wind profile measured from the simulation, the clouds are further slowed down at small radii, and the resulting velocities are in general agreement with the observations and simulations. Because ram pressure only affects gas but not stars, it can cause a separation between a filament and young stars that formed in the filament as they move through the ICM together. This separation has been observed in Perseus and also exists in our simulations. We show that the star-filament offset combined with line-of-sight velocity measurements can help determine the true motion of the cold gas, and thus distinguish between inflows and outflows.

Journal ArticleDOI
TL;DR: In this paper, the radiatively efficient, hot wind feedback mode in two nearby luminous unobscured (type 1) AGN from the Close AGN Reference Survey (CARS) was investigated, and it was shown that the highly ionized gas structures on kpc scales are not inflated by a hot outflow in either target, and instead are likely caused by photo-ionization of pre-existing gas streams of different origins.
Abstract: Aims. We probe the radiatively-efficient, hot wind feedback mode in two nearby luminous unobscured (type 1) AGN from the Close AGN Reference Survey (CARS), which show intriguing kpc-scale arc-like features of extended [O iii] ionized gas as mapped with VLT-MUSE. We aimed to detect hot gas bubbles that would indicate the existence of powerful, galaxy-scale outflows in our targets, HE 0227-0931 and HE 0351+0240, from deep (200 ks) Chandra observations. Methods. By measuring the spatial and spectral properties of the extended X-ray emission and comparing with the sub kpc-scale IFU data, we are able to constrain feedback scenarios and directly test if the ionized gas is due to a shocked wind. Results. No extended hot gas emission on kpc-scales was detected. Unless the ambient medium density is low nH ~1 cm at 100 pc), the inferred upper limits on the extended X-ray luminosities are well below what is expected from theoretical models at matching AGN luminosities. Conclusions. We conclude that the highly-ionized gas structures on kpc scales are not inflated by a hot outflow in either target, and instead are likely caused by photo-ionization of pre-existing gas streams of different origins. Our non-detections suggest that extended X-ray emission from an AGN-driven wind is not universal, and may lead to conflicts with current theoretical predictions.

Journal ArticleDOI
TL;DR: In this paper, a multi-wavelength analysis based on archival radio, optical and X-ray data of the complex radio source 3C 196.1, whose host is the brightest cluster galaxy of a $z=0.198$ cluster was presented.
Abstract: We present a multi-wavelength analysis based on archival radio, optical and X-ray data of the complex radio source 3C 196.1, whose host is the brightest cluster galaxy of a $z=0.198$ cluster. HST data show H$\alpha$+[N II] emission aligned with the jet 8.4 GHz radio emission. An H$\alpha$+[N II] filament coincides with the brightest X-ray emission, the northern hotspot. Analysis of the X-ray and radio images reveals cavities located at galactic- and cluster- scales. The galactic-scale cavity is almost devoid of 8.4 GHz radio emission and the south-western H$\alpha$+[N II] emission is bounded (in projection) by this cavity. The outer cavity is co-spatial with the peak of 147 MHz radio emission, and hence we interpret this depression in X-ray surface brightness as being caused by a buoyantly rising bubble originating from an AGN outburst $\sim$280 Myrs ago. A \textit{Chandra} snapshot observation allowed us to constrain the physical parameters of the cluster, which has a cool core with a low central temperature $\sim$2.8 keV, low central entropy index $\sim$13 keV cm$^2$ and a short cooling time of $\sim$500 Myr, which is $<0.05$ of the age of the Universe at this redshift. By fitting jumps in the X-ray density we found Mach numbers between 1.4 and 1.6, consistent with a shock origin. We also found compelling evidence of a past merger, indicated by a morphology reminiscent of gas sloshing in the X-ray residual image. Finally, we computed the pressures, enthalpies $E_{cav}$ and jet powers $P_{jet}$ associated with the cavities: $E_{cav}\sim7\times10^{58}$ erg, $P_{jet}\sim1.9\times10^{44}$ erg s$^{-1}$ for the inner cavity and $E_{cav}\sim3\times10^{60}$ erg, $P_{jet}\sim3.4\times10^{44}$ erg s$^{-1}$ for the outer cavity.

Journal ArticleDOI
TL;DR: In this article, integral field spectroscopy was used to study the kinematics of the [OIII]5007 narrow emission line region (NLR) of the quasar, and investigate the origin of the velocity offsets originally measured for different UV lines.
Abstract: We present the results of integral field spectroscopy of the gravitational wave (GW) recoiling black hole candidate 3C 186. The goal of the observations is to study the kinematics of the [OIII]5007 narrow emission line region (NLR) of the quasar, and investigate the origin of the velocity offsets originally measured for different UV lines. The results show that i) the spatial structure of the NLR is complex. The [OIII]5007 line shows significant velocity offsets with respect to the systemic redshift of the source. Different components at different velocities (-670, -100, + 75 km s^-1) are produced in different regions of the source. ii) we detect both the narrow and the broad components of the Hbeta line. The narrow component generally follows the kinematics of the [OIII] line, while the broad component is significantly blue-shifted. The peak of the broad line is near the blue end, or possibly outside of the sensitivity band of the instrument, implying a velocity offset of >~1800 km s^-1. This result is in agreement with the interpretation of the QSO as a GW recoiling black hole. The properties of the NLR show that the observed outflows are most likely the effect of radiation pressure on the (photoionized) gas in the interstellar medium of the host galaxy.

Journal ArticleDOI
TL;DR: In this article, the authors investigated the radiatively efficient, hot wind feedback mode in two nearby luminous unobscured (type 1) AGN from the Close AGN Reference Survey (CARS), which show intriguing kpc-scale arc-like features of extended [OIII] ionized gas as mapped with VLT-MUSE.
Abstract: Aims: We probe the radiatively-efficient, hot wind feedback mode in two nearby luminous unobscured (type 1) AGN from the Close AGN Reference Survey (CARS), which show intriguing kpc-scale arc-like features of extended [OIII] ionized gas as mapped with VLT-MUSE. We aimed to detect hot gas bubbles that would indicate the existence of powerful, galaxy-scale outflows in our targets, HE 0227-0931 and HE 0351+0240, from deep (200 ks) Chandra observations. Methods: By measuring the spatial and spectral properties of the extended X-ray emission and comparing with the sub kpc-scale IFU data, we are able to constrain feedback scenarios and directly test if the ionized gas is due to a shocked wind. Results: No extended hot gas emission on kpc-scales was detected. Unless the ambient medium density is low ($n_{H}\sim~1$ cm$^{-3}$ at 100 pc), the inferred upper limits on the extended X-ray luminosities are well below what is expected from theoretical models at matching AGN luminosities. Conclusions: We conclude that the highly-ionized gas structures on kpc scales are not inflated by a hot outflow in either target, and instead are likely caused by photo-ionization of pre-existing gas streams of different origins. Our non-detections suggest that extended X-ray emission from an AGN-driven wind is not universal, and may lead to conflicts with current theoretical predictions.

Journal ArticleDOI
TL;DR: In this paper, the authors observed the FR II radio galaxy 3C 459 (z = 0.22) with the MUSE spectrograph at the Very Large Telescope (VLT) as part of the MURALES project (a MUse RAdio Loud Emission line Snapshot survey).
Abstract: We observed the FR II radio galaxy 3C 459 (z = 0.22) with the MUSE spectrograph at the Very Large Telescope (VLT) as part of the MURALES project (a MUse RAdio Loud Emission line Snapshot survey). We detected diffuse nuclear emission and a filamentary ionized gas structure forming a one-sided, triangular-shaped region extending out to ∼80 kpc. The central emission line region is dominated by two compact knots of similar flux: the first (N1) cospatial with the radio core and the (N2) second located 1″.2 (5.3 kpc) to the SE. The two regions differ dramatically from the point of view of velocity (with an offset of ∼400 km s−1 ), line widths, and line ratios. This suggests that we are observing a dual AGN system formed by a radio loud AGN and type 2 QSO companion, which is the result of the recent merger that also produced its disturbed host morphology. The alternative possibility that N2 is just a bright emission line knot resulting from, for example, a jet-cloud interaction, is disfavored because of (1) the presence of a high ionization bicone whose apex is located at N2; (2) the observed narrow line widths; (3) its line luminosity (∼1042 erg s−1 ) typical of luminous QSOs; and (4) its location, which is offset from the jet path. The putative secondary AGN must be highly obscured, since we do not detect any emission in the Chandra and infrared Hubble Space Telescope images.

Journal ArticleDOI
TL;DR: In this article, the authors observed the FRII radio galaxy 3C459 (z=0.22) with the MUSE spectrograph at the Very Large Telescope (VLT) as part of the MURALES project (a MUse RAdio Loud Emission line Snapshot survey).
Abstract: We observed the FRII radio galaxy 3C459 (z=0.22) with the MUSE spectrograph at the Very Large Telescope (VLT) as part of the MURALES project (a MUse RAdio Loud Emission line Snapshot survey). We detected diffuse nuclear emission and a filamentary ionized gas structure forming a one-sided, triangular-shaped region extending out to $\sim$80 kpc. The central emission line region is dominated by two compact knots of similar flux: the first (N1) cospatial with the radio core and the (N2) second located 1.2" (5.3 kpc) to the SE. The two regions differ dramatically from the point of view of velocity (with an offset of ~400 km/s), line widths, and line ratios. This suggests that we are observing a dual AGN system formed by a radio loud AGN and type 2 QSO companion, which is the result of the recent merger that also produced its disturbed host morphology. The alternative possibility that N2 is just a bright emission line knot resulting from, for example, a jet-cloud interaction, is disfavored because of 1) the presence of a high ionization bicone whose apex is located at N2; 2) the observed narrow line widths; 3) its line luminosity (~10^42 erg s-1) typical of luminous QSOs; and 4) its location, which is offset from the jet path. The putative secondary AGN must be highly obscured, since we do not detect any emission in the Chandra and infrared Hubble Space Telescope images.

Journal ArticleDOI
TL;DR: In this paper, Chandra observations of the galaxy cluster Abell 1664 were used to detect radio bubbles inflated by the AGN, which may explain the motion of cold molecular CO clouds previously observed with ALMA.
Abstract: We present new, deep (245 ks) Chandra observations of the galaxy cluster Abell 1664 ($z = 0.1283$). These images reveal rich structure, including elongation and accompanying compressions of the X-ray isophotes in the NE-SW direction, suggesting that the hot gas is sloshing in the gravitational potential. This sloshing has resulted in cold fronts, at distances of 55, 115 and 320 kpc from the cluster center. Our results indicate that the core of A1664 is highly disturbed, as the global metallicity and cooling time flatten at small radii, implying mixing on large scales. The central AGN appears to have recently undergone a mechanical outburst, as evidenced by our detection of cavities. These cavities are the X-ray manifestations of radio bubbles inflated by the AGN, and may explain the motion of cold molecular CO clouds previously observed with ALMA. The estimated mechanical power of the AGN, using the minimum energy required to inflate the cavities as a proxy, is $P_{\rm cav} = (1.1 \pm 1.0) \times 10^{44} $ erg s$^{-1}$, which may be enough to drive the molecular gas flows, and offset the cooling luminosity of the ICM, at $L_{\rm cool} = (1.90 \pm0.01)\times 10^{44}$ erg s$^{-1}$. This mechanical power is orders of magnitude higher than the measured upper limit on the X-ray luminosity of the central AGN, suggesting that its black hole may be extremely massive and/or radiatively inefficient. We map temperature variations on the same spatial scale as the molecular gas, and find that the most rapidly cooling gas is mostly coincident with the molecular gas reservoir centered on the BCG's systemic velocity observed with ALMA and may be fueling cold accretion onto the central black hole.

Proceedings ArticleDOI
06 Jul 2018
TL;DR: The investigation of new algorithms to remove more efficiently the charged particle background from the science data, as the Chandra High Resolution Camera prepares for another decade of operation.
Abstract: We summarize nearly two decades of successful operation of the Chandra High Resolution Camera (HRC). The HRC is a pair of cesium–iodide (CsI) coated microchannel plate X-ray detectors launched in July, 1999, one optimized for widefield imaging (HRC-I) and a second as a readout for X-ray transmission gratings (HRC-S). We discuss the temporal evolution of the performance of the flight instrument, the impact of extended exposure to the charged particle environment of high Earth orbit, and lessons learned from nineteen years of flight operations. We also describe our investigation of new algorithms to remove more efficiently the charged particle background from the science data, as we prepare for another decade of operation.

Journal ArticleDOI
TL;DR: In this paper, a multi-wavelength analysis based on archival radio, optical and X-ray data of the complex radio source 3C 196.1, whose host is the brightest cluster galaxy of a $z=0.198$ cluster was presented.
Abstract: We present a multi-wavelength analysis based on archival radio, optical and X-ray data of the complex radio source 3C 196.1, whose host is the brightest cluster galaxy of a $z=0.198$ cluster. HST data show H$\alpha$+[N II] emission aligned with the jet 8.4 GHz radio emission. An H$\alpha$+[N II] filament coincides with the brightest X-ray emission, the northern hotspot. Analysis of the X-ray and radio images reveals cavities located at galactic- and cluster- scales. The galactic-scale cavity is almost devoid of 8.4 GHz radio emission and the south-western H$\alpha$+[N II] emission is bounded (in projection) by this cavity. The outer cavity is co-spatial with the peak of 147 MHz radio emission, and hence we interpret this depression in X-ray surface brightness as being caused by a buoyantly rising bubble originating from an AGN outburst $\sim$280 Myrs ago. A \textit{Chandra} snapshot observation allowed us to constrain the physical parameters of the cluster, which has a cool core with a low central temperature $\sim$2.8 keV, low central entropy index $\sim$13 keV cm$^2$ and a short cooling time of $\sim$500 Myr, which is $<0.05$ of the age of the Universe at this redshift. By fitting jumps in the X-ray density we found Mach numbers between 1.4 and 1.6, consistent with a shock origin. We also found compelling evidence of a past merger, indicated by a morphology reminiscent of gas sloshing in the X-ray residual image. Finally, we computed the pressures, enthalpies $E_{cav}$ and jet powers $P_{jet}$ associated with the cavities: $E_{cav}\sim7\times10^{58}$ erg, $P_{jet}\sim1.9\times10^{44}$ erg s$^{-1}$ for the inner cavity and $E_{cav}\sim3\times10^{60}$ erg, $P_{jet}\sim3.4\times10^{44}$ erg s$^{-1}$ for the outer cavity.

Journal ArticleDOI
TL;DR: In this article, the first detection of a nearby luminous AGN (redshift 00355) with FIFI-LS onboard the airborne observatory SOFIA was reported.
Abstract: We report spatially-resolved [CII]$\lambda 158$ $\mu$m observations of HE 0433-1028, which is the first detection of a nearby luminous AGN (redshift 00355) with FIFI-LS onboard the airborne observatory SOFIA We compare the spatially-resolved star formation tracers [CII], as provided by our SOFIA observations, and H$\alpha$ from MUSE optical integral-field spectroscopy We find that the [CII] emission is mainly matching the extended star formation as traced by the extinction-corrected H$\alpha$ line emission but some additional flux is present While a larger sample is needed to statistically confirm our findings and investigate possible dependencies on AGN luminosity and star formation rate, our study underlines the necessity of collecting a spatially-resolved optical-FIR dataset for nearby AGNs, and shows that it is technically feasible to collect such datasets with FIFI-LS onboard SOFIA

Journal ArticleDOI
TL;DR: In this paper, the first detection of a nearby luminous active galactic nucleus (AGN; redshift 0.0355) with the Field-Imaging Far-Infrared Line Spectrometer (FIFI-LS) on board the airborne Stratospheric Observatory For Infrared Astronomy (SOFIA) was reported.
Abstract: We report spatially resolved [C ii] λ158 μm observations of HE 0433-1028, which is the first detection of a nearby luminous active galactic nucleus (AGN; redshift 0.0355) with the Field-Imaging Far-Infrared Line Spectrometer (FIFI-LS) on board the airborne Stratospheric Observatory For Infrared Astronomy (SOFIA). We compare the spatially resolved star formation tracers [C ii], as provided by our SOFIA observations, and Hα from the Multi Unit Spectroscopic Explorer (MUSE) optical integral-field spectroscopy. We find that the [C ii] emission is mainly matching the extended star formation as traced by the extinction-corrected Hα line emission but some additional flux is present. While a larger sample is needed to statistically confirm our findings and investigate possible dependencies on AGN luminosity and star formation rate, our study underlines the necessity of collecting a spatially resolved optical–far-infrared data set for nearby AGNs, and shows that it is technically feasible to collect such data sets with FIFI-LS on board SOFIA.