scispace - formally typeset
Search or ask a question

Showing papers by "Michael J. Wingfield published in 2020"


Journal ArticleDOI
TL;DR: Improved international cooperation is crucial to reduce the impacts of invasive alien species on biodiversity, ecosystem services, and human livelihoods, as synergies with other global changes are exacerbating current invasions and facilitating new ones, thereby escalating the extent and impacts of invaders.
Abstract: Biological invasions are a global consequence of an increasingly connected world and the rise in human population size The numbers of invasive alien species – the subset of alien species that spread widely in areas where they are not native, affecting the environment or human livelihoods – are increasing Synergies with other global changes are exacerbating current invasions and facilitating new ones, thereby escalating the extent and impacts of invaders Invasions have complex and often immense long‐term direct and indirect impacts In many cases, such impacts become apparent or problematic only when invaders are well established and have large ranges Invasive alien species break down biogeographic realms, affect native species richness and abundance, increase the risk of native species extinction, affect the genetic composition of native populations, change native animal behaviour, alter phylogenetic diversity across communities, and modify trophic networks Many invasive alien species also change ecosystem functioning and the delivery of ecosystem services by altering nutrient and contaminant cycling, hydrology, habitat structure, and disturbance regimes These biodiversity and ecosystem impacts are accelerating and will increase further in the future Scientific evidence has identified policy strategies to reduce future invasions, but these strategies are often insufficiently implemented For some nations, notably Australia and New Zealand, biosecurity has become a national priority There have been long‐term successes, such as eradication of rats and cats on increasingly large islands and biological control of weeds across continental areas However, in many countries, invasions receive little attention Improved international cooperation is crucial to reduce the impacts of invasive alien species on biodiversity, ecosystem services, and human livelihoods Countries can strengthen their biosecurity regulations to implement and enforce more effective management strategies that should also address other global changes that interact with invasions

677 citations


Journal ArticleDOI
01 Jul 2020-Forests
TL;DR: The findings reported in this review will support countries that are currently free of F. circinatum in implementing effective procedures and restrictions and prevent further spread of the pathogen.
Abstract: Fusarium circinatum, the causal agent of pine pitch canker (PPC), is currently one of the most important threats of Pinus spp. globally. This pathogen is known in many pine-growing regions, including natural and planted forests, and can affect all life stages of trees, from emerging seedlings to mature trees. Despite the importance of PPC, the global distribution of F. circinatum is poorly documented, and this problem is also true of the hosts within countries that are affected. The aim of this study was to review the global distribution of F. circinatum, with a particular focus on Europe. We considered (1) the current and historical pathogen records, both positive and negative, based on confirmed reports from Europe and globally; (2) the genetic diversity and population structure of the pathogen; (3) the current distribution of PPC in Europe, comparing published models of predicted disease distribution; and (4) host susceptibility by reviewing literature and generating a comprehensive list of known hosts for the fungus. These data were collated from 41 countries and used to compile a specially constructed geo-database. A review of 6297 observation records showed that F. circinatum and the symptoms it causes on conifers occurred in 14 countries, including four in Europe, and is absent in 28 countries. Field observations and experimental data from 138 host species revealed 106 susceptible host species including 85 Pinus species, 6 non-pine tree species and 15 grass and herb species. Our data confirm that susceptibility to F. circinatum varies between different host species, tree ages and environmental characteristics. Knowledge on the geographic distribution, host range and the relative susceptibility of different hosts is essential for disease management, mitigation and containment strategies. The findings reported in this review will support countries that are currently free of F. circinatum in implementing effective procedures and restrictions and prevent further spread of the pathogen.

143 citations


Journal ArticleDOI
TL;DR: Novel species of fungi described in this study include those from various countries as follows: Antarctica, Cladosporium arenosum from marine sediment sand, Kosmimatamyces alatophylus from soil, and Italy, Penicillium taurinense from indoor chestnut mill.
Abstract: Novel species of fungi described in this study include those from various countries as follows: Antarctica, Cladosporium arenosum from marine sediment sand. Argentina, Kosmimatamyces alatophylus (incl. Kosmimatamyces gen. nov.) from soil. Australia, Aspergillus banksianus, Aspergillus kumbius, Aspergillus luteorubrus, Aspergillus malvicolor and Aspergillus nanangensis from soil, Erysiphe medicaginis from leaves of Medicago polymorpha, Hymenotorrendiella communis on leaf litter of Eucalyptus bicostata, Lactifluus albopicri and Lactifluus austropiperatus on soil, Macalpinomyces collinsiae on Eriachne benthamii, Marasmius vagus on soil, Microdochium dawsoniorum from leaves of Sporobolus natalensis, Neopestalotiopsis nebuloides from leaves of Sporobolus elongatus, Pestalotiopsis etonensis from leaves of Sporobolus jacquemontii, Phytophthora personensis from soil associated with dying Grevillea mccutcheonii. Brazil, Aspergillus oxumiae from soil, Calvatia baixaverdensis on soil, Geastrum calycicoriaceum on leaf litter, Greeneria kielmeyerae on leaf spots of Kielmeyera coriacea. Chile, Phytophthora aysenensis on collar rot and stem of Aristotelia chilensis. Croatia, Mollisia gibbospora on fallen branch of Fagus sylvatica. Czech Republic, Neosetophoma hnaniceana from Buxus sempervirens. Ecuador, Exophiala frigidotolerans from soil. Estonia, Elaphomyces bucholtzii in soil. France, Venturia paralias from leaves of Euphorbia paralias. India, Cortinarius balteatoindicus and Cortinarius ulkhagarhiensis on leaf litter. Indonesia, Hymenotorrendiella indonesiana on Eucalyptus urophylla leaf litter. Italy, Penicillium taurinense from indoor chestnut mill. Malaysia, Hemileucoglossum kelabitense on soil, Satchmopsis pini on dead needles of Pinus tecunumanii. Poland, Lecanicillium praecognitum on insects' frass. Portugal, Neodevriesia aestuarina from saline water. Republic of Korea, Gongronella namwonensis from freshwater. Russia, Candida pellucida from Exomias pellucidus, Heterocephalacria septentrionalis as endophyte from Cladonia rangiferina, Vishniacozyma phoenicis from dates fruit, Volvariella paludosa from swamp. Slovenia, Mallocybe crassivelata on soil. South Africa, Beltraniella podocarpi, Hamatocanthoscypha podocarpi, Coleophoma podocarpi and Nothoseiridium podocarpi (incl. Nothoseiridium gen. nov.)from leaves of Podocarpus latifolius, Gyrothrix encephalarti from leaves of Encephalartos sp., Paraphyton cutaneum from skin of human patient, Phacidiella alsophilae from leaves of Alsophila capensis, and Satchmopsis metrosideri on leaf litter of Metrosideros excelsa. Spain, Cladophialophora cabanerensis from soil, Cortinarius paezii on soil, Cylindrium magnoliae from leaves of Magnolia grandiflora, Trichophoma cylindrospora (incl. Trichophoma gen. nov.) from plant debris, Tuber alcaracense in calcareus soil, Tuber buendiae in calcareus soil. Thailand, Annulohypoxylon spougei on corticated wood, Poaceascoma filiforme from leaves of unknown Poaceae. UK, Dendrostoma luteum on branch lesions of Castanea sativa, Ypsilina buttingtonensis from heartwood of Quercus sp. Ukraine, Myrmecridium phragmiticola from leaves of Phragmites australis. USA, Absidia pararepens from air, Juncomyces californiensis (incl. Juncomyces gen. nov.) from leaves of Juncus effusus, Montagnula cylindrospora from a human skin sample, Muriphila oklahomaensis (incl. Muriphila gen. nov.)on outside wall of alcohol distillery, Neofabraea eucalyptorum from leaves of Eucalyptus macrandra, Diabolocovidia claustri (incl. Diabolocovidia gen. nov.)from leaves of Serenoa repens, Paecilomyces penicilliformis from air, Pseudopezicula betulae from leaves of leaf spots of Populus tremuloides. Vietnam, Diaporthe durionigena on branches of Durio zibethinus and Roridomyces pseudoirritans on rotten wood. Morphological and culture characteristics are supported by DNA barcodes.

71 citations


Journal ArticleDOI
TL;DR: The aim of this study was to elucidate the lifestyles and evolutionary patterns of the Capnodiales as well as to reconsider their phylogeny by including numerous new collections of sooty moulds, and using four nuclear loci, LSU, ITS, TEF-1α and RPB2.

59 citations


Journal ArticleDOI
16 Sep 2020
TL;DR: Genetic arguments that strongly support inclusion of the FSSC in Fusarium are presented and it is shown that fusaria are broadly resistant to the spectrum of antifungals that are currently available.
Abstract: This article is to alert medical mycologists and infectious disease specialists of recent name changes of medically important species of the filamentous mold Fusarium Fusarium species can cause localized and life-threating infections in humans. Of the 70 Fusarium species that have been reported to cause infections, close to one-third are members of the Fusarium solani species complex (FSSC), and they collectively account for approximately two-thirds of all reported Fusarium infections. Many of these species were recently given scientific names for the first time by a research group in the Netherlands, but they were misplaced in the genus Neocosmospora In this paper, we present genetic arguments that strongly support inclusion of the FSSC in Fusarium There are potentially serious consequences associated with using the name Neocosmospora for Fusarium species because clinicians need to be aware that fusaria are broadly resistant to the spectrum of antifungals that are currently available.

55 citations


Journal ArticleDOI
12 May 2020
TL;DR: Seven new genera, 26 new species, 10 new combinations, two epitypes, one new name, and 20 interesting new host and / or geographical records are introduced in this study.
Abstract: Seven new genera, 26 new species, 10 new combinations, two epitypes, one new name, and 20 interesting new host and / or geographical records are introduced in this study. New genera are: Italiofungus (based on Italiofungus phillyreae) on leaves of Phillyrea latifolia (Italy); Neolamproconium (based on Neolamproconium silvestre) on branch of Tilia sp. (Ukraine); Neosorocybe (based on Neosorocybe pini) on trunk of Pinus sylvestris (Ukraine); Nothoseptoria (based on Nothoseptoria caraganae) on leaves of Caragana arborescens (Russia); Pruniphilomyces (based on Pruniphilomyces circumscissus) on Prunus cerasus (Russia); Vesiculozygosporium (based on Vesiculozygosporium echinosporum) on leaves of Muntingia calabura (Malaysia); Longiseptatispora (based on Longiseptatispora curvata) on leaves of Lonicera tatarica (Russia). New species are: Barrmaelia serenoae on leaf of Serenoa repens (USA); Chaetopsina gautengina on leaves of unidentified grass (South Africa); Chloridium pini on fallen trunk of Pinus sylvestris (Ukraine); Cadophora fallopiae on stems of Reynoutria sachalinensis (Poland); Coleophoma eucalyptigena on leaf litter of Eucalyptus sp. (Spain); Cylindrium corymbiae on leaves of Corymbia maculata (Australia); Diaporthe tarchonanthi on leaves of Tarchonanthus littoralis (South Africa); Elsinoe eucalyptorum on leaves of Eucalyptus propinqua (Australia); Exophiala quercina on dead wood of Quercus sp., (Germany); Fusarium californicum on cambium of budwood of Prunus dulcis (USA); Hypomyces gamsii on wood of Alnus glutinosa (Ukraine); Kalmusia araucariae on leaves of Araucaria bidwillii (USA); Lectera sambuci on leaves of Sambucus nigra (Russia); Melanomma populicola on fallen twig of Populus canadensis (Netherlands), Neocladosporium syringae on branches of Syringa vulgarishorus (Ukraine); Paraconiothyrium iridis on leaves of Iris pseudacorus (Ukraine); Pararoussoella quercina on branch of Quercus robur (Ukraine); Phialemonium pulveris from bore dust of deathwatch beetle (France); Polyscytalum pinicola on needles of Pinus tecunumanii (Malaysia); Acervuloseptoria fraxini on Fraxinus pennsylvanica (Russia); Roussoella arundinacea on culms of Arundo donax (Spain); Sphaerulina neoaceris on leaves of Acer negundo (Russia); Sphaerulina salicicola on leaves of Salix fragilis (Russia); Trichomerium syzygii on leaves of Syzygium cordatum (South Africa); Uzbekistanica vitis-viniferae on dead stem of Vitis vinifera (Ukraine); Vermiculariopsiella eucalyptigena on leaves of Eucalyptus sp. (Australia).

39 citations


Journal ArticleDOI
TL;DR: A six-gene combined phylogeny resolved all 120 Calonectria species, and revealed that tef1, tub2, cmdA, his3, rpb2 and act gene regions are effective DNA barcodes for CalonECTria.

32 citations


Journal ArticleDOI
TL;DR: The eucalyptus camaldulensis can be seen as an iconic tree of superlatives and is the tree with the widest native range and one of the most widely planted trees around the globe as mentioned in this paper.
Abstract: Eucalyptus camaldulensis can be seen as an iconic tree of superlatives. It is the eucalypt with the widest native range, and one of the most widely planted eucalypts around the globe. In South Afri...

32 citations


Journal ArticleDOI
10 Jul 2020
TL;DR: In this article, the authors advocate increased collaboration between entomologists and pathologists to improve the long-term health of forests, arguing that the pathways of entry of exotic pests and pathogens are often the same and that insects and fungi often coexist in the same affected trees.
Abstract: The world's forests have never been more threatened by invasions of exotic pests and pathogens, whose causes and impacts are reinforced by global change. However, forest entomologists and pathologists have, for too long, worked independently, used different concepts and proposed specific management methods without recognising parallels and synergies between their respective fields. Instead, we advocate increased collaboration between these two scientific communities to improve the long-term health of forests. Our arguments are that the pathways of entry of exotic pests and pathogens are often the same and that insects and fungi often coexist in the same affected trees. Innovative methods for preventing invasions, early detection and identification of non-native species, modelling of their impact and spread and prevention of damage by increasing the resistance of ecosystems can be shared for the management of both pests and diseases.We, therefore, make recommendations to foster this convergence, proposing in particular the development of interdisciplinary research programmes, the development of generic tools or methods for pest and pathogen management and capacity building for the education and training of students, managers, decision-makers and citizens concerned with forest health.

30 citations


Journal ArticleDOI
TL;DR: This review considers the invasion and taxonomic history of the G. scutellatus cryptic species complex and the implications that the cryptic species diversity could have on management strategies.
Abstract: Gonipterus scutellatus (Coleoptera: Curculionidae), once thought to be a single species, is now known to reside in a complex of at least eight cryptic species. Two of these species (G. platensis and G. pulverulentus) and an undescribed species (Gonipterus sp. n. 2) are invasive pests on five continents. A single population of Anaphes nitens, an egg parasitoid, has been used to control all three species of Gonipterus throughout the invaded range. Limited knowledge regarding the different cryptic species and their diversity significantly impedes efforts to manage the pest complex outside the native range. In this review, we consider the invasion and taxonomic history of the G. scutellatus cryptic species complex and the implications that the cryptic species diversity could have on management strategies. The ecological and biological aspects of these pests that require further research are identified. Strategies that could be used to develop an ecological approach towards managing the G. scutellatus species complex are also suggested.

25 citations


Journal ArticleDOI
15 Oct 2020
TL;DR: All the Botryosphaeriaceae species were pathogenic to one-year-old plants of an E. urophylla × E. grandis clone and E. globulus seed-derived plants, but showed significant inter- and intra-species variation in aggressiveness amongst isolates.
Abstract: The Botryosphaeriaceae accommodates many important pathogens of woody plants, including Eucalyptus. Recently, Botryosphaeriaceae were isolated from diseased plant parts from surveys of Eucalyptus plantations in the YunNan Province, China. The aims of this study were to identify these Botryosphaeriaceae isolates and to evaluate their pathogenicity to Eucalyptus. A total of 166 isolates of Botryosphaeriaceae were obtained from six regions in the YunNan Province, of which 76 were from Eucalyptus urophylla × E. grandis hybrids, 49 from E. globulus trees, and 41 isolates were from other unknown Eucalyptus species or hybrids. Isolates were identified by comparing DNA sequences of the internal transcribed spacer ribosomal RNA locus (ITS), partial translation elongation factor 1-alpha (tef1), β-tubulin 2 (tub2) and DNA-directed RNA polymerase II subunit (rpb2) genes, and combined with their morphological characteristics. Eleven species were identified, including Botryosphaeria fusispora, B. wangensis, Lasiodiplodia pseudotheobromae, Neofusicoccum kwambonambiense, N. parvum, and six novel species described as B. puerensis, N. dianense, N. magniconidium, N. ningerense, N. parviconidium and N. yunnanense. The dominant species across the regions were N. yunnanense, N. parvum and B. wangensis, representing 31.3, 25.3 and 19.9% of the total isolates, respectively. Species diversity and composition changed across the different climatic zones, despite their relatively close geographic proximity and the fact that some of the species have a global distribution. All the Botryosphaeriaceae species were pathogenic to one-year-old plants of an E. urophylla × E. grandis clone and E. globulus seed-derived plants, but showed significant inter- and intra-species variation in aggressiveness amongst isolates. The study provides a foundation for monitoring and management of Botryosphaeriaceae through selection and breeding of Eucalyptus in the YunNan Province of southwestern China.

Journal ArticleDOI
TL;DR: This review defines and synthesizes current understanding of maternal effects in plant reproduction and discusses evidence for the role of these effects in plants and more specifically in trees utilised for plantation forestry.

Journal ArticleDOI
TL;DR: Morphological identification and phylogenetic analysis of the mitochondrial cytochrome oxidase c subunit I (COI) gene, revealed that the beetles infesting Acacia crassicarpa plantations in Riau, Indonesia are E. perbrevis, previously a synonym of E. fornicatus and commonly referred to as the Tea Shot Hole Borer A.
Abstract: Non-native Acacia plantations in Indonesia were first reported to be infested by a native ambrosia beetle species, identified as Euwallacea fornicatus in 1993. Recently the level of infestation in these plantations by ambrosia beetles has steadily increased. The recent redefinition of the taxonomic parameters of the Euwallacea fornicatus species complex has resulted in the identity of the ambrosia beetle species in these plantations becoming unclear. This is also true for their obligate fungal associates. Therefore, the aim of this study was to identify the ambrosia beetle species, as well as its corresponding fungal associate/s, infesting Acacia crassicarpa plantations in Riau, Indonesia. Morphological identification and phylogenetic analysis of the mitochondrial cytochrome oxidase c subunit I (COI) gene, revealed that the beetles are E. perbrevis, previously a synonym of E. fornicatus and commonly referred to as the Tea Shot Hole Borer A (TSHBa). Multi-locus phylogenetic analyses of the fungal associate of E. perbrevis revealed a Fusarium sp. that is among members of the Ambrosia Fusarium Clade (AFC), but that is genetically distinct from other previously identified Fusarium symbionts of Euwallacea species. This novel fungal species is described here as Fusarium rekanum sp. nov.

Journal ArticleDOI
15 Oct 2020
TL;DR: Invasive alien species are widely recognised as significant drivers of global environmental change, with far reaching ecological and socio-economic impacts as mentioned in this paper, yet their impacts are substantially underrepresented in the invasion science literature.
Abstract: Invasive alien species are widely recognised as significant drivers of global environmental change, with far reaching ecological and socio-economic impacts. The trend of continuous increases in first records, with no apparent sign of saturation, is consistent across all taxonomic groups. However, taxonomic biases exist in the extent to which invasion processes have been studied. Invasive forest pathogens have caused, and they continue to result in dramatic damage to natural forests and woody ecosystems, yet their impacts are substantially underrepresented in the invasion science literature. Conversely, most studies of forest pathogens have been undertaken in the absence of a connection to the frameworks developed and used to study biological invasions. We believe this is, in part, a consequence of the mechanistic approach of the discipline of forest pathology; one that has been inherited from the broader discipline of plant pathology. Rather than investigating the origins of, and the processes driving the arrival of invasive microorganisms, the focus of pathologists is generally to investigate specific interactions between hosts and pathogens, with an emphasis on controlling the resulting disease problems. In contrast, central to the field of invasion science, which finds its roots in ecology, is the development and testing of general concepts and frameworks. The lack of knowledge of microbial biodiversity and ecology, speciation and geographic origin present challenges in understanding invasive forest pathogens under existing frameworks, and there is a need to address this shortfall. Advances in molecular technologies such as gene and genome sequencing and metagenomics studies have increased the “visibility” of microorganisms. We consider whether these technologies are being adequately applied to address the gaps between forest pathology and invasion science. We also interrogate the extent to which the two fields stand to gain by becoming more closely linked.

Journal ArticleDOI
TL;DR: characterised the structure of the mating type locus and flanking genes using the genome sequences for seven Calonectria species to better understand the reproductive biology of these fungi, and showed that the organisation of the MAT locu and flanks genes is conserved.
Abstract: The genus Calonectria includes many important plant pathogens with a wide global distribution. In order to better understand the reproductive biology of these fungi, we characterised the structure of the mating type locus and flanking genes using the genome sequences for seven Calonectria species. Primers to amplify the mating type genes in other species were also developed. PCR amplification of the mating type genes and multi-gene phylogenetic analyses were used to investigate the mating strategies and evolution of mating type in a collection of 70 Calonectria species residing in 10 Calonectria species complexes. Results showed that the organisation of the MAT locus and flanking genes is conserved. In heterothallic species, a novel MAT gene, MAT1-2-12 was identified in the MAT1-2 idiomorph; the MAT1-1 idiomorph, in most cases, contained the MAT1-1-3 gene. Neither MAT1-1-3 nor MAT1-2-12 was found in homothallic Calonectria (Ca.) hongkongensis, Ca. lateralis, Ca. pseudoturangicola and Ca. turangicola. Four different homothallic MAT locus gene arrangements were observed. Ancestral state reconstruction analysis provided evidence that the homothallic state was basal in Calonectria and this evolved from a heterothallic ancestor.

Journal ArticleDOI
TL;DR: The uneven distribution of mating types in populations of T. destructans and the presence of only an asexual state on infected tissues suggests the absence of or at least a minor role for sexual reproduction where the pathogen occurs on non-native Eucalyptus in plantations.

Journal ArticleDOI
24 Sep 2020
TL;DR: In this article, the authors present the draft genomes of the fungal species Ambrosiella cleistominuta, Cercospora brassicicola, C. citrullina, Physcia stellaris, and Teratosphaeria pseudoeucalypti.
Abstract: Draft genomes of the fungal species Ambrosiella cleistominuta, Cercospora brassicicola, C. citrullina, Physcia stellaris, and Teratosphaeria pseudoeucalypti are presented. Physcia stellaris is an important lichen forming fungus and Ambrosiella cleistominuta is an ambrosia beetle symbiont. Cercospora brassicicola and C. citrullina are agriculturally relevant plant pathogens that cause leaf-spots in brassicaceous vegetables and cucurbits respectively. Teratosphaeria pseudoeucalypti causes severe leaf blight and defoliation of Eucalyptus trees. These genomes provide a valuable resource for understanding the molecular processes in these economically important fungi.

Journal ArticleDOI
TL;DR: The data that support the findings of this study are openly available in GenBank at https://www.ncbi.nlm.nih.gov/genbank, genome accession numbers VCMR00000000 and VCMQ00000000, MAT locus accessions MN119556–MN119559.
Abstract: The data that support the findings of this study are openly available in GenBank at https://www.ncbi.nlm.nih.gov/genbank, genome accession numbers VCMR00000000 and VCMQ00000000, MAT locus accession numbers MN119556–MN119559.

Journal ArticleDOI
TL;DR: Seven new Graphilbum species were recovered from conifers in association with bark beetles, cerambycid beetles, and weevils and were morphologically similar, predominantly with pesotum-like asexual morphs.
Abstract: During surveys of insect-associated mycobiomes in Norway, Poland, and Russia, isolates with affinity to Graphilbum (Ophiostomatales, Ascomycota) were recovered In this study, eight known Graphilbum species as well as the newly collected isolates were compared based on morphology and DNA sequence data for four gene regions The results revealed seven new species, described here as G acuminatum, G carpaticum, G curvidentis, G furuicola, G gorcense, G interstitiale, and G sexdentatum In addition to these species, G crescericum and G sparsum were commonly found in Norway All new species were recovered from conifers in association with bark beetles, cerambycid beetles, and weevils and were morphologically similar, predominantly with pesotum-like asexual morphs Where sexual morphs were present, these were small ascomata with short necks and rod-shaped ascospores having hyaline sheaths The results suggest that Graphilbum species are common members of the Ophiostomatales in conifer ecosystems

Journal ArticleDOI
TL;DR: The gall‐forming hymenopterans associated with Eucalyptus represent an important group on which to focus the development of pre‐emptive quarantine, monitoring and potential management options, and an international and collaborative research approach is required.
Abstract: Supporting information: Table S1.Data used to estimate the spread of Leptocybe invasa between neighbouring countries. Simultaneous discoveries in neighbouring countries (e.g. Ethiopia, Kenya, Uganda) were considered a single discovery.

Journal ArticleDOI
TL;DR: Paap et al. as discussed by the authors studied the shot hole borer invasion in South Africa and found that polyphagous shot hole worms are a major pest invasion in the country.
Abstract: CITATION: Paap, T. et al. 2020. Lessons from a major pest invasion : the polyphagous shot hole borer in South Africa. South African Journal of Science, 116(11/12):8757, doi:10.17159/sajs.2020/8757.

Journal ArticleDOI
TL;DR: Seven of the undescribed taxa collected during surveys of the red turpentine beetle’s fungal associates were further characterised based on their morphological characteristics and multi-gene phylogenies, enhancing the ability to accurately assess and predict the risks of invasions by these and related fungi.
Abstract: The National Research Foundation and the members of the Tree Protection Co-operative Programme, South Africa.

Journal ArticleDOI
TL;DR: It is shown that MAT1-2-7 is essential for sexual reproduction and that isolates carrying the truncatedMAT1- 2-7 gene are incapable of ascomatal maturation and further sexual development.

Journal ArticleDOI
TL;DR: Evidence is provided of interspecific hybridization within Ceratocystis, the role of hybridization as the source of discordance will require further research because the results could also be explained by high levels of shared ancestral polymorphism in this recently diverged lineage.
Abstract: The taxonomic history of Ceratocystis, a genus in the Ceratocystidaceae, has been beset with questions and debate. This is due to many of the commonly used species recognition concepts (e.g., morphological and biological species concepts) providing different bases for interpretation of taxonomic boundaries. Species delineation in Ceratocystis primarily relied on genealogical concordance phylogenetic species recognition (GCPSR) using multiple standard molecular markers. Questions have arisen regarding the utility of these markers e.g., ITS, BT and TEF1-α due to evidence of intragenomic variation in the ITS, as well as genealogical incongruence, especially for isolates residing in a group referred to as the Latin-American clade (LAC) of the species. This study applied a phylogenomics approach to investigate the extent of phylogenetic incongruence in Ceratocystis. Phylogenomic analyses of a total of 1121 shared BUSCO genes revealed widespread incongruence within Ceratocystis, particularly within the LAC, which was typified by three equally represented topologies. Comparative analyses of the individual gene trees revealed evolutionary patterns indicative of hybridization. The maximum likelihood phylogenetic tree generated from the concatenated dataset comprised of 1069 shared BUSCO genes provided improved phylogenetic resolution suggesting the need for multiple gene markers in the phylogeny of Ceratocystis. The incongruence observed among single gene phylogenies in this study call into question the utility of single or a few molecular markers for species delineation. Although this study provides evidence of interspecific hybridization, the role of hybridization as the source of discordance will require further research because the results could also be explained by high levels of shared ancestral polymorphism in this recently diverged lineage. This study also highlights the utility of BUSCO genes as a set of multiple orthologous genes for phylogenomic studies.

Journal ArticleDOI
05 Feb 2020
TL;DR: The genus Thysanorea is emended and two new species and nine combinations are proposed and Aureoconidiella is introduced as a new genus representing a new lineage in the Dothideomycetes.
Abstract: The Genera of Fungi series, of which this is the sixth contribution, links type species of fungal genera to their morphology and DNA sequence data. Five genera of microfungi are treated in this study, with new species introduced in Arthrographis, Melnikomyces, and Verruconis. The genus Thysanorea is emended and two new species and nine combinations are proposed. Kramasamuha sibika, the type species of the genus, is provided with DNA sequence data for first time and shown to be a member of Helminthosphaeriaceae (Sordariomycetes). Aureoconidiella is introduced as a new genus representing a new lineage in the Dothideomycetes.

Journal ArticleDOI
27 Aug 2020-Zootaxa
TL;DR: Xylosandrus crassiusculus and its fungal symbiont for the first time from South Africa was identified using both morphological characters and COI sequence data.
Abstract: Xylosandrus crassiusculus (Motchulsky) is a native Asian ambrosia beetle that has been accidentally introduced to many countries of the world, presumably through the international movement of nursery, timber, and wood products. The species is known in various tropical African countries but only as far south as Tanzania on the African continent. In this study, we report X. crassiusculus and its fungal symbiont for the first time from South Africa. The species was identified using both morphological characters and COI sequence data. Xylosandrus crassiusculus were obtained from three different provinces of South Africa and represent two distinct haplotypes. The fungal symbiont, Ambrosiella roeperi, was isolated and identified using DNA sequencing and morphological characterization.

Journal ArticleDOI
TL;DR: Low levels of genotypic diversity, high levels of clonality, and strong geographic structure suggest independent introductions into all the sampled areas from an unknown source, which implies that strict biosecurity measures are needed to avoid introductions of additional genotypes in these areas.
Abstract: The aggressive Eucalyptus leaf pathogen, Teratosphaeria destructans, causes widespread damage in tropical and subtropical Eucalyptus‐growing regions of Indonesia, China, Thailand, East Timor, Vietnam, Lao, and South Africa Little is known regarding the origin, pathways of dispersal, or reproductive biology of this pathogen The aim of this study was to investigate the genetic structure of a global collection of T destructans isolates This was achieved by developing and using polymorphic microsatellite markers Low genotypic diversity and a limited number of private alleles were found in all investigated populations, with the highest maximum diversity of 107% in isolates from South Sumatra This supports the hypothesis that T destructans was introduced to these regions High levels of clonality were common in all populations, especially in isolates sampled from the recent disease outbreak in South Africa, which were all identical The global collection of isolates grouped into three distinct clusters, corresponding largely to their sampled regions Low levels of genotypic diversity, high levels of clonality, and strong geographic structure suggest independent introductions into all the sampled areas from an unknown source The results imply that strict biosecurity measures are needed to avoid introductions of additional genotypes in these areas

Journal ArticleDOI
TL;DR: Myrtoporthe bodenii was equally as pathogenic as the well-known canker pathogen Chr.
Abstract: The Cryphonectriaceae (Diaporthales, Ascomycota) is an important family of fungi including endophytes and pathogens. These fungi cause cankers on trees and can shift hosts between genera and families in the Myrtales. They represent an understudied group in Southeast Asia, where species of Eucalyptus are grown for plantation forestry. Cankers on species of Eucalyptus were surveyed in Sabah, Malaysia, and their causal agents identified. Two species in the Cryphonectriaceae were isolated from Eucalyptus grandis in the Sipitang and Tawau provinces. These fungi were identified based on morphology and a phylogenetic species hypothesis using the internal transcribed spacer regions, the large subunit regions of ribosomal DNA, and the β–tubulin 1 and 2 gene regions. One species identified as Chrysoporthe deuterocubensis is a first report for Malaysia. The other species represented a new taxon, named here as Myrtoporthe bodenii gen. et sp. nov. Pathogenicity tests showed that both Chr. deuterocubensis and M. bodenii were pathogenic to E. grandis and E. deglupta and that M. bodenii is pathogenic to E. pellita. Myrtoporthe bodenii was equally as pathogenic as the well-known canker pathogen Chr. deuterocubensis and it should be regarded as a biosecurity concern.

Journal ArticleDOI
30 Jul 2020
TL;DR: The results re-enforce that mites and fungi isolated from galleries of four spruce-infesting bark beetle species in the high altitude forests of Qinghai province, western China should not be ignored in pest risk assessments of bark beetles.
Abstract: Bark beetle galleries are complex ecosystems where many microbes and other arthropods co-exist with the beetles. Fungi isolated from these galleries are often referred to as ‘beetle associates’, but the nature of these associations are poorly understood. The possibility that many of these fungi might in fact be mite associates is often overlooked. Several recent studies explored the diversity of fungi from conifer-infesting bark beetles and their galleries in China, but only one study considered phoretic mites and their fungi from conifer-infesting bark beetles in Yunnan, southwestern China. We studied the mites and fungi from galleries of four spruce-infesting bark beetle species in the high altitude forests of Qinghai province, western China. Mites were identified based on morphological characteristics, and fungi based on DNA sequences of four gene regions. In total, 173 mite individuals were collected belonging to 18 species in 11 genera. A total of 135 fungal isolates were obtained from the mites, representing 14 taxa from the Ophiostomatales. The most frequently isolated fungus was Ophiostoma nitidum, which represented 23.5% of the total isolates. More fungal species were found from fewer mites and bark beetle species than from the study in Yunnan. Although we could not elucidate the exact nature of interactions between mites and their fungi, our results re-enforce that these organisms should not be ignored in pest risk assessments of bark beetles, that often focus only on the beetles and their fungi. Three new species are described: Grosmannia zekuensis, O. manchongi, and O. kunlunense spp. nov., and our data revealed that O. typographi, recently described from China, is a synonym of O. ainoae.

Journal ArticleDOI
TL;DR: DNA sequence analyses of the Ceratocystis isolates, including multiple gene regions, identified the isolates as C. eucalypticola, the first report of a Ceratocytes sp.
Abstract: Wilt and death of an E. grandis × E. urophylla variety was recently observed in the Zululand region of KwaZulu- Natal, South Africa. Symptoms on the dying trees included a streaking pattern of disc...