scispace - formally typeset
Search or ask a question

Showing papers by "Owen White published in 2007"


Journal ArticleDOI
Vishvanath Nene1, Jennifer R. Wortman1, Daniel Lawson, Brian J. Haas1, Chinnappa D. Kodira2, Zhijian Jake Tu3, Brendan J. Loftus, Zhiyong Xi4, Karyn Megy, Manfred Grabherr2, Quinghu Ren1, Evgeny M. Zdobnov, Neil F. Lobo5, Kathryn S. Campbell6, Susan E. Brown7, Maria de Fatima Bonaldo8, Jingsong Zhu9, Steven P. Sinkins10, David G. Hogenkamp11, Paolo Amedeo1, Peter Arensburger9, Peter W. Atkinson9, Shelby L. Bidwell1, Jim Biedler3, Ewan Birney, Robert V. Bruggner5, Javier Costas, Monique R. Coy3, Jonathan Crabtree1, Matt Crawford2, Becky deBruyn5, David DeCaprio2, Karin Eiglmeier12, Eric Eisenstadt1, Hamza El-Dorry13, William M. Gelbart6, Suely Lopes Gomes13, Martin Hammond, Linda Hannick1, James R. Hogan5, Michael H. Holmes1, David M. Jaffe2, J. Spencer Johnston, Ryan C. Kennedy5, Hean Koo1, Saul A. Kravitz, Evgenia V. Kriventseva14, David Kulp15, Kurt LaButti2, Eduardo Lee1, Song Li3, Diane D. Lovin5, Chunhong Mao3, Evan Mauceli2, Carlos Frederico Martins Menck13, Jason R. Miller1, Philip Montgomery2, Akio Mori5, Ana L. T. O. Nascimento16, Horacio Naveira17, Chad Nusbaum2, Sinéad B. O'Leary2, Joshua Orvis1, Mihaela Pertea, Hadi Quesneville, Kyanne R. Reidenbach11, Yu-Hui Rogers, Charles Roth12, Jennifer R. Schneider5, Michael C. Schatz, Martin Shumway1, Mario Stanke, Eric O. Stinson5, Jose M. C. Tubio, Janice P. Vanzee11, Sergio Verjovski-Almeida13, Doreen Werner18, Owen White1, Stefan Wyder14, Qiandong Zeng2, Qi Zhao1, Yongmei Zhao1, Catherine A. Hill11, Alexander S. Raikhel9, Marcelo B. Soares8, Dennis L. Knudson7, Norman H. Lee, James E. Galagan2, Steven L. Salzberg, Ian T. Paulsen1, George Dimopoulos4, Frank H. Collins5, Bruce W. Birren2, Claire M. Fraser-Liggett, David W. Severson5 
22 Jun 2007-Science
TL;DR: A draft sequence of the genome of Aedes aegypti, the primary vector for yellow fever and dengue fever, which at approximately 1376 million base pairs is about 5 times the size of the genomes of the malaria vector Anopheles gambiae was presented in this paper.
Abstract: We present a draft sequence of the genome of Aedes aegypti, the primary vector for yellow fever and dengue fever, which at approximately 1376 million base pairs is about 5 times the size of the genome of the malaria vector Anopheles gambiae. Nearly 50% of the Ae. aegypti genome consists of transposable elements. These contribute to a factor of approximately 4 to 6 increase in average gene length and in sizes of intergenic regions relative to An. gambiae and Drosophila melanogaster. Nonetheless, chromosomal synteny is generally maintained among all three insects, although conservation of orthologous gene order is higher (by a factor of approximately 2) between the mosquito species than between either of them and the fruit fly. An increase in genes encoding odorant binding, cytochrome P450, and cuticle domains relative to An. gambiae suggests that members of these protein families underpin some of the biological differences between the two mosquito species.

1,107 citations


Journal ArticleDOI
12 Jan 2007-Science
TL;DR: The genome sequence of the protist Trichomonas vaginalis predicts previously unknown functions for the hydrogenosome, which support a common evolutionary origin of this unusual organelle with mitochondria.
Abstract: We describe the genome sequence of the protist Trichomonas vaginalis, a sexually transmitted human pathogen. Repeats and transposable elements comprise about two-thirds of the similar to 160-megabase genome, reflecting a recent massive expansion of genetic material. This expansion, in conjunction with the shaping of metabolic pathways that likely transpired through lateral gene transfer from bacteria, and amplification of specific gene families implicated in pathogenesis and phagocytosis of host proteins may exemplify adaptations of the parasite during its transition to a urogenital environment. The genome sequence predicts previously unknown functions for the hydrogenosome, which support a common evolutionary origin of this unusual organelle with mitochondria.

751 citations


Journal ArticleDOI
21 Sep 2007-Science
TL;DR: In this article, the authors sequenced the ∼90 megabase (Mb) genome of the human filarial parasite Brugia malayi and predicted ∼11,500 protein coding genes in 71 Mb of robustly assembled sequence.
Abstract: Parasitic nematodes that cause elephantiasis and river blindness threaten hundreds of millions of people in the developing world. We have sequenced the ∼90 megabase (Mb) genome of the human filarial parasite Brugia malayi and predict ∼11,500 protein coding genes in 71 Mb of robustly assembled sequence. Comparative analysis with the free-living, model nematode Caenorhabditis elegans revealed that, despite these genes having maintained little conservation of local synteny during ∼350 million years of evolution, they largely remain in linkage on chromosomal units. More than 100 conserved operons were identified. Analysis of the predicted proteome provides evidence for adaptations of B. malayi to niches in its human and vector hosts and insights into the molecular basis of a mutualistic relationship with its Wolbachia endosymbiont. These findings offer a foundation for rational drug design.

583 citations


Vishvanath Nene, Jennifer R. Wortman, Daniel Lawson, Brian J. Haas, Chinnappa D. Kodira, Brendan J. Loftus, Zhiyong Xi, Karyn Megy, Manfred Grabherr, Evgeny M. Zdobnov, Neil F. Lobo, Kathryn S. Campbell, Susan E. Brown, Maria de Fatima Bonaldo, Jingsong Zhu, Steven P. Sinkins, David G. Hogenkamp, Paolo Amedo, Peter Arensburger, Peter W. Atkinson, Shelby L. Bidwell, Jim Biedler, Ewan Birney, Robert V. Bruggner, Javier Costas, Monique R. Coy, Jonathan Crabtree, Matt Crawford, David DeCaprio, Karin Eiglmeier, Eric Eisenstadt, Hamza El-Dorry, William M. Gelbart, Suely Lopes Gomes, Martin Hammond, Linda Hannick, James R. Hogan, Michael H. Holmes, David M. Jaffe, J. Spencer Johnston, Ryan C. Kennedy, Hean Koo, Saul A. Kravitz, Evgenia V. Kriventseva, David Kulp, Kurt LaButti, Eduardo Lee, Song Li, Diane D. Lovin, Chunhong Mao, Evan Mauceli, Carlos Frederico Martins Menck, Jason R. Miller, Philip Montgomery, Akio Mori, Ana L. T. O. Nascimento, Horacio Naveira, Chad Nusbaum, Mihaela Pertea, Hadi Quesneville, Kyanne R. Reidenbach, Yu-Hui Rogers, Charles Roth, Jennifer R. Schneider, Michael C. Schatz, Martin Shumway, Mario Stanke, Eric O. Stinson, Jose M. C. Tubio, Janice P. Vanzee, Doreen Werner, Owen White, Stefan Wyder, Qiandong Zeng, Qi Zhao, Yongmei Zhao, Catherine A. Hill, Alexander S. Raikhel, Marcelo B. Soares, Dennis L. Knudson, Norman H. Lee, James E. Galagan, Steven L. Salzberg, Ian T. Paulsen, George Dimopoulos, Frank H. Collins, Bruce W. Birren, Claire M. Fraser-Liggett, David W. Severson 
01 Jan 2007
TL;DR: An increase in genes encoding odorant binding, cytochrome P450, and cuticle domains relative to An.
Abstract: Vishvanath Nene,* Jennifer R. Wortman, Daniel Lawson, Brian Haas, Chinnappa Kodira, Zhijian (Jake) Tu, Brendan Loftus, Zhiyong Xi, Karyn Megy, Manfred Grabherr, Quinghu Ren, Evgeny M. Zdobnov, Neil F. Lobo, Kathryn S. Campbell, Susan E. Brown, Maria F. Bonaldo, Jingsong Zhu, Steven P. Sinkins, David G. Hogenkamp, Paolo Amedo, Peter Arensburger, Peter W. Atkinson, Shelby Bidwell, Jim Biedler, Ewan Birney, Robert V. Bruggner, Javier Costas, Monique R. Coy, Jonathan Crabtree, Matt Crawford, Becky deBruyn, David DeCaprio, Karin Eiglmeier, Eric Eisenstadt, Hamza El-Dorry, William M. Gelbart, Suely L. Gomes, Martin Hammond, Linda I. Hannick, James R. Hogan, Michael H. Holmes, David Jaffe, J. Spencer Johnston, Ryan C. Kennedy, Hean Koo, Saul Kravitz, Evgenia V. Kriventseva, David Kulp, Kurt LaButti, Eduardo Lee, Song Li, Diane D. Lovin, Chunhong Mao, Evan Mauceli, Carlos F. M. Menck, Jason R. Miller, Philip Montgomery, Akio Mori, Ana L. Nascimento, Horacio F. Naveira, Chad Nusbaum, Sinead O’Leary, Joshua Orvis, Mihaela Pertea, Hadi Quesneville, Kyanne R. Reidenbach, Yu-Hui Rogers, Charles W. Roth, Jennifer R. Schneider, Michael Schatz, Martin Shumway, Mario Stanke, Eric O. Stinson, Jose M. C. Tubio, Janice P. VanZee, Sergio VerjovskiAlmeida, Doreen Werner, Owen White, Stefan Wyder, Qiandong Zeng, Qi Zhao, Yongmei Zhao, Catherine A. Hill, Alexander S. Raikhel, Marcelo B. Soares, Dennis L. Knudson, Norman H. Lee, James Galagan, Steven L. Salzberg, Ian T. Paulsen, George Dimopoulos, Frank H. Collins, Bruce Birren, Claire M. Fraser-Liggett, David W. Severson*

95 citations


Book ChapterDOI
TL;DR: A two-phase protein clustering algorithm, used to generate protein clusters suitable for analysis through Sybil and a method for creating graphical displays of protein or gene clusters that span multiple genomes are described.
Abstract: With the successful completion of genome sequencing projects for a variety of model organisms, the selection of candidate organisms for future sequencing efforts has been guided increasingly by a desire to enable comparative genomics. This trend has both depended on and encouraged the development of software tools that can elucidate and capitalize on the similarities and differences between genomes. "Sybil," one such tool, is a primarily web-based software package whose primary goal is to facilitate the analysis and visualization of comparative genome data, with a particular emphasis on protein and gene cluster data. Herein, a two-phase protein clustering algorithm, used to generate protein clusters suitable for analysis through Sybil and a method for creating graphical displays of protein or gene clusters that span multiple genomes are described. When combined, these two relatively simple techniques provide the user of the Sybil software (The Institute for Genomic Research [TIGR] Bioinformatics Department) with a browsable graphical display of his or her "input" genomes, showing which genes are conserved based on the parameters supplied to the protein clustering algorithm. For any given protein cluster the graphical display consists of a local alignment of the genomes in which the clustered genes are located. The genomes are arranged in a vertical stack, as in a multiple alignment, and shaded areas are used to connect genes in the same cluster, thus displaying conservation at the protein level in the context of the underlying genomic sequences. The authors have found this display-and slight variants thereof-useful for a variety of annotation and comparison tasks, ranging from identifying "missed" gene models or single-exon discrepancies between orthologous genes, to finding large or small regions of conserved gene synteny, and investigating the properties of the breakpoints between such regions.

60 citations


Book ChapterDOI
22 May 2007
TL;DR: The Gemina system, developed at TIGR, has been designed as a tool to identify epidemiological factors of disease incidence and to support the design of DNA-based diagnostics such as the development of DNA signature-based assays.
Abstract: The Gemina system (http://gemina.tigr.org) developed at TIGR is a tool for identification of microbial and viral pathogens and their associated genomic sequences based on the associated epidemiological data. Gemina has been designed as a tool to identify epidemiological factors of disease incidence and to support the design of DNA-based diagnostics such as the development of DNA signature-based assays. The Gemina database contains the full complement of microbial and viral pathogens enumerated in the Microbial Rosetta Stone database (MRS) [1]. Initially, curation efforts in Gemina have focused on the NIAID category A, B, and C priority pathogens [2] identified to the level of strains. For the bacterial NIAID category A-C pathogens, for example, we have included 38 species and 769 strains in Gemina. Representative genomic sequences are selected for each pathogen from NCBI’s GenBank by a three tiered filtering system and incorporated into TIGR’s Panda DNA sequence database. A single representative sequence is selected for each pathogen firstly from complete genome sequences (Tier 1), secondly from whole genome shotgun (WGS) data from genome projects (Tier 2), or thirdly from genomic nucleotide sequences from genome projects (Tier3). The list of selected accessions is transferred to Insignia when new pathogens are added to Gemina, allowing Insignia’s Signature Pipeline [3] to be run for each pathogen identified in a Gemina query.

4 citations