scispace - formally typeset
Search or ask a question

Showing papers by "Patrick C. Y. Woo published in 2021"


Journal ArticleDOI
15 Apr 2021-Cell
TL;DR: In this paper, the authors performed a genome-wide RNAi screen and identified virus dependency factors (VDFs) which play regulatory roles in biological pathways linked to clinical manifestations of SARS-CoV-2 infection.

184 citations


Journal ArticleDOI
TL;DR: The One World One Guideline initiative as mentioned in this paper has been used to incorporate regional differences in the epidemiology and management of rare mold infections, including Fusarium, Lomentospora, Scedosporium, dematiaceous moulds, Rasamsonia, Schizophyllum, Scopulariopsis, Paecilomyces and Purpureocillium species.
Abstract: With increasing numbers of patients needing intensive care or who are immunosuppressed, infections caused by moulds other than Aspergillus spp or Mucorales are increasing. Although antifungal prophylaxis has shown effectiveness in preventing many invasive fungal infections, selective pressure has caused an increase of breakthrough infections caused by Fusarium, Lomentospora, and Scedosporium species, as well as by dematiaceous moulds, Rasamsonia, Schizophyllum, Scopulariopsis, Paecilomyces, Penicillium, Talaromyces and Purpureocillium species. Guidance on the complex multidisciplinary management of infections caused by these pathogens has the potential to improve prognosis. Management routes depend on the availability of diagnostic and therapeutic options. The present recommendations are part of the One World-One Guideline initiative to incorporate regional differences in the epidemiology and management of rare mould infections. Experts from 24 countries contributed their knowledge and analysed published evidence on the diagnosis and treatment of rare mould infections. This consensus document intends to provide practical guidance in clinical decision making by engaging physicians and scientists involved in various aspects of clinical management. Moreover, we identify areas of uncertainty and constraints in optimising this management.

117 citations



Journal ArticleDOI
TL;DR: A novel Mp1p antigen-detecting enzyme immunoassay (EIA) is highly specific and is superior in sensitivity and time to diagnosis compared to blood culture for the diagnosis of talaromycosis, enabling early treatment and potentially reducing mortality.
Abstract: BACKGROUND Talaromycosis is an invasive mycosis endemic in Southeast Asia and causes substantial morbidity and mortality in individuals with advanced human immunodeficiency virus (HIV) disease. Current diagnosis relies on isolating Talaromyces marneffei in cultures, which takes up to 14 days and is detectable only during late-stage infection, leading to high mortality. METHODS In this retrospective case-control study, we assessed the accuracy of a novel Mp1p antigen-detecting enzyme immunoassay (EIA) in stored plasma samples of 372 patients who had culture-proven talaromycosis from blood or sterile body fluids (reference standard) and 517 individuals without talaromycosis (338 healthy volunteers; 179 with other infections). All participants were recruited between 2011 and 2017 in Vietnam. RESULTS Of cases and controls, 66.1% and 75.4%, respectively, were male; the median age was 33 and 37, respectively. All cases were HIV infected; median CD4 count was 10 cells/μL. At an optical density cutoff of 0.5, the specificity was 98.1% (95% CI, 96.3%-99.0%); the sensitivity was superior to blood culture (86.3% [95% CI, 82.3%-89.5%] vs 72.8% [95% CI, 68.0%-77.2%]) (P < .001, McNemar test). The time to diagnosis was 6 hours vs 6.6 ± 3.0 days for blood culture. Paired plasma and urine testing in the same patients (n = 269) significantly increased sensitivity compared to testing plasma alone or testing urine alone (P < .001 and P = .02, respectively, McNemar test). CONCLUSIONS The Mp1p EIA is highly specific and is superior in sensitivity and time to diagnosis compared to blood culture for the diagnosis of talaromycosis. Paired plasma and urine testing further increases sensitivity, introducing a new tool for rapid diagnosis, enabling early treatment and potentially reducing mortality.

23 citations


Journal ArticleDOI
TL;DR: In Hong Kong, a more substantial decrease of invasive pneumococcal disease incidence was observed compared to other countries, which was most likely attributable to the proactive mass adoption of face masks by the public as mentioned in this paper.
Abstract: Compared to other countries, a more substantial decrease of invasive pneumococcal disease incidence was observed in Hong Kong, which is most likely attributable to the proactive mass adoption of face masks by the public. Human behavioral changes, particularly mask-wearing, should be considered as an additional prevention strategy against IPD.

21 citations


Journal ArticleDOI
TL;DR: A review of the current use of NGS for laboratory diagnosis of fungal infections can be found in this article, where Pneumocystis jirovecii is the predominant fungus reported, constituting 25% of the fungi detected.
Abstract: Next-generation sequencing (NGS) technologies have recently developed beyond the research realm and started to mature into clinical applications. Here, we review the current use of NGS for laboratory diagnosis of fungal infections. Since the first reported case in 2014, >300 cases of fungal infections diagnosed by NGS were described. Pneumocystis jirovecii is the predominant fungus reported, constituting ~25% of the fungi detected. In ~12.5% of the cases, more than one fungus was detected by NGS. For P. jirovecii infections diagnosed by NGS, all 91 patients suffered from pneumonia and only 1 was HIV-positive. This is very different from the general epidemiology of P. jirovecii infections, of which HIV infection is the most important risk factor. The epidemiology of Talaromyces marneffei infection diagnosed by NGS is also different from its general epidemiology, in that only 3/11 patients were HIV-positive. The major advantage of using NGS for laboratory diagnosis is that it can pick up all pathogens, particularly when initial microbiological investigations are unfruitful. When the cost of NGS is further reduced, expertise more widely available and other obstacles overcome, NGS would be a useful tool for laboratory diagnosis of fungal infections, particularly for difficult-to-grow fungi and cases with low fungal loads.

19 citations


Journal ArticleDOI
TL;DR: Tylonycteris-bat-CoV-HKU4 as discussed by the authors showed that it can infect human-dipeptidyl-peptidase-4-transgenic mice by intranasal inoculation with self-limiting disease.
Abstract: While a number of human coronaviruses are believed to be originated from ancestral viruses in bats, it remains unclear if bat coronaviruses are ready to cause direct bat-to-human transmission. Here, we report the isolation of a MERS-related coronavirus, Tylonycteris-bat-CoV-HKU4, from lesser bamboo bats. Tylonycteris-bat-CoV-HKU4 replicates efficiently in human colorectal adenocarcinoma and hepatocarcinoma cells with cytopathic effects, and can utilize human-dipeptidyl-peptidase-4 and dromedary camel-dipeptidyl-peptidase-4 as the receptors for cell entry. Flow cytometry, co-immunoprecipitation and surface plasmon resonance assays show that Tylonycteris-bat-CoV-HKU4-receptor-binding-domain can bind human-dipeptidyl-peptidase-4, dromedary camel-dipeptidyl-peptidase-4, and Tylonycteris pachypus-dipeptidyl-peptidase-4. Tylonycteris-bat-CoV-HKU4 can infect human-dipeptidyl-peptidase-4-transgenic mice by intranasal inoculation with self-limiting disease. Positive virus and inflammatory changes were detected in lungs and brains of infected mice, associated with suppression of antiviral cytokines and activation of proinflammatory cytokines and chemokines. The results suggest that MERS-related bat coronaviruses may overcome species barrier by utilizing dipeptidyl-peptidase-4 and potentially emerge in humans by direct bat-to-human transmission.

15 citations


Journal ArticleDOI
29 Oct 2021-Viruses
TL;DR: Wang et al. as mentioned in this paper proposed a method to monitor and reduce the chance of interspecies jumping events, either occurring naturally or through recombineering experiments to protect humans from future public health threats.
Abstract: In the last two decades, several coronavirus (CoV) interspecies jumping events have occurred between bats and other animals/humans, leading to major epidemics/pandemics and high fatalities. The SARS epidemic in 2002/2003 had a ~10% fatality. The discovery of SARS-related CoVs in horseshoe bats and civets and genomic studies have confirmed bat-to-civet-to-human transmission. The MERS epidemic that emerged in 2012 had a ~35% mortality, with dromedaries as the reservoir. Although CoVs with the same genome organization (e.g., Tylonycteris BatCoV HKU4 and Pipistrellus BatCoV HKU5) were also detected in bats, there is still a phylogenetic gap between these bat CoVs and MERS-CoV. In 2016, 10 years after the discovery of Rhinolophus BatCoV HKU2 in Chinese horseshoe bats, fatal swine disease outbreaks caused by this virus were reported in southern China. In late 2019, an outbreak of pneumonia emerged in Wuhan, China, and rapidly spread globally, leading to >4,000,000 fatalities so far. Although the genome of SARS-CoV-2 is highly similar to that of SARS-CoV, patient zero and the original source of the pandemic are still unknown. To protect humans from future public health threats, measures should be taken to monitor and reduce the chance of interspecies jumping events, either occurring naturally or through recombineering experiments.

13 citations


Journal ArticleDOI
10 Feb 2021
TL;DR: In this article, the authors reported a fatal case of COVID-19 pneumonia coinfected with HCoV-229E in Hong Kong and retrieved 41 archived respiratory samples from 2004 to 2019 for sequence analysis.
Abstract: Compared to other human coronaviruses, the genetic diversity and evolution of human coronavirus 229E (HCoV-229E) are relatively understudied. We report a fatal case of COVID-19 pneumonia coinfected with HCoV-229E in Hong Kong. Genome sequencing of SARS-CoV-2 and HCoV-229E from a nasopharyngeal sample of the patient showed that the SARS-CoV-2 strain HK13 was most closely related to SARS-CoV-2 type strain Wuhan-Hu-1 (99.99% nucleotide identity), compatible with his recent history of travel to Wuhan. The HCoV-229E strain HK20-42 was most closely related to HCoV-229E strain SC0865 from the United States (99.86% nucleotide identity). To investigate if it may represent a newly emerged HCoV-229E genotype in Hong Kong, we retrieved 41 archived respiratory samples that tested positive for HCoV-229E from 2004 to 2019. Pneumonia and exacerbations of chronic airway diseases were common among infected patients. Complete RdRp, S, and N gene sequencing of the 41 HCoV-229E strains revealed that our contemporary HCoV-229E strains have undergone significant genetic drift with clustering of strains in chronological order. Two novel genogroups were identified, in addition to previously described genogroups 1 to 4, with recent circulating strains including strain HK20-42 belonging to novel genogroup 6. Positive selection was detected in the spike protein and receptor-binding domain, which may be important for viral evolution at the receptor-binding interphase. Molecular dating analysis showed that HCoV-229E shared the most recent common ancestor with bat and camel/alpaca 229E-related viruses at ∼1884, while camel/alpaca viruses had a relatively recent common ancestor at ∼1999. Further studies are required to ascertain the evolutionary origin and path of HCoV-229E. IMPORTANCE Since its first appearance in the 1960s, the genetic diversity and evolution of human coronavirus 229E (HCoV-229E) have been relatively understudied. In this study, we report a fatal case of COVID-19 coinfected with HCoV-229E in Hong Kong. Genome sequencing revealed that our SARS-CoV-2 strain is highly identical to the SARS-CoV-2 strain from Wuhan, compatible with the patient’s recent travel history, whereas our HCoV-229E strain in this study is highly identical to a recent strain in the United States. We also retrieved 41 archived HCoV-229E strains from 2004 to 2019 in Hong Kong for sequence analysis. Pneumonia and exacerbations of chronic airway diseases were common diagnoses among the 41 patients. The results showed that HCoV-229E was evolving in chronological order. Two novel genogroups were identified in addition to the four preexisting HCoV-229E genogroups, with recent circulating strains belonging to novel genogroup 6. Molecular clock analysis dated bat-to-human and bat-to-camelid transmission to as early as 1884.

13 citations


Journal ArticleDOI
TL;DR: In this paper, a transferrable Cascade system was proposed to enable stable integration and expression of a highly active type I-F Cascade in heterologous bacterial hosts for various genetic exploitations.
Abstract: The Class 1 type I CRISPR-Cas systems represent the most abundant and diverse CRISPR systems in nature. However, their applications for generic genome editing have been hindered due to difficulties of introducing the class-specific, multi-component effectors (Cascade) in heterologous hosts for functioning. Here we established a transferrable Cascade system that enables stable integration and expression of a highly active type I-F Cascade in heterologous bacterial hosts for various genetic exploitations. Using the genetically recalcitrant Pseudomonas species as a paradigm, we show that the transferred Cascade displayed substantially higher DNA interference activity and greater editing capacity than both the integrative and plasmid-borne Cas9 systems, and enabled deletion of large fragments such as the 21-kb integrated cassette with efficiency and simplicity. An advanced I-F-λred system was further developed to enable editing in genotypes with poor homologous recombination capacity, clinical isolates lacking sequence information, and cells containing anti-CRISPR elements Acrs. Lastly, an 'all-in-one' I-F Cascade-mediated CRISPRi platform was developed for transcription modulation by simultaneous introduction of the Cascade and the programmed mini-CRISPR array in one-step. This study provides a framework for expanding the diverse type I Cascades for widespread, heterologous genome editing and establishment of editing techniques in 'non-model' bacterial species.

10 citations


Journal ArticleDOI
TL;DR: In this article, a dematiaceous fungus, HKU44T, was isolated from the subhepatic abscess of a wood-inhabiting fungus, called Pleurostoma, which causes phaeohyphomycosis.
Abstract: Pleurostoma species are wood-inhabiting fungi and emerging opportunistic pathogens causing phaeohyphomycosis. In this study, we isolated a dematiaceous fungus, HKU44T, from the subhepatic abscess p...

Posted ContentDOI
09 Feb 2021-bioRxiv
TL;DR: In this paper, a transferable I-F Cascade system was proposed to enable stable integration and expression of a complete and highly active Cascade in the notoriously recalcitrant and diverse P. aeruginosa genomes by conjugation.
Abstract: The Class 1 type I CRISPR-Cas systems represent the most abundant and diverse CRISPR systems in nature. However, their applications for generic genome editing have been hindered by difficulties of introducing the class-specific, multi-component effectors in heterologous hosts for functioning. Here we established a transferrable Cascade system that enables stable integration and expression of a complete and highly active I-F Cascade in the notoriously recalcitrant and diverse P. aeruginosa genomes by conjugation. The transferred Cascade displayed substantially higher DNA interference activity and greater editing capacity than the Cas9 system in diverse genetic backgrounds, including removal of the large (21-kb) integrated cassette with efficiency and simplicity. An advanced λred-I-F system enabled editing in genotypes with poor homologous recombination capacity, clinical isolates lacking sequence information, and cells containing anti-CRISPR elements Acrs. Lastly, an ‘all-in-one’ I-F Cascade-mediated CRISPRi platform was developed for transcription modulation by simultaneous introduction of the Cascade and the mini-CRISPR array expressing desired crRNA in one-step. This study provides a framework for expanding the diverse type I Cascades for widespread, heterologous genome editing and establishment of editing techniques in non-model isolates of pathogens.

Journal ArticleDOI
TL;DR: The results suggested that the ESBL-positive phenotype in L. hongkongensis results from the expression of the intrinsic AmpC beta-lactamase is present.
Abstract: In this study, we reported the prevalence and mechanism associated with the extended-spectrum beta-lactamase (ESBL)-positive phenotype in Laribacter hongkongensis isolated from patients and fish Using the inhibition zone enhancement test, 20 (952%) of the 21 patient strains and 8 (571%) of the 14 fish strains were tested ESBL-positive However, ESBL genes, including SHV, TEM, CTX-M, GES, and PER, were not detected in all of these 28 L hongkongensis isolates No ESBL gene could be detected in either the complete genome of L hongkongensis HLHK9 or the draft genome of PW3643 PCR and DNA sequencing revealed that all the 35 L hongkongensis isolates (showing both ESBL-positive and ESBL-negative phenotypes) were positive for the ampC gene When the AmpC deletion mutant, HLHK9ΔampC, was subject to the zone enhancement test, the difference of zone size between ceftazidime/clavulanate and ceftazidime was less than 5 mm When boronic acid was added to the antibiotic disks, none of the 28 "ESBL-positive" isolates showed a ≥ 5 mm enhancement of inhibition zone size diameter between ceftazidime/clavulanate and ceftazidime and between cefotaxime/clavulanate and cefotaxime A high prevalence (80%) of ESBL-positive phenotype is present in L hongkongensis Overall, our results suggested that the ESBL-positive phenotype in L hongkongensis results from the expression of the intrinsic AmpC beta-lactamase Confirmatory tests should be performed before issuing laboratory reports for L hongkongensis isolates that are tested ESBL-positive by disk diffusion clavulanate inhibition test

Journal ArticleDOI
10 May 2021
TL;DR: In this paper, a SARS-CoV-2 nucleocapsid protein-based competitive enzyme-linked immunosorbent assay (cELISA) was developed for serodiagnosis of COVID-19 which can theoretically be used in virtually all kinds of animals.
Abstract: In addition to human cases, cases of COVID-19 in captive animals and pets are increasingly reported. This raises the concern for two-way COVID-19 transmission between humans and animals. Here, we developed a SARS-CoV-2 nucleocapsid protein-based competitive enzyme-linked immunosorbent assay (cELISA) for serodiagnosis of COVID-19 which can theoretically be used in virtually all kinds of animals. We used 187 serum samples from patients with/without COVID-19, laboratory animals immunized with inactive SARS-CoV-2 virions, COVID-19-negative animals, and animals seropositive to other betacoronaviruses. A cut-off percent inhibition value of 22.345% was determined and the analytical sensitivity and specificity were found to be 1:64–1:256 and 93.9%, respectively. Evaluation on its diagnostic performance using 155 serum samples from COVID-19-negative animals and COVID-19 human patients showed a diagnostic sensitivity and specificity of 80.8% and 100%, respectively. The cELISA can be incorporated into routine blood testing of farmed/captive animals for COVID-19 surveillance.

Journal ArticleDOI
08 Mar 2021-Viruses
TL;DR: In this paper, using 229 fecal samples from dromedary camels in Dubai, 52.8% were positive for Picobirnaviruses (PBVs), of which 77.7% and 41.3% were negative for genogroup I and II, respectively.
Abstract: Picobirnaviruses (PBVs) are small non-enveloped bisegmented double-stranded RNA viruses found in humans, mammals, and birds. Increasing molecular epidemiology studies suggest a high sequence diversity of PBVs in numerous hosts and the environment. In this study, using 229 fecal samples from dromedary camels in Dubai, 52.8% were positive for PBVs, of which 77.7% and 41.3% were positive for genogroup I and II, respectively, and 19.0% were positive for both genotypes. Phylogenetic analysis showed high diversity among the sequences of genogroup I and II dromedary PBVs. Marked nucleotide polymorphisms were observed in 75.5% and 46.0% of genogroup I and II RNA-dependent RNA polymerase (RdRp) sequences, respectively, suggesting the co-existence of multiple strains in the same specimen. Both high genetic diversity and prevalence of genogroup I and II PBV in dromedaries were observed. In fact, the prevalence of genogroup II PBV in dromedaries is the highest among all animals to date. The complete/near-complete core genomes of five genogroup I and one genogroup II dromedary PBVs and partial segment 1 and 2 of both genotypes were also sequenced. The dromedary PBV genome organizations were similar to those of other animals. Genetic reassortment and mutation are both important in the ecology and evolution of PBVs.


Journal ArticleDOI
TL;DR: In this article, the in vitro susceptibilities of ceftolozane/tazobactam and six other antibiotics on typhoidal and non-typhoidal salmonellae, including isolates that are extended-spectrum β-lactamase (ESBL)-positive, using the broth microdilution test.
Abstract: Both typhoidal and non-typhoidal salmonellae are included in the top 15 drug-resistant threats described by the Center for Disease Control and Prevention of the United States. There is an urgent need to look for alternative antibiotics for the treatment of Salmonella infections. We examined the in vitro susceptibilities of ceftolozane/tazobactam and six other antibiotics on typhoidal and non-typhoidal salmonellae, including isolates that are extended-spectrum β-lactamase (ESBL)-positive, using the broth microdilution test. Of the 313 (52 typhoidal and 261 non-typhoidal) Salmonella isolates tested, 98.7% were susceptible to ceftolozane/tazobactam. Based on the overall MIC50/90 values, Salmonella isolates were more susceptible to ceftolozane/tazobactam (0.25/0.5 mg/L) compared to all other comparator agents: ampicillin (≥64/≥64 mg/L), levofloxacin (0.25/1 mg/L), azithromycin (4/16 mg/L), ceftriaxone (≤0.25/4 mg/L), chloramphenicol (8/≥64 mg/L) and trimethoprim/sulfamethoxazole (1/≥8 mg/L). When comparing the activity of the antimicrobial agents against non-typhoidal Salmonella isolates according to their serogroup, ceftolozane/tazobactam had the highest activity (100%) against Salmonella serogroups D, G, I and Q isolates, whereas the lowest activity (85.7%) was observed against serogroup E isolates. All the 10 ESBL-producing Salmonella (all non-typhoidal) isolates, of which 8 were CTX-M-55-producers and 2 were CTX-M-65-producers, were sensitive to ceftolozane/tazobactam albeit with a higher MIC50/90 value (1/2 mg/L) than non-ESBL-producers (0.25/0.5 mg/L). In summary, our data indicate that ceftolozane/tazobactam is active against most strains of both typhoidal and non-typhoidal salmonellae and also active against ESBL-producing salmonellae.