scispace - formally typeset
Search or ask a question

Showing papers by "Sarnjeet S. Dhesi published in 2017"


Journal ArticleDOI
TL;DR: Using x-ray magnetic linear dichroism microscopy, it is shown that staggered effective fields generated by electrical current can induce modification of the antiferromagnetic domain structure in microdevices fabricated from a tetragonal CuMnAs thin film.
Abstract: The magnetic order in antiferromagnetic materials is hard to control with external magnetic fields. Using x-ray magnetic linear dichroism microscopy, we show that staggered effective fields generated by electrical current can induce modification of the antiferromagnetic domain structure in microdevices fabricated from a tetragonal CuMnAs thin film. A clear correlation between the average domain orientation and the anisotropy of the electrical resistance is demonstrated, with both showing reproducible switching in response to orthogonally applied current pulses. However, the behavior is inhomogeneous at the submicron level, highlighting the complex nature of the switching process in multidomain antiferromagnetic films.

177 citations


Journal ArticleDOI
TL;DR: In this paper, a femtosecond pump-probe magneto-optical experiment based on magnetic linear dichroism was used to determine the Neel vector orientation in a thin film of antiferromagnetic CuMnAs.
Abstract: Recent breakthroughs in electrical detection and manipulation of antiferromagnets have opened a new avenue in the research of non-volatile spintronic devices.1-10 Antiparallel spin sublattices in antiferromagnets, producing zero dipolar fields, lead to the insensitivity to magnetic field perturbations, multi-level stability, ultrafast spin dynamics and other favorable characteristics which may find utility in fields ranging from magnetic memories to optical signal processing. However, the absence of a net magnetic moment and the ultra-short magnetization dynamics timescales make antiferromagnets notoriously difficult to study by common magnetometers or magnetic resonance techniques. In this paper we demonstrate the experimental determination of the Neel vector in a thin film of antiferromagnetic CuMnAs9,10 which is the prominent material used in the first realization of antiferromagnetic memory chips.10 We employ a femtosecond pump-probe magneto-optical experiment based on magnetic linear dichroism. This table-top optical method is considerably more accessible than the traditionally employed large scale facility techniques like neutron diffraction11 and Xray magnetic dichroism measurements.12-14 This optical technique allows an unambiguous direct determination of the Neel vector orientation in thin antiferromagnetic films utilized in devices directly from measured data without fitting to a theoretical model.

128 citations


Journal ArticleDOI
TL;DR: In this paper, the effect of the lateral confinement and a perpendicular magnetic field on isolated room-temperature magnetic skyrmions in sputtered Pt/Co/MgO nanotracks and nanodots was investigated.

61 citations


Journal ArticleDOI
TL;DR: Room–temperature robust and reproducible magnetoelectric switching in Co/BiFeO3 heterostructures with monodomain properties over the entire sample at room temperature is reported.
Abstract: Exploiting multiferroic BiFeO3 thin films in spintronic devices requires deterministic and robust control of both internal magnetoelectric coupling in BiFeO3, as well as exchange coupling of its antiferromagnetic order to a ferromagnetic overlayer. Previous reports utilized approaches based on multi-step ferroelectric switching with multiple ferroelectric domains. Because domain walls can be responsible for fatigue, contain localized charges intrinsically or via defects, and present problems for device reproducibility and scaling, an alternative approach using a monodomain magnetoelectric state with single-step switching is desirable. Here we demonstrate room temperature, deterministic and robust, exchange coupling between monodomain BiFeO3 films and Co overlayer that is intrinsic (i.e., not dependent on domain walls). Direct coupling between BiFeO3 antiferromagnetic order and Co magnetization is observed, with ~ 90° in-plane Co moment rotation upon single-step switching that is reproducible for hundreds of cycles. This has important consequences for practical, low power non-volatile magnetoelectric devices utilizing BiFeO3.

46 citations


Journal ArticleDOI
TL;DR: A remarkable reduction in the critical current density can be achieved for in-plane magnetised coupled domain walls in CoFe/Ru/CoFe synthetic ferrimagnet tracks, andoretical modelling indicates that this is due to nonadiabatic driving of anisotropically coupled walls, a mechanism that can be used to design efficient domain-wall devices.
Abstract: Domain walls in ferromagnetic nanowires are potential building-blocks of future technologies such as racetrack memories, in which data encoded in the domain walls are transported using spin-polarised currents. However, the development of energy-efficient devices has been hampered by the high current densities needed to initiate domain wall motion. We show here that a remarkable reduction in the critical current density can be achieved for in-plane magnetised coupled domain walls in CoFe/Ru/CoFe synthetic ferrimagnet tracks. The antiferromagnetic exchange coupling between the layers leads to simple Neel wall structures, imaged using photoemission electron and Lorentz transmission electron microscopy, with a width of only ~100 nm. The measured critical current density to set these walls in motion, detected using magnetotransport measurements, is 1.0 × 1011 Am−2, almost an order of magnitude lower than in a ferromagnetically coupled control sample. Theoretical modelling indicates that this is due to nonadiabatic driving of anisotropically coupled walls, a mechanism that can be used to design efficient domain-wall devices.

34 citations


Journal ArticleDOI
TL;DR: In this paper, the authors predict enhanced hole-doping of the CuO2 planes using density functional theory, which would increase c-axis transport and potentially enhance the interlayer Josephson coupling.
Abstract: Resonant optical excitation of apical oxygen vibrational modes in the normal state of underdoped YBa2Cu3O6+x induces a transient state with optical properties similar to those of the equilibrium superconducting state. Amongst these, a divergent imaginary conductivity and a plasma edge are transiently observed in the photo-stimulated state. Femtosecond hard x-ray diffraction experiments have been used in the past to identify the transient crystal structure in this non-equilibrium state. Here, we start from these crystallographic features and theoretically predict the corresponding electronic rearrangements that accompany these structural deformations. Using density functional theory, we predict enhanced hole-doping of the CuO2 planes. The empty chain Cu dy2-z2 orbital is calculated to strongly reduce in energy, which would increase c-axis transport and potentially enhance the interlayer Josephson coupling as observed in the THz-frequency response. From these results, we calculate changes in the soft x-ray absorption spectra at the Cu L-edge. Femtosecond x-ray pulses from a free electron laser are used to probe changes in absorption at two photon energies along this spectrum and provide data consistent with these predictions.

33 citations


Journal ArticleDOI
TL;DR: Time-resolved nonresonant and resonant x-ray diffraction is made use of to clarify the underlying physics and to separate different microscopic degrees of freedom in space and time at complex-oxide heterointerfaces.
Abstract: Selective optical excitation of a substrate lattice can drive phase changes across heterointerfaces. This phenomenon is a nonequilibrium analogue of static strain control in heterostructures and may lead to new applications in optically controlled phase change devices. Here, we make use of time-resolved nonresonant and resonant x-ray diffraction to clarify the underlying physics and to separate different microscopic degrees of freedom in space and time. We measure the dynamics of the lattice and that of the charge disproportionation in ${\mathrm{NdNiO}}_{3}$, when an insulator-metal transition is driven by coherent lattice distortions in the ${\mathrm{LaAlO}}_{3}$ substrate. We find that charge redistribution propagates at supersonic speeds from the interface into the ${\mathrm{NdNiO}}_{3}$ film, followed by a sonic lattice wave. When combined with measurements of magnetic disordering and of the metal-insulator transition, these results establish a hierarchy of events for ultrafast control at complex-oxide heterointerfaces.

27 citations


Posted Content
TL;DR: Femtosecond x-ray pulses from a free electron laser are used to probe changes in absorption at two photon energies along this spectrum and provide data consistent with predictions, which predict enhanced hole-doping of the CuO2 planes.
Abstract: Resonant optical excitation of apical oxygen vibrational modes in the normal state of underdoped YBa2Cu3O6+x induces a transient state with optical properties similar to those of the equilibrium superconducting state. Amongst these, a divergent imaginary conductivity and a plasma edge are transiently observed in the photo-stimulated state. Femtosecond hard x-ray diffraction experiments have been used in the past to identify the transient crystal structure in this non-equilibrium state. Here, we start from these crystallographic features and theoretically predict the corresponding electronic rearrangements that accompany these structural deformations. Using density functional theory, we predict enhanced hole-doping of the CuO2 planes. The empty chain Cu dy2-z2 orbital is calculated to strongly reduce in energy, which would increase c-axis transport and potentially enhance the interlayer Josephson coupling as observed in the THz-frequency response. From these calculations, we predict changes in the soft x-ray absorption spectra at the Cu L-edge. Femtosecond x-ray pulses from a free electron laser are used to probe these changes in absorption at two photon energies along this spectrum, and provide data consistent with these predictions.

20 citations


Journal ArticleDOI
TL;DR: In this paper, the authors demonstrate a collinear exchange coupling between an epitaxial antiferromagnet, tetragonal CuMnAs, and an Fe surface layer.
Abstract: Using x-ray magnetic circular and linear dichroism techniques, we demonstrate a collinear exchange coupling between an epitaxial antiferromagnet, tetragonal CuMnAs, and an Fe surface layer. A small uncompensated Mn magnetic moment is observed which is antiparallel to the Fe magnetization. The staggered magnetization of the 5 nm thick CuMnAs layer is rotatable under small magnetic fields, due to the interlayer exchange coupling. This allows us to obtain the x-ray magnetic linear dichroism spectra for different crystalline orientations of CuMnAs in the (001) plane. This is a key parameter for enabling the understanding of domain structures in CuMnAs imaged using x-ray magnetic linear dichroism microscopy techniques.

16 citations


Journal ArticleDOI
TL;DR: Theoretical modeling confirms a frustrated aggregation process in superfluid helium due to the antiferromagnetic nature of chromium, leading to abundant unbalanced surface spins.
Abstract: Chromium nanoparticles are formed using superfluid helium droplets as the nanoreactors, which are strongly ferromagnetic The transition from antiferromagentism to ferromagnetism is attributed to atomic scale disorder in chromium nanoparticles, leading to abundant unbalanced surface spins Theoretical modeling confirms a frustrated aggregation process in superfluid helium due to the antiferromagnetic nature of chromium

15 citations


Journal ArticleDOI
TL;DR: In this paper, the effects of high-temperature annealing on ferromagnetic Co-doped Indium Tin Oxide (ITO) thin films have been investigated using X-ray diffraction (XRD), magnetometry, and X-Ray Magnetic Circular Dichroism (XMCD).
Abstract: The effects of high-temperature annealing on ferromagnetic Co-doped Indium Tin Oxide (ITO) thin films have been investigated using X-ray diffraction (XRD), magnetometry, and X-Ray Magnetic Circular Dichroism (XMCD). Following annealing, the magnetometry results indicate the formation of Co clusters with a significant increase in the saturation magnetization of the thin films arising from defects introduced during cluster formation. However, sum rule analysis of the element-specific XMCD results shows that the magnetic moment at the Co sites is reduced after annealing. The effects of annealing demonstrate that the ferromagnetism observed in the as-deposited Co-doped ITO films arises from intrinsic defects and cannot be related to the segregation of metallic Co clusters.

Posted Content
TL;DR: A collinear exchange coupling between an epitaxial antiferromagnet, tetragonal CuMnAs, and an Fe surface layer is demonstrated and a small uncompensated Mn magnetic moment is observed which is antiparallel to the Fe magnetization.
Abstract: Using x-ray magnetic circular and linear dichroism techniques, we demonstrate a collinear exchange coupling between an epitaxial antiferromagnet, tetragonal CuMnAs, and an Fe surface layer. A small uncompensated Mn magnetic moment is observed which is antiparallel to the Fe magnetization. The staggered magnetization of the 5nm thick CuMnAs layer is rotatable under small magnetic fields, due to the interlayer exchange coupling. This allows us to obtain the x-ray magnetic linear dichroism spectra for different crystalline orientations of CuMnAs in the (001) plane.

Journal ArticleDOI
TL;DR: In this article, the demagnetization dynamics of the cycloidal and sinusoidal phases of multiferroic TbMnO$_3$ by means of time-resolved resonant soft x-ray diffraction following excitation by an optical pump is investigated.
Abstract: We investigate the demagnetization dynamics of the cycloidal and sinusoidal phases of multiferroic TbMnO$_3$ by means of time-resolved resonant soft x-ray diffraction following excitation by an optical pump. Using orthogonal linear x-ray polarizations, we suceeded in disentangling the response of the multiferroic cycloidal spin order from the sinusoidal antiferromagnetic order in the time domain. This enables us to identify the transient magnetic phase created by intense photoexcitation of the electrons and subsequent heating of the spin system on a picosecond timescale. The transient phase is shown to be a spin density wave, as in the adiabatic case, which nevertheless retains the wave vector of the cycloidal long range order. Two different pump photon energies, 1.55 eV and 3.1 eV, lead to population of the conduction band predominantly via intersite $d$-$d$ transitions or intrasite $p$-$d$ transitions, respectively. We find that the nature of the optical excitation does not play an important role in determining the dynamics of magnetic order melting. Further, we observe that the orbital reconstruction, which is induced by the spin ordering, disappears on a timescale comparable to that of the cycloidal order, attesting to a direct coupling between magnetic and orbital orders. Our observations are discussed in the context of recent theoretical models of demagnetization dynamics in strongly correlated systems, revealing the potential of this type of measurement as a benchmark for such complex theoretical studies.

Journal ArticleDOI
TL;DR: It is demonstrated that antiferromagnetic domain walls can be manipulated to realize stable and reproducible domain changes using only two electrical contacts by using the polarity of theCurrent to switch the sign of the current-induced effective field acting on the antiferromeagnetic sublattices.
Abstract: Antiferromagnets have a number of favourable properties as active elements in spintronic devices, including ultra-fast dynamics, zero stray fields and insensitivity to external magnetic fields . Tetragonal CuMnAs is a testbed system in which the antiferromagnetic order parameter can be switched reversibly at ambient conditions using electrical currents . In previous experiments, orthogonal in-plane current pulses were used to induce 90 degree rotations of antiferromagnetic domains and demonstrate the operation of all-electrical memory bits in a multi-terminal geometry . Here, we demonstrate that antiferromagnetic domain walls can be manipulated to realize stable and reproducible domain changes using only two electrical contacts. This is achieved by using the polarity of the current to switch the sign of the current-induced effective field acting on the antiferromagnetic sublattices. The resulting reversible domain and domain wall reconfigurations are imaged using x-ray magnetic linear dichroism microscopy, and can also be detected electrically. The switching by domain wall motion can occur at much lower current densities than those needed for coherent domain switching.