scispace - formally typeset
Search or ask a question

Showing papers by "Yang Yang published in 2019"



Journal ArticleDOI
Yang Yang, Huanan Wang1, Mohammed Kouadir, Houhui Song, Fushan Shi1 
TL;DR: Current understanding of the regulatory mechanisms of NLRP3 inflammasome activation as well as inhibitors that specifically and directly targetNLRP3 are summarized.
Abstract: The NLRP3 inflammasome is a multimeric protein complex that initiates an inflammatory form of cell death and triggers the release of proinflammatory cytokines IL-1β and IL-18. The NLRP3 inflammasome has been implicated in a wide range of diseases, including Alzheimer’s disease, Prion diseases, type 2 diabetes, and some infectious diseases. It has been found that a variety of stimuli including danger-associated molecular patterns (DAMPs, such as silica and uric acid crystals) and pathogen-associated molecular patterns (PAMPs) can activate NLRP3 inflammasome, but the specific regulatory mechanisms of NLRP3 inflammasome activation remain unclear. Understanding the mechanisms of NLRP3 activation will enable the development of its specific inhibitors to treat NLRP3-related diseases. In this review, we summarize current understanding of the regulatory mechanisms of NLRP3 inflammasome activation as well as inhibitors that specifically and directly target NLRP3.

741 citations


Journal ArticleDOI
20 Dec 2019-Science
TL;DR: The chemical environment of a functional group that is activated for defect passivation was systematically investigated with theophylline, caffeine, and theobromine and hydrogen-bond formation between N-H and I (iodine) assisted the primary C=O binding with the antisite Pb defect to maximize surface-defect binding.
Abstract: Surface trap–mediated nonradiative charge recombination is a major limit to achieving high-efficiency metal-halide perovskite photovoltaics. The ionic character of perovskite lattice has enabled molecular defect passivation approaches through interaction between functional groups and defects. However, a lack of in-depth understanding of how the molecular configuration influences the passivation effectiveness is a challenge to rational molecule design. Here, the chemical environment of a functional group that is activated for defect passivation was systematically investigated with theophylline, caffeine, and theobromine. When N-H and C=O were in an optimal configuration in the molecule, hydrogen-bond formation between N-H and I (iodine) assisted the primary C=O binding with the antisite Pb (lead) defect to maximize surface-defect binding. A stabilized power conversion efficiency of 22.6% of photovoltaic device was demonstrated with theophylline treatment.

684 citations


Journal ArticleDOI
19 Jun 2019-Joule
TL;DR: In this paper, 1,3,7-trimethylxanthine, a commodity chemical with two conjugated carboxyl groups better known by its common name caffeine, improves the performance and thermal stability of perovskite solar cells.

389 citations


Journal ArticleDOI
TL;DR: Here Han et al. choose a polymer with proper molecular structure to crosslink the perovskite grains to greatly improve the device stability, and all photovoltaic parameters are significantly enhanced in the solar cells and the devices also show excellent stability.
Abstract: Manipulation of grain boundaries in polycrystalline perovskite is an essential consideration for both the optoelectronic properties and environmental stability of solar cells as the solution-processing of perovskite films inevitably introduces many defects at grain boundaries. Though small molecule-based additives have proven to be effective defect passivating agents, their high volatility and diffusivity cannot render perovskite films robust enough against harsh environments. Here we suggest design rules for effective molecules by considering their molecular structure. From these, we introduce a strategy to form macromolecular intermediate phases using long chain polymers, which leads to the formation of a polymer-perovskite composite cross-linker. The cross-linker functions to bridge the perovskite grains, minimizing grain-to-grain electrical decoupling and yielding excellent environmental stability against moisture, light, and heat, which has not been attainable with small molecule defect passivating agents. Consequently, all photovoltaic parameters are significantly enhanced in the solar cells and the devices also show excellent stability.

352 citations


Journal ArticleDOI
TL;DR: A facile synthetic strategy is reported, where optoelectronic properties are delicately tuned by the introduction of electron-deficient-core-based fused structure into non-fullerene acceptors to achieve both low voltage loss and high current density, leading to a certified high efficiency.
Abstract: Despite significant development recently, improving the power conversion efficiency of organic photovoltaics (OPVs) is still an ongoing challenge to overcome. One of the prerequisites to achieving this goal is to enable efficient charge separation and small voltage losses at the same time. In this work, a facile synthetic strategy is reported, where optoelectronic properties are delicately tuned by the introduction of electron-deficient-core-based fused structure into non-fullerene acceptors. Both devices exhibited a low voltage loss of 0.57 V and high short-circuit current density of 22.0 mA cm-2, resulting in high power conversion efficiencies of over 13.4%. These unconventional electron-deficient-core-based non-fullerene acceptors with near-infrared absorption lead to low non-radiative recombination losses in the resulting organic photovoltaics, contributing to a certified high power conversion efficiency of 12.6%.

340 citations


Journal ArticleDOI
TL;DR: A comprehensive review of various strategies that attempt to modify the interfacial characteristics, control the crystal growth, and understand the defect physics in metal halide perovskites, for both solar cell and LED applications, is presented.
Abstract: Metal halide perovskites have been in the limelight in recent years due to their enormous potential for use in optoelectronic devices, owing to their unique combination of properties, such as high absorption coefficient, long charge-carrier diffusion lengths, and high defect tolerance. Perovskite-based solar cells and light-emitting diodes (LEDs) have achieved remarkable breakthroughs in a comparatively short amount of time. As of writing, a certified power conversion efficiency of 22.7% and an external quantum efficiency of over 10% have been achieved for perovskite solar cells and LEDs, respectively. Interfaces and defects have a critical influence on the properties and operational stability of metal halide perovskite optoelectronic devices. Therefore, interface and defect engineering are crucial to control the behavior of the charge carriers and to grow high quality, defect-free perovskite crystals. Herein, a comprehensive review of various strategies that attempt to modify the interfacial characteristics, control the crystal growth, and understand the defect physics in metal halide perovskites, for both solar cell and LED applications, is presented. Lastly, based on the latest advances and breakthroughs, perspectives and possible directions forward in a bid to transcend what has already been achieved in this vast field of metal halide perovskite optoelectronic devices are discussed.

268 citations


Journal ArticleDOI
TL;DR: The finding in this work provides a clear clue that a precise composition stoichiometry could guarantee the formation of high quality multicomponent perovskite films.
Abstract: Addressing the toxicity issue in lead-based perovskite compounds by seeking other nontoxic candidate elements represents a promising direction to fabricate lead-free perovskite solar cells. Recently, Cs2AgBiBr6 double perovskite achieved by replacing two Pb2+ with Ag+ and Bi3+ in the crystal lattice has drawn much attention owing to the convenient substitution of its chemical compositions. Herein, the dependence of the optoelectronic properties and corresponding photovoltaic performance of Cs2AgBiBr6 thin films on the deposition methods of vacuum sublimation and solution processing is investigated. Compared to the vacuum sublimation based one, the solution-processed Cs2AgBiBr6 shows inherently higher crystallinity, narrower electronic bandgap, longer photoexcitation lifetime, and higher mobility. The excellent optoelectronic properties are attributed to the accurate composition stoichiometry of Cs2AgBiBr6 films based on solution processing. These merits enable the corresponding perovskite solar cells to d...

205 citations


Journal ArticleDOI
TL;DR: The colloidal synthesis of all-inorganic low-dimensional cesium copper halide nanocrystals (NCs) by adopting a hot-injection approach is reported, finding that the highly luminescent, strongly Stokes-shifted broadband emission of 0D Cs3Cu2I5 NCs arises from the self-trapped excitons (STEs).
Abstract: Low-dimensional metal halides have recently attracted extensive attention owing to their unique structure and photoelectric properties. Herein, we report the colloidal synthesis of all-inorganic low-dimensional cesium copper halide nanocrystals (NCs) by adopting a hot-injection approach. Using the same reactants and ligands, but different reaction temperatures, both 1D CsCu2 I3 nanorods and 0D Cs3 Cu2 I5 NCs can be prepared. Density functional theory indicates that the reduced dimensionality in 1D CsCu2 I3 compared to 0D Cs3 Cu2 I5 makes the excitons more localized, which accounts for the strong emission of 0D Cs3 Cu2 I5 NCs. Subsequent optical characterization reveals that the highly luminescent, strongly Stokes-shifted broadband emission of 0D Cs3 Cu2 I5 NCs arises from the self-trapped excitons. Our findings not only present a method to control the synthesis of low-dimensional cesium copper halide nanocrystals but also highlight the potential of 0D Cs3 Cu2 I5 NCs in optoelectronics.

187 citations


Journal ArticleDOI
TL;DR: In this paper, the authors reviewed important studies on discovery, quantification, and mitigation of the ion migration process in metal halide perovskite materials, and a possible emerging application using the ion migrations is also briefly introduced.
Abstract: Metal halide perovskite materials have shown versatile functionality for a variety of optoelectronic devices. Remarkable progress in device performance has been achieved for last few years. Their high performance in combination with low production cost puts the perovskite optoelectronics under serious consideration for possible commercialization. A fundamental question that remains unanswered is whether these materials can sustain their optoelectronic properties during harsh and prolonged operational conditions of the devices. A major concern stems from an unprecedented and unique feature of perovskite materials, which is migration of ionic species (or charged defects). Recent studies have indicated that the ion migration might be a limit factor for long-term operational stability of the devices. In this regard, herein we have reviewed important studies on discovery, quantification, and mitigation of the ion migration process in metal halide perovskite materials. A possible emerging application using the ion migration is also briefly introduced.

175 citations


Journal ArticleDOI
Fupin Hu1, Yan Guo1, Yang Yang1, Yonggui Zheng1, Shi Wu1, Xiaofei Jiang1, Demei Zhu1, Fu Wang1 
TL;DR: The aim of this study is to investigate the antimicrobial susceptibility of strains isolated from the major hospitals in China, and it is worth to emphasize the importance of serious control of hospital infection and better management of clinical use of antimicrobial agents.
Abstract: The aim of this study is to investigate the antimicrobial susceptibility of strains isolated from the major hospitals in China. A total of 44 teaching hospitals were involved. Antimicrobial susceptibility testing was conducted by Kirby-Bauer automated systems, and results were interpreted using CLSI criteria. Totally 244,843 strains were isolated in 2018, of which gram-negative bacilli and gram-positive cocci were accounting for 71.8% and 28.2%, respectively. 39.7% of isolates were cultured from lower respiratory tract, 18.8% from urine, 14.8% from blood, 1.3% from cerebrospinal fluid, respectively. Of those, the five major species were most often isolated (65.5%, 63%, 52.3%, and 30.3%). The resistance rate of MRSA to most antimicrobial agents was significantly higher than that of MSSA strains, except for to trimethoprim-sulfamethoxazole in urine specimen. E.coli was still highly susceptible to carbapenem antibiotics, and the resistance rate was less than 5%. Carbapenem resistance among Klebsiella pneumoniae, especially cultured from cerebrospinal fluid, increased significance from 18.6 to 64.1%. The resistance rates of Pseudomonas aeruginosa to carbapenems were nearly 30% in the blood, in urine, and in the lower respiratory tract, but about 60% of that in cerebrospinal fluid. About 80% of Acinetobacter baumannii strains was resistant to imipenem and meropenem, respectively. Bacterial resistance of five major clinical isolates from cerebrospinal fluid to common antibiotics (in particular Carbapenem-resistant Klebsiella pneumoniae) currently shows an increasing trend. It is worth to emphasize the importance of serious control of hospital infection and better management of clinical use of antimicrobial agents.

Journal ArticleDOI
TL;DR: This is the first example of 0D perovskites with broadband emission spanning the entire visible spectrum, and (C8 NH12 )4 Bi0.57 Sb0.43 Br7 ⋅H2 O exhibits excellent humidity and light stability.
Abstract: Lead-free zero-dimensional (0D) organic-inorganic metal halide perovskites have recently attracted increasing attention for their excellent photoluminescence properties and chemical stability. Here, we report the synthesis and characterization of an air-stable 0D mixed metal halide perovskite (C8 NH12 )4 Bi0.57 Sb0.43 Br7 ⋅H2 O, in which individual [BiBr6 ]3- and [SbBr6 ]3- octahedral units are completely isolated and surrounded by the large organic cation C8 H12 N+ . Upon photoexcitation, the bulk crystals exhibit ultra-broadband emission ranging from 400 to 850 nm, which originates from both free excitons and self-trapped excitons. This is the first example of 0D perovskites with broadband emission spanning the entire visible spectrum. In addition, (C8 NH12 )4 Bi0.57 Sb0.43 Br7 ⋅H2 O exhibits excellent humidity and light stability. These findings present a new direction towards the design of environmentally-friendly, high-performance 0D perovskite light emitters.

Journal ArticleDOI
TL;DR: The selection rule of the donor/acceptor blend is demonstrated by rationally considering the molecular interaction and energy level alignment, and highly efficient OPV devices using both-fluorinated or both-nonfluorinate donor/ acceptor blends are realized.
Abstract: The performance of organic photovoltaics (OPVs) has rapidly improved over the past years. Recent work in material design has primarily focused on developing near-infrared nonfullerene acceptors with broadening absorption that pair with commercialized donor polymers; in the meanwhile, the influence of the morphology of the blend film and the energy level alignment on the efficiency of charge separation needs to be synthetically considered. Herein, the selection rule of the donor/acceptor blend is demonstrated by rationally considering the molecular interaction and energy level alignment, and highly efficient OPV devices using both-fluorinated or both-nonfluorinated donor/acceptor blends are realized. With the enlarged absorption, ideal morphology, and efficient charge transfer, the devices based on the PBDB-T-F/Y1-4F blend and PBDB-T-F/Y6 exhibit champion power conversion efficiencies as high as 14.8% and 15.9%, respectively.

Journal ArticleDOI
TL;DR: In this article, bio-inspired liposomes (SP-sLip) were developed by modifying liposomal surface with a short nontoxic peptide derived from Aβ1-42 that specifically interacts with the lipid-binding domain of exchangeable apolipoproteins.
Abstract: Protein corona presents a major obstacle to bench-to-bedside translation of targeted drug delivery systems, severely affecting targeting yields and directing unfavorable biodistribution. Corona-mediated targeting provides a new impetus for specific drug delivery by precisely manipulating interaction modes of functional plasma proteins on nano-surface. Here bio-inspired liposomes (SP-sLip) were developed by modifying liposomal surface with a short nontoxic peptide derived from Aβ1-42 that specifically interacts with the lipid-binding domain of exchangeable apolipoproteins. SP-sLip absorb plasma apolipoproteins A1, E and J, consequently exposing receptor-binding domain of apolipoproteins to achieve brain-targeted delivery. Doxorubicin loaded SP-sLip (SP-sLip/DOX) show significant enhancement of brain distribution and anti-brain cancer effect in comparison to doxorubicin loaded plain liposomes. SP-sLip preserve functions of the absorbed human plasma ApoE, and the corona-mediated targeting strategy works in SP modified PLGA nanoparticles. The present study may pave a new avenue to facilitate clinical translation of targeted drug delivery systems.

Journal ArticleDOI
24 Jan 2019-Cell
TL;DR: Crystal structures of mycobacterial MmpL3 alone and in complex with four TB drug candidates, including SQ109 (in Phase 2b-3 clinical trials), are reported, and two Asp-Tyr pairs centrally located in this domain appear to be key facilitators of proton-translocation.

Journal ArticleDOI
TL;DR: A new strategy to mediate the CsPbI2Br crystallization by directly doping the copper (II) bromide (CuBr2) into a perovskite precursor is developed, resulting in a high quality all-inorganic perovSKite film with enlarged grain size, improved carrier nobilities and reduced trap states.
Abstract: All-inorganic-based perovskites achieved by replacing the organic component with cesium (Cs) have drawn more attention because of their intrinsic inorganic stability. However, the cell efficiency in all-inorganic perovskite solar cells is still far below that in organic-inorganic hybrid perovskite-based devices. Here, we develop a new strategy to mediate the CsPbI2Br crystallization by directly doping copper(II) bromide (CuBr2) into a perovskite precursor. The incorporation of CuBr2 played a role in retarding the crystallization dynamics process of CsPbI2Br film, resulting in a high-quality all-inorganic perovskite film with enlarged grain size, improved carrier mobilities, and reduced trap states. The fabricated perovskite solar cells delivered a champion power conversion efficiency of 16.15%, which is the highest efficiency in CsPbI2Br based all-inorganic perovskite solar cells and largely higher than 13.24% for pristine CsPbI2Br based device. The developed doping method paves a new route to fabricate high-performance all-inorganic perovskite solar cells.

Journal ArticleDOI
TL;DR: This work demonstrates a methodology for property manipulation of perovskite thin films based on secondary grain growth, where tuning of the surface induces the internal property evolution of the entire perovkite film.
Abstract: Surface effects usually become negligible on the micrometer or sub-micrometer scale due to lower surface-to-bulk ratio compared to nanomaterials. In lead halide perovskites, however, their "soft" nature renders them highly responsive to the external field, allowing for extended depth scale affected by the surface. Herein, by taking advantage of this unique feature of perovskites we demonstrate a methodology for property manipulation of perovskite thin films based on secondary grain growth, where tuning of the surface induces the internal property evolution of the entire perovskite film. While in conventional microelectronic techniques secondary grain growth generally involves harsh conditions such as high temperature and straining, it is easily triggered in a perovskite thin film by a simple surface post-treatment, producing enlarged grain sizes of up to 4 μm. The resulting photovoltaic devices exhibit significantly enhanced power conversion efficiency and operational stability over a course of 1000 h and an ambient shelf stability of over 4000 h while maintaining over 90% of its original efficiency.


Journal ArticleDOI
01 Jan 2019
TL;DR: Different Internet of Things applications demand different levels of intelligence and efficiency in processing data, so multi-tier computing, which integrates cloud, fog and edge computing technologies, will be required in order to deliver future IoT services.
Abstract: Different Internet of Things (IoT) applications demand different levels of intelligence and efficiency in processing data. Multi-tier computing, which integrates cloud, fog and edge computing technologies, will be required in order to deliver future IoT services.

Journal ArticleDOI
TL;DR: The results indicate that, using this strategy, the photosensitivity of AIE-PS can be controlled and PDT can be treated under normal working conditions, not necessarily in a dark room.
Abstract: As a noninvasive treatment, photodynamic therapy (PDT) is a promising strategy against tumors. It is based on photosensitizer (PS)-induced phototoxicity after irradiation. However, most clinically approved PSs will be widely distributed in normal tissues, especially in the skin, where they will induce phototoxicity on exposure to light. Therefore, patients must remain in a dark room for up to several weeks during or after a PDT. Herein, we proposed a strategy of aggregation-induced emission PSs (AIE-PSs) entrapped in liposomes with controlled photosensitization. The AIE-PSs begin to lose their photosensitivity when entrapped in liposomes. After liposomes have carried AIE-PSs into tumor tissues, the AIE-PSs will be released and immediately reaggregate in a targeted area as the liposomes are decomposed. Their photosensitivity can be triggered at turn-on state and induce cytotoxicity. Two different types of AIE molecules were synthesized and entrapped by liposomes, respectively, to verify the PDT features against tumors in vitro and in vivo. The results indicate that, using this strategy, the photosensitivity of AIE-PS can be controlled and PDT can be treated under normal working conditions, not necessarily in a dark room.

Journal ArticleDOI
03 Jan 2019-ACS Nano
TL;DR: Flexible transparent organic photovoltaics (TOPVs) based on IR-absorbing organic materials were proposed, which can be a simple, low-cost, and promising way to utilize the IR light for electricity generation, and the penetrated visible light will be utilized for photosynthesis in plants.
Abstract: Because the visible and the infrared (IR) regions take up ∼47% and ∼51% of the energy in the solar spectrum (AM 1.5G standard), respectively, utilizing the visible light for plant growth and the IR...

Proceedings ArticleDOI
01 Oct 2019
TL;DR: Extensive experiments and ablation studies on seven re-id datasets demonstrate the superiority of the proposed UGA over most state-of-the-art unsupervised and domain adaptation re-ID methods.
Abstract: In this paper, we propose an unsupervised graph association (UGA) framework to learn the underlying viewinvariant representations from the video pedestrian tracklets. The core points of UGA are mining the underlying cross-view associations and reducing the damage of noise associations. To this end, UGA is adopts a two-stage training strategy: (1) intra-camera learning stage and (2) intercamera learning stage. The former learns the intra-camera representation for each camera. While the latter builds a cross-view graph (CVG) to associate different cameras. By doing this, we can learn view-invariant representation for all person. Extensive experiments and ablation studies on seven re-id datasets demonstrate the superiority of the proposed UGA over most state-of-the-art unsupervised and domain adaptation re-id methods.

Journal ArticleDOI
TL;DR: A fair and energy-minimized task offloading (FEMTO) algorithm based on a fairness scheduling metric, taking three important characteristics into consideration, which include the task offload energy consumption, the FN’s historical average energy and the FN priority is proposed.
Abstract: Future Internet of Things (IoT) networks enabled with fog computing is promising to achieve lower processing delay and lighter link burden, by effectively offloading the computing tasks of the terminal nodes (TNs) to nearby fog nodes (FNs) at the network edge. Existing researches for the energy consumption in fog-enabled networks mostly focused on the minimization of the overall energy consumed by the task offloading services. However, fair offloading among multiple FNs while maintaining a satisfactory energy efficiency is of great significance for the sustainability of the fog-enabled IoT networks, especially in the scenarios with battery-powered FNs. In this paper, we propose a fair and energy-minimized task offloading (FEMTO) algorithm based on a fairness scheduling metric, taking three important characteristics into consideration, which include the task offloading energy consumption, the FN’s historical average energy and the FN priority. The analytical results of the optimal target FN, the optimal TN transmission power, and the optimal subtask size are obtained in a fair and energy-minimized manner. Extensive simulations are carried out for the heterogeneous fog-enabled IoT network, and the numerical results indicate that the proposed FEMTO algorithm effectively determines the FN feasibility and the minimum energy consumption for the task offloading services. Moreover, a high and robust fairness level for the FNs’ energy consumptions is obtained by the proposed FEMTO algorithm.

Journal ArticleDOI
TL;DR: The results demonstrate that dual-modified biomimetic nanoparticles provide a potential method to improve drug delivery to the brain, hence increasing glioma therapy efficacy.
Abstract: Glioma is a fatal disease with limited treatment options and very short survival. Although chemotherapy is one of the most important strategies in glioma treatment, it remains extremely clinically challenging largely due to the blood-brain barrier (BBB) and the blood-brain tumor barrier (BBTB). Thus, the development of nanoparticles with both BBB and BBTB penetrability, as well as glioma-targeting feature, is extremely important for the therapy of glioma. New findings in nanomedicine are promoting the development of novel biomaterials. Herein, we designed a red blood cell membrane-coated solid lipid nanoparticle (RBCSLN)-based nanocarrier dual-modified with T7 and NGR peptide (T7/NGR-RBCSLNs) to accomplish these objectives. As a new kind of biomimetic nanovessels, RBCSLNs preserve the complex biological functions of natural cell membranes while possessing physicochemical properties that are needed for efficient drug delivery. T7 is a ligand of transferrin receptors with seven peptides that is able to circumvent the BBB and target to glioma. NGR is a peptide ligand of CD13 that is overexpressed during angiogenesis, representing an excellent glioma-homing property. After encapsulating vinca alkaloid vincristine as the model drug, T7/NGR-RBCSLNs exhibited the most favorable antiglioma effects in vitro and in vivo by combining the dual-targeting delivery effect. The results demonstrate that dual-modified biomimetic nanoparticles provide a potential method to improve drug delivery to the brain, hence increasing glioma therapy efficacy.

Journal ArticleDOI
TL;DR: Preliminary results suggest the great potential of this novel electron transfer material in high-efficiency perovskite solar cells, composed by the core-shell ZnO@SnO2 nanoparticles.
Abstract: The ideal charge transport materials should exhibit a proper energy level, high carrier mobility, sufficient conductivity, and excellent charge extraction ability. Here, a novel electron transport material was designed and synthesized by using a simple and facile solvothermal method, which is composed of the core-shell ZnO@SnO2 nanoparticles. Thanks to the good match between the energy level of the SnO2 shell and the high electron mobility of the core ZnO nanoparticles, the PCE of inorganic perovskite solar cells has reached 14.35% (JSC: 16.45 mA cm-2, VOC: 1.11 V, FF: 79%), acting core-shell ZnO@SnO2 nanoparticles as the electron transfer layer. The core-shell ZnO@SnO2 nanoparticles size is 8.1 nm with the SnO2 shell thickness of 3.4 nm, and the electron mobility is seven times more than SnO2 nanoparticles. Meanwhile, the uniform core-shell ZnO@SnO2 nanoparticles is extremely favorable to the growth of inorganic perovskite films. These preliminary results strongly suggest the great potential of this novel electron transfer material in high-efficiency perovskite solar cells.

Journal ArticleDOI
TL;DR: To minimize service delay in heterogeneous fog networks, a scalable, stable, and decentralized algorithm, namely dispersive stable task scheduling (DATS), is proposed and evaluated, which consists of a PE-based progressive computing resources competition and a QoE-oriented synchronized task scheduling.
Abstract: Fog computing has risen as a promising architecture for future Internet of Things, 5G and embedded artificial intelligence applications with stringent service delay requirements along the cloud to things continuum. For a typical fog network consisting of heterogeneous fog nodes (FNs) with different computing resources and communication capabilities, how to effectively schedule complex computation tasks to multiple FNs in the neighborhood to achieve minimal service delay is a fundamental challenge. To tackle this problem, a new concept named processing efficiency (PE) is first defined to incorporate computing resources and communication capacities. Further, to minimize service delay in heterogeneous fog networks, a scalable, stable, and decentralized algorithm, namely dispersive stable task scheduling (DATS), is proposed and evaluated, which consists of two key components: 1) a PE-based progressive computing resources competition and 2) a QoE-oriented synchronized task scheduling. Theoretical proofs and simulation results show that the proposed DATS algorithm can achieve effective tradeoff between computing resources and communication capabilities, thus significantly reducing service delay in heterogeneous fog networks.

Journal ArticleDOI
TL;DR: A group of polarized ferroelectric polymers are doped into the methylammonium lead iodide layer and/or inserted between the perovskite and the hole-transporting layers to enhance the build-in field (BIF), improve the crystallization of MAPbI3 , and regulate the nonradiative recombination in perovSkite solar cells.
Abstract: In hybrid organic-inorganic lead halide perovskite solar cells, the energy loss is strongly associated with nonradiative recombination in the perovskite layer and at the cell interfaces. Here, a simple but effective strategy is developed to improve the cell performance of perovskite solar cells via the combination of internal doping by a ferroelectric polymer and external control by an electric field. A group of polarized ferroelectric (PFE) polymers are doped into the methylammonium lead iodide (MAPbI3 ) layer and/or inserted between the perovskite and the hole-transporting layers to enhance the build-in field (BIF), improve the crystallization of MAPbI3 , and regulate the nonradiative recombination in perovskite solar cells. The PFE polymer-doped MAPbI3 shows an orderly arrangement of MA+ cations, resulting in a preferred growth orientation of polycrystalline perovskite films with reduced trap states. In addition, the BIF is enhanced by the widened depletion region in the device. As an interfacial dipole layer, the PFE polymer plays a critical role in increasing the BIF. This combined effect leads to a substantial reduction in voltage loss of 0.14 V due to the efficient suppression of nonradiative recombination. Consequently, the resulting perovskite solar cells present a power conversion efficiency of 21.38% with a high open-circuit voltage of 1.14 V.

Journal ArticleDOI
TL;DR: The distribution of a typical additive white Gaussian noise channel is successfully approximated by using the proposed GAN-based channel modeling framework, thus verifying its good performance and effectiveness.
Abstract: In modern wireless communication systems, wireless channel modeling has always been a fundamental task in system design and performance optimization. Traditional channel modeling methods, such as ray-tracing and geometry- based stochastic channel models, require in-depth domain-specific knowledge and technical expertise in radio signal propagations across electromagnetic fields. To avoid these difficulties and complexities, a novel generative adversarial network (GAN) framework is proposed for the first time to address the problem of autonomous wireless channel modeling without complex theoretical analysis or data processing. Specifically, the GAN is trained by raw measurement data to reach the Nash equilibrium of a MinMax game between a channel data generator and a channel data discriminator. Once this process converges, the resulting channel data generator is extracted as the target channel model for a specific application scenario. To demonstrate, the distribution of a typical additive white Gaussian noise channel is successfully approximated by using the proposed GAN-based channel modeling framework, thus verifying its good performance and effectiveness.

Journal ArticleDOI
TL;DR: In this paper, a chromosome-level genome for the grass Alloteropsis semialata, a species surmised to exhibit two LGTs, and screen it for other grass-to-grass LGTs using genomic data from 146 other grass species.
Abstract: A fundamental tenet of multicellular eukaryotic evolution is that vertical inheritance is paramount, with natural selection acting on genetic variants transferred from parents to offspring. This lineal process means that an organism's adaptive potential can be restricted by its evolutionary history, the amount of standing genetic variation, and its mutation rate. Lateral gene transfer (LGT) theoretically provides a mechanism to bypass many of these limitations, but the evolutionary importance and frequency of this process in multicellular eukaryotes, such as plants, remains debated. We address this issue by assembling a chromosome-level genome for the grass Alloteropsis semialata, a species surmised to exhibit two LGTs, and screen it for other grass-to-grass LGTs using genomic data from 146 other grass species. Through stringent phylogenomic analyses, we discovered 57 additional LGTs in the A. semialata nuclear genome, involving at least nine different donor species. The LGTs are clustered in 23 laterally acquired genomic fragments that are up to 170 kb long and have accumulated during the diversification of Alloteropsis. The majority of the 59 LGTs in A. semialata are expressed, and we show that they have added functions to the recipient genome. Functional LGTs were further detected in the genomes of five other grass species, demonstrating that this process is likely widespread in this globally important group of plants. LGT therefore appears to represent a potent evolutionary force capable of spreading functional genes among distantly related grass species.

Journal ArticleDOI
TL;DR: In this paper, a 2D/2D porous graphitic C3N4/SnS2 composite was designed by in-situ growth of SnS2 onto Pg-C 3N4 sheets.