scispace - formally typeset
Search or ask a question

Showing papers by "Ames Research Center published in 1994"


Journal ArticleDOI
TL;DR: In this paper, two new two-equation eddy-viscosity turbulence models are presented, which combine different elements of existing models that are considered superior to their alternatives.
Abstract: Two new two-equation eddy-viscosity turbulence models will be presented. They combine different elements of existing models that are considered superior to their alternatives. The first model, referred to as the baseline (BSL) model, utilizes the original k-ω model of Wilcox in the inner region of the boundary layer and switches to the standard k-e model in the outer region and in free shear flows. It has a performance similar to the Wilcox model, but avoids that model's strong freestream sensitivity

15,459 citations


Book
01 Jan 1994
TL;DR: In this article, technology and applications for the rendering of virtual acoustic spaces are reviewed, including applications to computer workstations, communication systems, aeronautics and space, and sonic arts.
Abstract: Technology and applications for the rendering of virtual acoustic spaces are reviewed. Chapter 1 deals with acoustics and psychoacoustics. Chapters 2 and 3 cover cues to spatial hearing and review psychoacoustic literature. Chapter 4 covers signal processing and systems overviews of 3-D sound systems. Chapter 5 covers applications to computer workstations, communication systems, aeronautics and space, and sonic arts. Chapter 6 lists resources. This TM is a reprint of the 1994 book from Academic Press.

960 citations


Journal ArticleDOI
TL;DR: In this article, a perturbative correction to the method of configuration interaction with single substitutions (CIS) is presented, which approximately introduces the effect of double substitutions which are absent in CIS excited states.

626 citations


Journal ArticleDOI
TL;DR: In this article, a multidisciplinary review of empirical, statistical learning from a graphical model perspective is presented, including decomposition, differentiation, and manipulation of probability models from the exponential family.
Abstract: This paper is a multidisciplinary review of empirical, statistical learning from a graphical model perspective. Well-known examples of graphical models include Bayesian networks, directed graphs representing a Markov chain, and undirected networks representing a Markov field. These graphical models are extended to model data analysis and empirical learning using the notation of plates. Graphical operations for simplifying and manipulating a problem are provided including decomposition, differentiation, and the manipulation of probability models from the exponential family. Two standard algorithm schemas for learning are reviewed in a graphical framework: Gibbs sampling and the expectation maximization algorithm. Using these operations and schemas, some popular algorithms can be synthesized from their graphical specification. This includes versions of linear regression, techniques for feed-forward networks, and learning Gaussian and discrete Bayesian networks frorn data. The paper concludes by sketching some implications for data analysis and summarizing how some popular algorithms fall within the framework presented. The main original contributions here are the decomposition techniques and the demonstration that graphical models provide a framework for understanding and developing complex learning algorithms.

617 citations


Journal ArticleDOI
TL;DR: In this article, three direct numerical simulations of incompressible turbulent plane mixing layers have been performed and all the simulations were initialized with the same two velocity fields obtained from a direct numerical simulation of a turbulent boundary layer with a momentum thickness Reynolds number of 300.
Abstract: Three direct numerical simulations of incompressible turbulent plane mixing layers have been performed. All the simulations were initialized with the same two velocity fields obtained from a direct numerical simulation of a turbulent boundary layer with a momentum thickness Reynolds number of 300 computed by Spalart (J. Fluid Mech. 187, 61, 1988). In addition to a baseline case with no additional disturbances, two simulations were begun with two-dimensional disturbances of varying strength in addition to the boundary layer turbulence. After a development stage, the baseline case and the case with weaker additional two-dimensional disturbances evolve self-similarly, reaching visual thickness Reynolds numbers of up to 20 000. This self-similar period is characterized by a lack of large-scale organized pairings, a lack of streamwise vortices in the 'braid' regions, and scalar mixing that is characterized by 'marching' Probability Density Functions (PDFs). The case begun with strong additional two-dimensional disturbances only becomes approximately self-similar, but exhibits sustained organized large-scale pairings, clearly defined braid regions with streamwise vortices that span them, and scalar PDFs that are 'nonmarching.' It is also characterized by much more intense vertical velocity fluctuations than the other two cases. The statistics and structures in several experiments involving turbulent mixing layers are in better agreement with those of the simulations that do not exhibit organized pairings.

491 citations


Journal ArticleDOI
05 Aug 1994-Science
TL;DR: The structural transition from Iah to Ial is responsible for the diffusion and recombination of radicals in ultraviolet-photolyzed interstellar ices at low temperatures and can be used to explain hitherto anomalous properties of astrophysical ices.
Abstract: Selected area electron diffraction is used to monitor structural changes of vapor-deposited water ice in vacuum during warm-up from 15 to 188 K. A progression of three amorphous forms of water ice is found with well-defined transitions. The formation of a high-density amorphous form (Iah) at 15 K is confirmed, and the transition to the more familiar low-density form (Ial) occurs gradually over the range 38 to 68 K. At 131 K, the ice transforms into a third amorphous form (Iar), which precedes the crystallization of cubic ice (Ic) and coexists metastably with Ic from 148 K until at least 188 K. These structural transformations of amorphous water ice can be used to explain hitherto anomalous properties of astrophysical ices. The structural transition from Iah to Ial is responsible for the diffusion and recombination of radicals in ultraviolet-photolyzed interstellar ices at low temperatures. The occurrence and persistence of Iar explains anomalous gas retention and gas release from water-rich ices at temperatures above 150 K.

447 citations


Journal ArticleDOI
TL;DR: The MODIS land team (MODLAND) as mentioned in this paper developed a suite of global land products for EOSDIS implementation, including spectral albedo, land cover, spectral vegetation indices, snow and ice cover, surface temperature and fire.
Abstract: The Moderate Resolution Imaging Spectroradiometer (MODIS) will be the primary daily global monitoring sensor on the NASA Earth Observing System (EOS) satellites, scheduled for launch on the EOS-AM platform in June 1998 and the EOS-PM platform in December 2000. MODIS is a 36 channel radiometer covering 0·415-14·235 μm wavelengths, with spatial resolution from 250 m to 1 km at nadir. MODIS will be the primary EOS sensor for providing data on terrestrial biospheric dynamics and process activity. This paper presents the suite of global land products currently planned for EOSDIS implementation, to be developed by the authors of this paper, the MODIS land team (MODLAND). These include spectral albedo, land cover, spectral vegetation indices, snow and ice cover, surface temperature and fire, and a number of biophysical variables that will allow computation of global carbon cycles, hydrologic balances and biogeochemistry of critical greenhouse gases. Additionally, the regular global coverage of these var...

417 citations


Journal ArticleDOI
06 Jan 1994-Nature
TL;DR: There is a 1-in-10,000 chance that a large (∼2-km diameter) asteroid or comet will collide with the Earth during the next century, disrupting the ecosphere and killing a large fraction of the world's population as discussed by the authors.
Abstract: There is a 1-in-10,000 chance that a large (∼2-km diameter) asteroid or comet will collide with the Earth during the next century, disrupting the ecosphere and killing a large fraction of the world's population. Although impacts of this magnitude are so infrequent as to be beyond our personal experience, the long-term statistical hazard is comparable to that of many other, more familiar natural disasters, raising the question of whether mitigation measures should be considered.

381 citations


Journal ArticleDOI
TL;DR: This work constructs parallel finite element methods for the solution of hyperbolic conservation laws in one and two dimensions and presents results using adaptive h- and p-refinement to reduce the computational cost of the method.

370 citations


Journal ArticleDOI
TL;DR: In this paper, the dominant nonmethane organic species present in the atmosphere sampled primarily over eastern Canada (0-6 km, 35 deg-65 deg N) during ABLE3B (July to August 1990) was measured.
Abstract: Acetone (CH3COCH3) was found to be the dominant nonmethane organic species present in the atmosphere sampled primarily over eastern Canada (0-6 km, 35 deg-65 deg N) during ABLE3B (July to August 1990). A concentration range of 357 to 2310 ppt (= 10(exp -12) v/v) with a mean value of 1140 +/- 413 ppt was measured. Under extremely clean conditions, generally involving Arctic flows, lowest (background) mixing ratios of 550 +/- 100 ppt were present in much of the troposphere studied. Correlations between atmospheric mixing ratios of acetone and select species such as C2H2, CO, C3H8, C2Cl4 and isoprene provided important clues to its possible sources and to the causes of its atmospheric variability. Biomass burning as a source of acetone has been identified for the first time. By using atmospheric data and three-dimensional photochemical models, a global acetone source of 40-60 Tg (= 10(exp 12) g)/yr is estimated to be present. Secondary formation from the atmospheric oxidation of precursor hydrocarbons (principally propane, isobutane, and isobutene) provides the single largest source (51%). The remainder is attributable to biomass burning (26%), direct biogenic emissions (21%), and primary anthropogenic emissions (3%). Atmospheric removal of acetone is estimated to be due to photolysis (64%), reaction with OH radicals (24%), and deposition (12%). Model calculations also suggest that acetone photolysis contributed significantly to PAN formation (100-200 ppt) in the middle and upper troposphere of the sampled region and may be important globally. While the source-sink equation appears to be roughly balanced, much more atmospheric and source data, especially from the southern hemisphere, are needed to reliably quantify the atmospheric budget of acetone.

358 citations


Journal ArticleDOI
TL;DR: The spectral structure of the diffuse dust hydrocarbon C-H stretch absorption features is reasonably similar to UV photolyzed laboratory ice residues and is quite similar to the carbonaceous component of the Murchison meteorite as mentioned in this paper.
Abstract: We present new 3600 - 2700/cm (2.8 - 3.7 micrometer) spectra of objects whose extinction is dominated by dust in the diffuse interstellar medium. The observations presented here augment an ongoing study of the organic component of the diffuse interstellar medium. These spectra contain a broad feature centered near 3300/cm (3.0 micrometers) and/or a feature with a more complex profile near 2950/cm (3.4 micrometers), the latter of which is attributed to saturated aliphatic hydrocarbons in interstellar grains and is the primary interest of this paper. As in our earlier work, the similarity of the absorption bands near 2950/cm (3.4 micrometers) along different lines of sight and the correlation of these features with interstellar extinction reveal that the carrier of this band lies in the dust in the diffuse interstellar medium (DISM). At least 2.5% of the cosmic carbon in the local interstellar medium and 4% toward the Galactic center is tied up in the carrier of the 2950/cm (3.4 micrometer) band. The spectral structure of the diffuse dust hydrocarbon C-H stretch absorption features is reasonably similar to UV photolyzed laboratory ice residues and is quite similar to the carbonaceous component of the Murchison meteorite. The similarity between the DISM and the meteoritic spectrum suggests that some of the interstellar material originally incorporated into the solar nebula may have survived relatively untouched in primitive solar system bodies. Comparisons of the DISM spectrum to hydrogenated amorphous carbon and quenched carbonaceous composite are also presented. The A(sub V)/tau ratio for the 2950/cm (3.4 micrometer) feature is lower toward the Galactic center than toward sources in the local solar neighborhood (approximately 150 for the Galactic center sources vs. approximately 250 for the local ISM sources). A similar trend has been observed previously for silicates in the diffuse medium by Roche & Aitken, suggesting that (1) the silicate and carbonaceous materials in the DISM may be physically correlated and (2) there is either dust compositional variation in the galaxy or galactic variation in the grain population density distribution. We also note a possible absorption feature near 3050/cm (3.28 micrometers), a wavelength position that is characteristic of polycyclic aromatic hydrocarbons (PAHs).

Journal ArticleDOI
21 Oct 1994-Science
TL;DR: In this article, in situ measurements of the concentrations of OH, HO_2, ClO, BrO, NO, and NO_2 demonstrate the predominance of odd-hydrogen and halogen free-radical catalysis in determining the rate of removal of ozone in the lower stratosphere during May 1993.
Abstract: Simultaneous in situ measurements of the concentrations of OH, HO_2, ClO, BrO, NO, and NO_2 demonstrate the predominance of odd-hydrogen and halogen free-radical catalysis in determining the rate of removal of ozone in the lower stratosphere during May 1993. A single catalytic cycle, in which the rate-limiting step is the reaction of HO_2 with ozone, accounted for nearly one-half of the total O_3 removal in this region of the atmosphere. Halogen-radical chemistry was responsible for approximately one-third of the photochemical removal of O_3; reactions involving BrO account for one-half of this loss. Catalytic destruction by NO_2, which for two decades was considered to be the predominant loss process, accounted for less than 20 percent of the O_3 removal. The measurements demonstrate quantitatively the coupling that exists between the radical families. The concentrations of HO_2 and ClO are inversely correlated with those of NO and NO_2. The direct determination of the relative importance of the catalytic loss processes, combined with a demonstration of the reactions linking the hydrogen, halogen, and nitrogen radical concentrations, shows that in the air sampled the rate of O_3 removal was inversely correlated with total NO_x, loading.

Journal ArticleDOI
TL;DR: Experiments with cultured aerobic methane oxidising bacteria confirm that their biomarker lipids will be significantly depleted in 13C compared to the substrate, and have significant implications for the interpretation of specific compound isotopic signatures now being measured for hydrocarbons and other lipids present in sediments and petroleum.

Journal ArticleDOI
TL;DR: A complete line list with improved accuracy for all the rotation-vibration transitions of the fundamental, first, and second overtone bands up to v = 20 and J = 149 of the gradual state X 1 Sigma(+) of the seven CO isotopes is made available to the astronomical community.
Abstract: A complete line list with improved accuracy for all the rotation-vibration transitions of the fundamental, first, and second overtone bands up to v = 20 and J = 149 of the gradual state X 1 Sigma(+) of the seven CO isotopes -- (12)C(16)O, (13)C(16)O, (12)C(17)O, (12)C(18)O, (13)C(18)O, (14)C(16)O, and (13)c(17)O -- is made available to the astronomical community. A line list of the pure rotational transitions up to v = 5 and J = 60 is also made available for these seven isotopes. This line list contains the transition frequency, the lower state energy, the Einstein A-value, the g f-value, the transition strength at 3000 K or 1000 K for the pure rotational transitions, the expectation value of the effective dipole moment operator, and the quantum numbers of each transition. Individual partition functions are reported in the temperature range of 500 to 10,000 K. This line list is available as four text files from the author using an anonymous file transfer protocol (ftp) transfer and in computer-readable form in the AAS CD-ROM Series, Vol. 3.

Journal ArticleDOI
02 Jun 1994-Nature
TL;DR: It is found that letter-identification and grating-detection filters are identical, showing that the recognition of these objects at one size is mediated and constrained by a single visual filter, or 'channel'.
Abstract: WE hear periodic sounds, or tones, by means of parallel auditory filters, each tuned to a band of temporal frequency1, and we see periodic patterns, or gratings, by means of parallel visual filters, each tuned to a band of spatial frequency2. Beyond helping us to see gratings, do these visual filters participate in everyday tasks such as reading and object recognition? After all, grating visibility only requires the distinguishing of pattern from blank, whereas object recognition, for example letter identification, requires classification by the observer into one of many learned categories. Here we make use of results from hearing research3, applying to vision a noise-masking paradigm that reveals the filter(s) mediating any threshold task. We find that letter-identification and grating-detection filters are identical, showing that the recognition of these objects at one size is mediated and constrained by a single visual filter, or 'channel'.

Journal ArticleDOI
TL;DR: In this paper, a semi-implicit solution mechanism was proposed to solve the coagulation equations over size ranges divided into any number of discrete bins, which conserves particle volume, requires no iterations, and is numerically stable.

Journal ArticleDOI
TL;DR: This approach, which integrates remotely sensed data and GIS capabilities to identify villages with high vector-human contact risk, provides a promising tool for malaria surveillance programs that depend on labor-intensive field techniques, and could be applied to other vector-borne diseases.
Abstract: A landscape approach using remote sensing and geographic information system (GIS) technologies was developed to discriminate between villages at high and low risk for malaria transmission, as defined by adult Anopheles albimanus abundance. Satellite data for an area in southern Chiapas, Mexico were digitally processed to generate a map of landscape elements. The GIS processes were used to determine the proportion of mapped landscape elements surrounding 40 villages where An. albimanus abundance data had been collected. The relationships between vector abundance and landscape element proportions were investigated using stepwise discriminant analysis and stepwise linear regression. Both analyses indicated that the most important landscape elements in terms of explaining vector abundance were transitional swamp and unmanaged pasture. Discriminant functions generated for these two elements were able to correctly distinguish between villages with high and low vector abundance, with an overall accuracy of 90%. Regression results found both transitional swamp and unmanaged pasture proportions to be predictive of vector abundance during the mid-to-late wet season. This approach, which integrates remotely sensed data and GIS capabilities to identify villages with high vector-human contact risk, provides a promising tool for malaria surveillance programs that depend on labor-intensive field techniques. This is particularly relevant in areas where the lack of accurate surveillance capabilities may result in no malaria control action when, in fact, directed action is necessary. In general, this landscape approach could be applied to other vector-borne diseases in areas where 1) the landscape elements critical to vector survival are known and 2) these elements can be detected at remote sensing scales.

Journal ArticleDOI
TL;DR: A template-based model of self-motion estimation which uses direction- and speed-tuned input sensors similar to neurons in area MT of primate visual cortex is refined to deal with the gaze-stabilization case and extended to extract heading and relative depth simultaneously.

Journal ArticleDOI
TL;DR: Recently, a new Krylov subspace iteration, the quasi-minimal residual algorithm (QMR) was proposed, for solving general nonsingular non-Hermitian systems of linear equations.
Abstract: Recently, we proposed a new Krylov subspace iteration, the quasi-minimal residual algorithm (QMR) [1], for solving general nonsingular non-Hermitian systems of linear equations $$ Ax = b $$ (1) .


Journal ArticleDOI
TL;DR: The article addresses questions related to this emerging technology, interactive, virtual image displays enhanced by special processing and by nonvisual display modalities, such as auditory and haptic, to convince users that they are immersed in a synthetic space.
Abstract: Virtual environment displays arose from vehicle simulation and teleoperations technology of the 1960s. They are interactive, head-referenced computer displays that give users the illusion of displacement to another location. Different terms have been applied to the illusion. Some, like the oxymoronic "artificial reality" and "virtual reality", suggest much higher performance than current technology can generally provide. Others, like "cyberspace" are puzzling neologisms. Expressions like "virtual worlds" and "virtual environment" seem preferable because they are linguistically conservative, relating to well-established terms like virtual image. In fact, we can define virtual environments as interactive, virtual image displays enhanced by special processing and by nonvisual display modalities, such as auditory and haptic, to convince users that they are immersed in a synthetic space. Why are these displays useful? Who uses them? How are they developed? The article addresses these and other questions related to this emerging technology. >

Journal ArticleDOI
TL;DR: In this paper, a unique nucleation mechanism that involves formation of HNO3/H20 solutions on the sulfate ice particles was proposed, resulting in the formation of a relatively small number of large particles.
Abstract: Mechanisms for the formation of Type I (nitric acid-based) polar stratospheric clouds (PSCs) are discussed. If the pre-existing sulfate aerosols are liquid prior to PSC formation, then nitric acid particles (Type Ib) form by HNO3 dissolution in aqueous H2SO4 solution droplets. This process does not require a nucleation step for the formation of HNO3 aerosols, so most pre-existing aerosols grow to become relatively small HNO3-containing particles. At significantly lower temperatures, the resulting supercooled solutions (Type Ib) may freeze to form HNO3 ice particles (Type Ia). If the pre-existing sulfate aerosols are initially solid before PSC formation, then HNO3 vapor can be deposited directly on the frozen sulfate particles. However, because an energy barrier to the condensation exists a nucleation mechanism is involved. Here, we suggest a unique nucleation mechanism that involves formation of HNO3/H20 solutions on the sulfate ice particles. These nucleation processes may be highly selective, resulting in the formation of relatively small number of large particles.

Journal ArticleDOI
01 Mar 1994-Icarus
TL;DR: In this article, the authors re-examine the results of the Viking Biology Experiments and conclude that the best model for the martian soil contains oxidants produced by heterogeneous chemical reactions with a photochemically produced atmospheric oxidant.

Journal ArticleDOI
TL;DR: In this paper, the authors used the molecular basis as the expansion basis and showed that the error due to the use of approximate integrals is less than the error associated with truncation of a molecular basis set.
Abstract: By representing orbital products in an expansion basis, certain classes of two‐electron integrals are approximated for use in CCSD(T) calculations (singles and doubles coupled‐cluster plus a perturbational estimate of the effects of connected triple excitations). This leads to a very large reduction in disk storage and input/output requirements, with usually only a modest increase in computational effort. The new procedure will allow very large CCSD(T) calculations to be undertaken, limited only by available processor time. Using the molecular basis as the expansion basis, explicit numerical comparisons of equilibrium geometries, harmonic frequencies, and energy differences indicate that the error due to the use of approximate integrals is less than the error associated with truncation of the molecular basis set.

Journal ArticleDOI
TL;DR: In this article, the authors report on the analysis of 154 hours of early continuous high-speed photometry on the pulsating DB white dwarf (DBV) GD 358, obtained during the Whole Earth Telescope (WET) run of 1990 May.
Abstract: We report on the analysis of 154 hours of early continuous high-speed photometry on the pulsating DB white dwarf (DBV) GD 358, obtained during the Whole Earth Telescope (WET) run of 1990 May. The power spectrum of the light curve is dominated by power in the range from 1000 to 2400 microHz with more than 180 significant peaks in the total spectrum. We identify all of the triplet frequencies as degree l = 1, and from the details of their spacings we derive the total stellar mass as 0.61 + or - 0.03 solar mass, the mass of the outer helium envelope as 2.0 + or - 1.0 x 10(exp -6) M(sub *), the absolute luminosity as 0.050 + or - 0.012 solar luminosity and the distance as 42 + or - 3 pc. We find strong evidence for differential rotation in the radial direction -- the outer envelope is rotating at least 1.8 times faster than the core -- and we detect the presence of a weak magnetic field with a strength of 1300 + or - 300 G. We also find a significant power at the sums and differences of the dominant frequencies, indicating nonlinear processes are significant, but they have a richness and complexity that rules out resonant mode coupling as a major cause.

Journal ArticleDOI
TL;DR: Absolute intensities derived for the naphthalene cation differ from earlier experimental results by a factor of approximately 50, and from theoretical predictions by a factors of approximately 300, reasons for these discrepancies are discussed.
Abstract: Ionized polycyclic aromatic hydrocarbons (PAHs) are thought to constitute an important component of the interstellar medium. Despite this fact, the infrared spectroscopic properties of ionized PAHs are almost unknown. The results we present here derive from our ongoing spectroscopic study of matrix isolated PAH ions and include the spectra of the naphthalene cation, C10H8(+), and its fully deuterated analog, C10D8(+), between 4000 and 200/cm. Ions are generated by in situ Lyman-alpha photoionization of the neutral precursor. Bands of the C10H8(+) ion are observed at 1525.7, 1518.8, 1400.9, 1218.0, 1216.9, 1214.9, 1023.2, and 758.7/cm. Positions and relative intensities of these bands agree well with those in the available literature. The 758.7/cm band has not previously been reported. C10D8(+) ion bands appear at 1466.2, 1463.8, 1379.4, 1373.8, 1077.3, 1075.4, and 1063.1/cm. Compared to the analogous modes in the neutral molecule, the intensities of the cation's CC modes are enhanced by an order of magnitude, while CH modes are depressed by this same factor. Integrated absorption intensities are calculated for the strongest bands of C10H8 and for the observed bands of C10H8(+). Absolute intensities derived for the naphthalene cation differ from earlier experimental results by a factor of approximately 50, and from theoretical predictions by a factor of approximately 300. Reasons for these discrepancies and from the astronomical implications of PAH cation spectra are discussed.

Book ChapterDOI
26 Jun 1994
TL;DR: Automated deduction techniques are being used in a system called Amphion to derive programs composed from a subroutine library, which is a collection of subroutines written in FORTRAN-77 at JPL to perform computations in solar-system kinematics.
Abstract: Automated deduction techniques are being used in a system called Amphion to derive, from graphical specifications, programs composed from a subroutine library. The system has been applied to construct software for the planning and analysis of interplanetary missions. The library for that application is a collection of subroutines written in FORTRAN-77 at JPL to perform computations in solar-system kinematics. An application domain theory has been developed that describes the procedures in a portion of the library, as well as some basic properties of solar-system astronomy, in the form of first-order axioms.

Journal ArticleDOI
TL;DR: In this paper, the authors measured the transmission of infrared light through thin films of varying thickness over the frequency range from about 7000 to 500/cm at temperatures below 200 K. They used an iterative Kramers-Kronig technique to determine the optical constants which gave the best match between measured transmission spectra and those calculated for a variety of films of different thickness.
Abstract: We determined the infrared optical constants of nitric acid trihydrate, nitric acid dihydrate, nitric acid monohydrate, and solid amorphous nitric acid solutions which crystallize to form these hydrates. We have also found the infrared optical constants of H2O ice. We measured the transmission of infrared light throught thin films of varying thickness over the frequency range from about 7000 to 500/cm at temperatures below 200 K. We developed a theory for the transmission of light through a substrate that has thin films on both sides. We used an iterative Kramers-Kronig technique to determine the optical constants which gave the best match between measured transmission spectra and those calculated for a variety of films of different thickness. These optical constants should be useful for calculations of the infrared spectrum of polar stratospheric clouds.

Journal ArticleDOI
TL;DR: In this paper, the authors review evidence relevant to solar nebula duration which is available through three different disciplines: theoretical modeling of star formation, isotopic data from meteorites, and astronomical observations of T Tauri stars, concluding that the balance of available evidence favors the view that the nebula existed and was active for at least several Ma.
Abstract: There are a variety of isotopic data for meteorites which suggest that the protostellar nebula existed and was involved in making planetary materials for some 10(exp 7) yr or more. Many cosmochemists, however, advocate alternative interpretations of such data in order to comply with a perceived constraint, from theoretical considerations, that the nebula existed only for a much shorter time, usually stated as less than or equal to 10(exp 6) yr. In this paper, we review evidence relevant to solar nebula duration which is available through three different disciplines: theoretical modeling of star formation, isotopic data from meteorites, and astronomical observations of T Tauri stars. Theoretical models based on observations of present star-forming regions indicate that stars like the Sun form by dynamical gravitational collapse of dense cores of cold molcular clouds in the interstellar clouds in the interstellar medium. The collapse to a star and disk occurs rapidly, on a time scale of the order 10(exp 5) yr. Disks evolve by dissipating energy while redistributing angular momentum, but it is difficult to predict the rate of evolution, particularly for low mass (compared to the star) disks which nonetheless still contain enough material to account for the observed planetary system. There is no compelling evidence, from available theories of disk structure and evolution, that the solar nebula must have evolved rapidly and could not have persisted for more than 1 Ma. In considering chronoloically relevant isotopic data for meteorites, we focus on three methodologies: absolute ages by U-Pb/Pb-Pb, and relative ages by short-lived radionuclides (especially Al-26) and by evolution of Sr-87/Sr-86. Two kinds of meteoritic materials-refractory inclusions such as CAIs and differential meteorites (eucrites and augrites) -- appear to have experienced potentially dateable nebular events. In both cases, the most straightforward interpretations of the available data indicate nebular events spanning several Ma. We also consider alternative interpretations, particularly the hypothesis of radically heterogeneous distribution of Al-26, which would avoid these chronological interpretations. The principal impetus for such alternative interpretations seems to be precisely the obviation of the chronological interpretation (i.e., the presumption rather than the inference of a short (less than or equal to 1 Ma) lifetime of the nebula). Astronomical observations of T Tauri stars indicate that the presence of dusty disks is a common if not universal feature, that the disks are massive enough to accomodate a planetary system such as ours, and that at least some persist for 110(exp 7) yr or more. The results are consistent with the time scales inferred from the meteoritic isotopic data. They cannot be considered conclusive with regard to solar nebula time scales, however, in part because it is difficult to relate disk observations to processes that affect meteorites, and in part because the ages assigned for these stars could be wrong by a factor of several in either direction. We conclude that the balance of available evidence favors the view that the nebula existed and was active for at least several Ma. However, because the evidence is not definitive, it is important that the issue be perceived to be an open question, whose answer should be sought rather than presumed.

Journal ArticleDOI
01 Jan 1994-Nature
TL;DR: In this paper, the authors simulated the passage of the parent comet through the tidal field of Jupiter in 1992 and found that the tidally disrupted body condenses rapidly into clumps, driven by their selfgravity.
Abstract: FOR a week beginning 16 July 1994, fragments of comet Shoemaker-Levy 9 will collide with Jupiter each day. Although the fragments are probably smaller than originally estimated1, the impacts may nevertheless have observable consequences that will provide valuable insight into the properties of comets and the dynamics of planetary atmospheres. Interpretation of these observations will depend sensitively on parameters such as the mass, density and overall structure of the fragments. To deduce some of these parameters, we have simulated the event that created the fragments—the passage of the parent comet through the tidal field of Jupiter in 1992. Modelling the comet as a strengthless aggregate consisting of a large number of grains, we find that the tidally disrupted body condenses rapidly into clumps, driven by their selfgravity. Formation of a fragment chain resembling Shoemaker-Levy 9 occurs for a narrow range of the simulated comet's bulk density, 0.3–0.7 g cm −3. A chain of ∼20 similar-sized fragments matching observations is obtained for a non-rotating parent comet of 1.5 km diameter and bulk density 0.5 g cm−3, suggesting that the clusters will each liberate ∼1027 erg on impact. A slightly larger initial density leads to significant mass variation among the clusters and the possibility of a few ∼1028-erg events.