scispace - formally typeset
Search or ask a question

Showing papers by "ETH Zurich published in 2006"


Book ChapterDOI
07 May 2006
TL;DR: A novel scale- and rotation-invariant interest point detector and descriptor, coined SURF (Speeded Up Robust Features), which approximates or even outperforms previously proposed schemes with respect to repeatability, distinctiveness, and robustness, yet can be computed and compared much faster.
Abstract: In this paper, we present a novel scale- and rotation-invariant interest point detector and descriptor, coined SURF (Speeded Up Robust Features). It approximates or even outperforms previously proposed schemes with respect to repeatability, distinctiveness, and robustness, yet can be computed and compared much faster. This is achieved by relying on integral images for image convolutions; by building on the strengths of the leading existing detectors and descriptors (in casu, using a Hessian matrix-based measure for the detector, and a distribution-based descriptor); and by simplifying these methods to the essential. This leads to a combination of novel detection, description, and matching steps. The paper presents experimental results on a standard evaluation set, as well as on imagery obtained in the context of a real-life object recognition application. Both show SURF's strong performance.

13,011 citations


Journal ArticleDOI
TL;DR: The first rigorous quantitative assessment of the relationship between biodiversity and ecosystem process rates through meta-analysis of experimental work spanning 50 years to June 2004 shows that biodiversity effects are weaker if biodiversity manipulations are less well controlled.
Abstract: Concern is growing about the consequences of biodiversity loss for ecosystem functioning, for the provision of ecosystem services, and for human well being. Experimental evidence for a relationship between biodiversity and ecosystem process rates is compelling, but the issue remains contentious. Here, we present the first rigorous quantitative assessment of this relationship through meta-analysis of experimental work spanning 50 years to June 2004. We analysed 446 measures of biodiversity effects (252 in grasslands), 319 of which involved primary producer manipulations or measurements. Our analyses show that: biodiversity effects are weaker if biodiversity manipulations are less well controlled; effects of biodiversity change on processes are weaker at the ecosystem compared with the community level and are negative at the population level; productivity-related effects decline with increasing number of trophic links between those elements manipulated and those measured; biodiversity effects on stability measures ('insurance' effects) are not stronger than biodiversity effects on performance measures. For those ecosystem services which could be assessed here, there is clear evidence that biodiversity has positive effects on most. Whilst such patterns should be further confirmed, a precautionary approach to biodiversity management would seem prudent in the meantime.

2,339 citations


Journal ArticleDOI
Axel Dreher1
TL;DR: This article developed an index of globalization covering its three main dimensions: economic integration, social integration, and political integration, using panel data for 123 countries in 1970-2000 and analyzed empirically whether the overall index and sub-indexes constructed to measure the single dimensions affect economic growth.
Abstract: The study develops an index of globalization covering its three main dimensions: economic integration, social integration, and political integration. Using panel data for 123 countries in 1970–2000 it is analysed empirically whether the overall index of globalization as well as sub-indexes constructed to measure the single dimensions affect economic growth. As the results show, globalization indeed promotes growth. The dimensions most robustly related with growth refer to actual economic flows and restrictions in developed countries. Although less robustly, information flows also promote growth whereas political integration has no effect.

2,208 citations


Journal ArticleDOI
14 Apr 2006-Science
TL;DR: Recent advances in mass spectrometry instrumentation are reviewed in the context of current and emerging research strategies in protein science.
Abstract: Mass spectrometry is a central analytical technique for protein research and for the study of biomolecules in general. Driven by the need to identify, characterize, and quantify proteins at ever increasing sensitivity and in ever more complex samples, a wide range of new mass spectrometry-based analytical platforms and experimental strategies have emerged. Here we review recent advances in mass spectrometry instrumentation in the context of current and emerging research strategies in protein science.

1,992 citations


Journal ArticleDOI
TL;DR: An efficient and reliable methodology for crystal structure prediction, merging ab initio total-energy calculations and a specifically devised evolutionary algorithm, which allows one to predict the most stable crystal structure and a number of low-energy metastable structures for a given compound at any P-T conditions without requiring any experimental input.
Abstract: We have developed an efficient and reliable methodology for crystal structure prediction, merging ab initio total-energy calculations and a specifically devised evolutionary algorithm. This method allows one to predict the most stable crystal structure and a number of low-energy metastable structures for a given compound at any P-T conditions without requiring any experimental input. Extremely high (nearly 100%) success rate has been observed in a few tens of tests done so far, including ionic, covalent, metallic, and molecular structures with up to 40 atoms in the unit cell. We have been able to resolve some important problems in high-pressure crystallography and report a number of new high-pressure crystal structures (stable phases: epsilon-oxygen, new phase of sulphur, new metastable phases of carbon, sulphur and nitrogen, stable and metastable phases of CaCO3). Physical reasons for the success of this methodology are discussed.

1,945 citations


Book ChapterDOI
Nikolaus Hansen1
01 Jan 2006
TL;DR: In this review, the argument starts out with large population sizes, reflecting recent extensions of the CMA algorithm, and similarities and differences to continuous Estimation of Distribution Algorithms are analyzed.
Abstract: Derived from the concept of self-adaptation in evolution strategies, the CMA (Covariance Matrix Adaptation) adapts the covariance matrix of a multi-variate normal search distribution. The CMA was originally designed to perform well with small populations. In this review, the argument starts out with large population sizes, reflecting recent extensions of the CMA algorithm. Commonalities and differences to continuous Estimation of Distribution Algorithms are analyzed. The aspects of reliability of the estimation, overall step size control, and independence from the coordinate system (invariance) become particularly important in small populations sizes. Consequently, performing the adaptation task with small populations is more intricate.

1,881 citations


Journal ArticleDOI
TL;DR: In this paper, the main processing routes that can be used for the fabrication of macroporous ceramics with tailored microstructure and chemical composition are reviewed and compared in terms of microstructures and mechanical properties.
Abstract: Macroporous ceramics with pore sizes from 400 nm to 4 mm and porosity within the range 20%–97% have been produced for a number of well-established and emerging applications, such as molten metal filtration, catalysis, refractory insulation, and hot gas filtration. These applications take advantage of the unique properties achieved through the incorporation of macropores into solid ceramics. In this article, we review the main processing routes that can be used for the fabrication of macroporous ceramics with tailored microstructure and chemical composition. Emphasis is given to versatile and simple approaches that allow one to control the microstructural features that ultimately determine the properties of the macroporous material. Replica, sacrificial template, and direct foaming techniques are described and compared in terms of microstructures and mechanical properties that can be achieved. Finally, directions to future investigations on the processing of macroporous ceramics are proposed.

1,638 citations


Journal ArticleDOI
TL;DR: Comparisons with three-dimensional calculations guide us to decipher the contributions of the excitation enhancement, spontaneous emission modification, and quenching in the molecular excitation and emission processes.
Abstract: We investigate the coupling of a single molecule to a single spherical gold nanoparticle acting as a nanoantenna. Using scanning probe technology, we position the particle in front of the molecule with nanometer accuracy and measure a strong enhancement of more than 20 times in the fluorescence intensity simultaneous to a 20-fold shortening of the excited state lifetime. Comparisons with three-dimensional calculations guide us to decipher the contributions of the excitation enhancement, spontaneous emission modification, and quenching. Furthermore, we provide direct evidence for the role of the particle plasmon resonance in the molecular excitation and emission processes.

1,513 citations


Journal ArticleDOI
30 Jun 2006-Science
TL;DR: Free-air concentration enrichment (FACE) technology has now facilitated large-scale trials of the major grain crops at elevated [CO2] under fully open-air field conditions, which casts serious doubt on projections that rising carbon dioxide concentration will fully offset losses due to climate change.
Abstract: Model projections suggest that although increased temperature and decreased soil moisture will act to reduce global crop yields by 2050, the direct fertilization effect of rising carbon dioxide concentration ([CO 2 ]) will offset these losses. The CO 2 fertilization factors used in models to project future yields were derived from enclosure studies conducted approximately 20 years ago. Free-air concentration enrichment (FACE) technology has now facilitated large-scale trials of the major grain crops at elevated [CO2] under fully open-air field conditions. In those trials, elevated [CO2] enhanced yield by E50% less than in enclosure studies. This casts serious doubt on projections that rising [CO2] will fully offset losses due to climate change.

1,453 citations


Proceedings ArticleDOI
20 Aug 2006
TL;DR: This work scrutinize a low level computer vision task - non-maximum suppression (NMS) - and derive several algorithms ranging from easy-to-implement to highly-efficient.
Abstract: In this work we scrutinize a low level computer vision task - non-maximum suppression (NMS) - which is a crucial preprocessing step in many computer vision applications. Especially in real time scenarios, efficient algorithms for such preprocessing algorithms, which operate on the full image resolution, are important. In the case of NMS, it seems that merely the straightforward implementation or slight improvements are known. We show that these are far from being optimal, and derive several algorithms ranging from easy-to-implement to highly-efficient.

1,311 citations


Journal ArticleDOI
TL;DR: While in vitro experiments may never replace in vivo studies, the relatively simple cytotoxic tests provide a readily available pre-screening method for nanomaterials in comparison to existing toxicological data.
Abstract: Early indicators for nanoparticle-derived adverse health effects should provide a relative measure for cytotoxicity of nanomaterials in comparison to existing toxicological data. We have therefore evaluated a human mesothelioma and a rodent fibroblast cell line for in vitro cytotoxicity tests using seven industrially important nanoparticles. Their response in terms of metabolic activity and cell proliferation of cultures exposed to 0−30 ppm nanoparticles (μg g-1) was compared to the effects of nontoxic amorphous silica and toxic crocidolite asbestos. Solubility was found to strongly influence the cytotoxic response. The results further revealed a nanoparticle-specific cytotoxic mechanism for uncoated iron oxide and partial detoxification or recovery after treatment with zirconia, ceria, or titania. While in vitro experiments may never replace in vivo studies, the relatively simple cytotoxic tests provide a readily available pre-screening method.

Journal Article
Nicolai Meinshausen1
TL;DR: It is shown here that random forests provide information about the full conditional distribution of the response variable, not only about the conditional mean, in order to be competitive in terms of predictive power.
Abstract: Random forests were introduced as a machine learning tool in Breiman (2001) and have since proven to be very popular and powerful for high-dimensional regression and classification For regression, random forests give an accurate approximation of the conditional mean of a response variable It is shown here that random forests provide information about the full conditional distribution of the response variable, not only about the conditional mean Conditional quantiles can be inferred with quantile regression forests, a generalisation of random forests Quantile regression forests give a non-parametric and accurate way of estimating conditional quantiles for high-dimensional predictor variables The algorithm is shown to be consistent Numerical examples suggest that the algorithm is competitive in terms of predictive power

Journal ArticleDOI
14 Sep 2006-Nature
TL;DR: The observed, outward-facing conformation reflects the ATP-bound state, with the two nucleotide-binding domains in close contact and the two transmembrane domains forming a central cavity—presumably the drug translocation pathway—that is shielded from the inner leaflet of the lipid bilayer and from the cytoplasm, but exposed to the outer leaflet and the extracellular space.
Abstract: Multidrug transporters of the ABC family facilitate the export of diverse cytotoxic drugs across cell membranes. This is clinically relevant, as tumour cells may become resistant to agents used in chemotherapy. To understand the molecular basis of this process, we have determined the 3.0 A crystal structure of a bacterial ABC transporter (Sav1866) from Staphylococcus aureus. The homodimeric protein consists of 12 transmembrane helices in an arrangement that is consistent with cross-linking studies and electron microscopic imaging of the human multidrug resistance protein MDR1, but critically different from that reported for the bacterial lipid flippase MsbA. The observed, outward-facing conformation reflects the ATP-bound state, with the two nucleotide-binding domains in close contact and the two transmembrane domains forming a central cavity—presumably the drug translocation pathway—that is shielded from the inner leaflet of the lipid bilayer and from the cytoplasm, but exposed to the outer leaflet and the extracellular space. Multidrug efflux transporters cause serious problems in cancer chemotherapy and in the treatment of bacterial infections. A puzzling aspect of their biology is how a single transporter can recognize and transport such a wide variety of structurally dissimilar compounds. The publication of the crystal structures of two quite different multidrug efflux transporters will help to solve the mystery. In the first study, the structure of AcrB — a multidrug efflux transporter from E. coli — was determined. Its three constituent subunits were captured at different steps in the transport cycle: prior to substrate binding, substrate-bound, and post-extrusion. The voluminous multidrug binding pocket handles multiple substrates via multi-site binding. The second study determined the structure of an ATP-driven multidrug transporter from S. aureus. The clinical relevance of this 'ABC' family of transporters derives from the fact that they catalyse the extrusion of various cytotoxic compounds used in cancer therapy. The structure, with the transporter in the outward-facing conformation, is a useful model of human homologues and may initiate the rational design of drugs aimed at interfering with the extrusion of agents used in chemotherapy.

Journal ArticleDOI
14 Sep 2006-Nature
TL;DR: In this paper, the authors explore the role of land-atmosphere interactions in influencing the interannual variability of summer climate in Europe and other mid-latitude regions, potentially causing more frequent heatwaves.
Abstract: Increasing greenhouse gas concentrations are expected to enhance the interannual variability of summer climate in Europe and other mid-latitude regions, potentially causing more frequent heatwaves. Climate models consistently predict an increase in the variability of summer temperatures in these areas, but the underlying mechanisms responsible for this increase remain uncertain. Here we explore these mechanisms using regional simulations of recent and future climatic conditions with and without land-atmosphere interactions. Our results indicate that the increase in summer temperature variability predicted in central and eastern Europe is mainly due to feedbacks between the land surface and the atmosphere. Furthermore, they suggest that land-atmosphere interactions increase climate variability in this region because climatic regimes in Europe shift northwards in response to increasing greenhouse gas concentrations, creating a new transitional climate zone with strong land-atmosphere coupling in central and eastern Europe. These findings emphasize the importance of soil-moisture-temperature feedbacks (in addition to soil-moisture-precipitation feedbacks) in influencing summer climate variability and the potential migration of climate zones with strong land-atmosphere coupling as a consequence of global warming. This highlights the crucial role of land-atmosphere interactions in future climate change.

Journal ArticleDOI
24 Feb 2006-Cell
TL;DR: Cell biology studies, live-cell imaging, and systems biology have started to illuminate the multiple and subtly different pathways that animal viruses use to enter host cells, revolutionizing the understanding of endocytosis and the movement of vesicles within cells.

Journal ArticleDOI
01 Jul 2006
TL;DR: CGA shape is shown to efficiently generate massive urban models with unprecedented level of detail, with the virtual rebuilding of the archaeological site of Pompeii as a case in point.
Abstract: CGA shape, a novel shape grammar for the procedural modeling of CG architecture, produces building shells with high visual quality and geometric detail. It produces extensive architectural models for computer games and movies, at low cost. Context sensitive shape rules allow the user to specify interactions between the entities of the hierarchical shape descriptions. Selected examples demonstrate solutions to previously unsolved modeling problems, especially to consistent mass modeling with volumetric shapes of arbitrary orientation. CGA shape is shown to efficiently generate massive urban models with unprecedented level of detail, with the virtual rebuilding of the archaeological site of Pompeii as a case in point.

Journal ArticleDOI
TL;DR: Organizational knowledge creation is the process of making available and amplifying knowledge created by individuals as well as crystallizing and connecting it to an organization's knowledge system as discussed by the authors, in other words, what individuals come to know in their (work-)life benefits their colleagues and, eventually, the larger organization.
Abstract: Organizational knowledge creation is the process of making available and amplifying knowledge created by individuals as well as crystallizing and connecting it to an organization's knowledge system. In other words, what individuals come to know in their (work-)life benefits their colleagues and, eventually, the larger organization. The theory explaining this process — the organizational knowledge creation theory — has developed rapidly in academia and been broadly diffused in management practice over the last 15 years. This article reviews the theory's central elements and identifies the evolving paths taken by academic work that uses the theory as a point of departure. The article furthermore proposes areas in which future research can advance the theory of organizational knowledge creation.

Journal ArticleDOI
TL;DR: Although many components of the ROS signaling network have recently been identified, the challenge remains to understand how ROS‐derived signals are integrated to eventually regulate such biological processes as plant growth, development, stress adaptation and programmed cell death.
Abstract: Reactive oxygen species (ROS) are known as toxic metabolic products in plants and other aerobic organisms. An elaborate and highly redundant plant ROS network, composed of antioxidant enzymes, antioxidants and ROS-producing enzymes, is responsible for maintaining ROS levels under tight control. This allows ROS to serve as signaling molecules that coordinate an astonishing range of diverse plant processes. The specificity of the biological response to ROS depends on the chemical identity of ROS, intensity of the signal, sites of production, plant developmental stage, previous stresses encountered and interactions with other signaling molecules such as nitric oxide, lipid messengers and plant hormones. Although many components of the ROS signaling network have recently been identified, the challenge remains to understand how ROS-derived signals are integrated to eventually regulate such biological processes as plant growth, development, stress adaptation and programmed cell death.

Journal ArticleDOI
TL;DR: Starting from chemical composition, USPEX is tested on numerous systems for which the stable structure is known and has observed a success rate of nearly 100%, simultaneously finding large sets of crystals.

Journal ArticleDOI
TL;DR: A methodology for comparing and validating biclustering methods that includes a simple binary reference model that captures the essential features of most bic Lustering approaches and proposes a fast divide-and-conquer algorithm (Bimax).
Abstract: Motivation: In recent years, there have been various efforts to overcome the limitations of standard clustering approaches for the analysis of gene expression data by grouping genes and samples simultaneously. The underlying concept, which is often referred to as biclustering, allows to identify sets of genes sharing compatible expression patterns across subsets of samples, and its usefulness has been demonstrated for different organisms and datasets. Several biclustering methods have been proposed in the literature; however, it is not clear how the different techniques compare with each other with respect to the biological relevance of the clusters as well as with other characteristics such as robustness and sensitivity to noise. Accordingly, no guidelines concerning the choice of the biclustering method are currently available. Results: First, this paper provides a methodology for comparing and validating biclustering methods that includes a simple binary reference model. Although this model captures the essential features of most biclustering approaches, it is still simple enough to exactly determine all optimal groupings; to this end, we propose a fast divide-and-conquer algorithm (Bimax). Second, we evaluate the performance of five salient biclustering algorithms together with the reference model and a hierarchical clustering method on various synthetic and real datasets for Saccharomyces cerevisiae and Arabidopsis thaliana. The comparison reveals that (1) biclustering in general has advantages over a conventional hierarchical clustering approach, (2) there are considerable performance differences between the tested methods and (3) already the simple reference model delivers relevant patterns within all considered settings. Availability: The datasets used, the outcomes of the biclustering algorithms and the Bimax implementation for the reference model are available at http://www.tik.ee.ethz.ch/sop/bimax Contact: bleuler@tik.ee.ethz.ch Supplementary information: Supplementary data are available at http://www.tik.ee.ethz.ch/sop/bimax

Journal ArticleDOI
TL;DR: The scenario‐based approach chosen in the present study provides a link between the knowledge on emission sources of phthalates and the concentrations ofphthalate metabolites found in human urine, which demonstrates that exposure of infant and adult consumers is caused by different sources in many cases.
Abstract: Phthalic acid esters (phthalates) are used as plasticizers in numerous consumer products, commodities, and building materials. Consequently, phthalates are found in human residential and occupational environments in high concentrations, both in air and in dust. Phthalates are also ubiquitous food and environmental contaminants. An increasing number of studies sampling human urine reveal the ubiquitous phthalate exposure of consumers in industrialized countries. At the same time, recent toxicological studies have demonstrated the potential of the most important phthalates to disturb the human hormonal system and human sexual development and reproduction. Additionally, phthalates are suspected to trigger asthma and dermal diseases in children. To find the important sources of phthalates in Europeans, a scenario-based approach is applied here. Scenarios representing realistic exposure situations are generated to calculate the age-specific range in daily consumer exposure to eight phthalates. The scenarios demonstrate that exposure of infant and adult consumers is caused by different sources in many cases. Infant consumers experience significantly higher daily exposure to phthalates in relation to their body weight than older consumers. The use of consumer products and different indoor sources dominate the exposure to dimethyl, diethyl, benzylbutyl, diisononyl, and diisodecyl phthalates, whereas food has a major influence on the exposure to diisobutyl, dibutyl, and di-2-ethylhexyl phthalates. The scenario-based approach chosen in the present study provides a link between the knowledge on emission sources of phthalates and the concentrations of phthalate metabolites found in human urine.

Journal ArticleDOI
03 Nov 2006-Science
TL;DR: It is shown that disruption of the right, but not the left, dorsolateral prefrontal cortex (DLPFC) by low-frequency repetitive transcranial magnetic stimulation substantially reduces subjects' willingness to reject their partners' intentionally unfair offers, which suggests that subjects are less able to resist the economic temptation to accept these offers.
Abstract: Humans restrain self-interest with moral and social values. They are the only species known to exhibit reciprocal fairness, which implies the punishment of other individuals' unfair behaviors, even if it hurts the punisher's economic self-interest. Reciprocal fairness has been demonstrated in the Ultimatum Game, where players often reject their bargaining partner's unfair offers. Despite progress in recent years, however, little is known about how the human brain limits the impact of selfish motives and implements fair behavior. Here we show that disruption of the right, but not the left, dorsolateral prefrontal cortex (DLPFC) by low-frequency repetitive transcranial magnetic stimulation substantially reduces subjects' willingness to reject their partners' intentionally unfair offers, which suggests that subjects are less able to resist the economic temptation to accept these offers. Importantly, however, subjects still judge such offers as very unfair, which indicates that the right DLPFC plays a key role in the implementation of fairness-related behaviors.

Journal ArticleDOI
TL;DR: This work states that individuals in small populations have lower fitness owing to environmental stress and genetic problems such as inbreeding, which can substantially increase the extinction probability of populations in changing environments.
Abstract: Small populations are predicted to have reduced capacity to adapt to environmental change for two reasons. First, population genetic models indicate that genetic variation and potential response to selection should be positively correlated with population size. The empirical support for this prediction is mixed: DNA markers usually reveal low heterozygosity in small populations, whereas quantitative traits show reduced heritability only in the smallest and most inbred populations. Quantitative variation can even increase in bottlenecked populations although this effect seems unlikely to increase the adaptive potential of populations. Second, individuals in small populations have lower fitness owing to environmental stress and genetic problems such as inbreeding, which can substantially increase the extinction probability of populations in changing environments. This second reason has not been included in assessments of critical population size assuring evolvability and makes it likely that many sm...

Journal ArticleDOI
TL;DR: A new continuous-time solver for quantum impurity models such as those relevant to dynamical mean field theory, based on a stochastic sampling of a perturbation expansion in the impurity-bath hybridization parameter is presented, which allows very efficient simulations even at low temperatures and for strong interactions.
Abstract: We present a new continuous-time solver for quantum impurity models such as those relevant to dynamical mean field theory. It is based on a stochastic sampling of a perturbation expansion in the impurity-bath hybridization parameter. Comparisons with Monte Carlo and exact diagonalization calculations confirm the accuracy of the new approach, which allows very efficient simulations even at low temperatures and for strong interactions. As examples of the power of the method we present results for the temperature dependence of the kinetic energy and the free energy, enabling an accurate location of the temperature-driven metal-insulator transition.

Journal ArticleDOI
TL;DR: It is demonstrated that the effects of maternal immune challenge between middle and late gestation periods in mice are dissociable in terms of fetal brain cytokine responses to maternal inflammation and the pathological consequences in brain and behavior.
Abstract: Disturbance to early brain development is implicated in several neuropsychiatric disorders including autism, schizophrenia, and mental retardation. Epidemiological studies have indicated that the risk of developing these disorders is enhanced by prenatal maternal infection, presumably as a result of neurodevelopmental defects triggered by cytokine-related inflammatory events. Here, we demonstrate that the effects of maternal immune challenge between middle and late gestation periods in mice are dissociable in terms of fetal brain cytokine responses to maternal inflammation and the pathological consequences in brain and behavior. Specifically, the relative expression of pro- and anti-inflammatory cytokines in the fetal brains in response to maternal immune challenge may be an important determinant among other developmental factors for the precise pathological profile emerging in later life. Thus, the middle and late gestation periods correspond to two windows with differing vulnerability to adult behavioral dysfunction, brain neuropathology in early adolescence, and of the acute cytokine responses in the fetal brain.

Journal ArticleDOI
TL;DR: This paper demonstrates that similar performance gains can be obtained in wireless relay networks employing terminals with MIMO capability, and proposes a protocol that assigns each relay terminal to one of the multiplexed data streams forwarded in a "doubly coherent" fashion (through matched filtering) to the destination terminal.
Abstract: The use of multiple antennas at both ends of a wireless link, popularly known as multiple-input multiple-output (MIMO) wireless, has been shown to offer significant improvements in spectral efficiency and link reliability through spatial multiplexing and space-time coding, respectively. This paper demonstrates that similar performance gains can be obtained in wireless relay networks employing terminals with MIMO capability. We consider a setup where a designated source terminal communicates with a designated destination terminal, both equipped with M antennas, assisted by K single-antenna or multiple-antenna relay terminals using a half-duplex protocol. Assuming perfect channel state information (CSI) at the destination and the relay terminals and no CSI at the source, we show that the corresponding network capacity scales as C = (M/2) log(K) + O(1) for fixed M, arbitrary (but fixed) number of (transmit and receive) antennas N at each of the relay terminals, and K rarr infin. We propose a protocol that assigns each relay terminal to one of the multiplexed data streams forwarded in a "doubly coherent" fashion (through matched filtering) to the destination terminal. It is shown that this protocol achieves the cut-set upper bound on network capacity for fixed M and K rarr infin (up to an O(1)-term) by employing independent stream decoding at the destination terminal. Our protocol performs inter-stream interference cancellation in a completely decentralized fashion, thereby orthogonalizing the effective MIMO channel between source and destination terminals. Finally, we discuss the case where the relay terminals do not have CSI and show that simple amplify-and-forward relaying, asymptotically in K, for fixed M and fixed N ges 1, turns the relay network into a point-to-point MIMO link with high-SNR capacity C = (M/2) log(SNR) + O(1), demonstrating that the use of relays as active scatterers can recover spatial multiplexing gain in poor scattering environments

Journal ArticleDOI
TL;DR: In this article, an analysis of the climate of precipitation extremes as simulated by six European regional climate models (RCMs) is undertaken in order to describe/quantify future changes and to examine/interpret differences between models.
Abstract: [1] An analysis of the climate of precipitation extremes as simulated by six European regional climate models (RCMs) is undertaken in order to describe/quantify future changes and to examine/interpret differences between models. Each model has adopted boundary conditions from the same ensemble of global climate model integrations for present (1961–1990) and future (2071–2100) climate under the Intergovernmental Panel on Climate Change A2 emission scenario. The main diagnostics are multiyear return values of daily precipitation totals estimated from extreme value analysis. An evaluation of the RCMs against observations in the Alpine region shows that model biases for extremes are comparable to or even smaller than those for wet day intensity and mean precipitation. In winter, precipitation extremes tend to increase north of about 45°N, while there is an insignificant change or a decrease to the south. In northern Europe the 20-year return value of future climate corresponds to the 40- to 100-year return value of present climate. There is a good agreement between the RCMs, and the simulated change is similar to a scaling of present-day extremes by the change in average events. In contrast, there are large model differences in summer when RCM formulation contributes significantly to scenario uncertainty. The model differences are well explained by differences in the precipitation frequency and intensity process, but in all models, extremes increase more or decrease less than would be expected from the scaling of present-day extremes. There is evidence for a component of the change that affects extremes specifically and is consistent between models despite the large variation in the total response.

Journal ArticleDOI
24 Aug 2006-Nature
TL;DR: Punishment experiments, which allow ‘impartial’ observers to punish norm violators, with indigenous groups in Papua New Guinea, show that these experiments confirm the prediction of parochialism and indicate the need to explicitly examine the interactions between individuals stemming from different groups in evolutionary models.
Abstract: Altruism is a vital source of cooperation and maintenance of social order in human societies. In recent years some evolutionary models of human altruism have predicted that parochialism (favouritism towards members of one's own ethnic, racial or language group) is an important feature of human altruism, but there is little empirical or experimental evidence on the matter. Punishment experiments with indigenous groups in Papua New Guinea now demonstrate that altruistic norm compliance and norm enforcement are strongly influenced by favouritism within ethnic, racial or language groups. In many modern societies there are strong political forces drawing on altruistic sentiments towards 'insiders' and aggressive sentiments towards outsiders. This work challenges existing evolutionary theories by implying a deep-seated basis for such behaviour. Punishment experiments with indigenous groups in Papua New Guinea demonstrate that altruistic norm compliance and norm enforcement are strongly influenced by favouritism within ethnic, racial, or language groups. The parochial patterns of human altruism constitute a challenge for existing evolutionary theories. Social norms and the associated altruistic behaviours are decisive for the evolution of human cooperation1,2,3,4,5,6,7,8,9 and the maintenance of social order10, and they affect family life, politics11 and economic interactions12. However, as altruistic norm compliance and norm enforcement often emerge in the context of inter-group conflicts13,14, they are likely to be shaped by parochialism15—a preference for favouring the members of one's ethnic, racial or language group. We have conducted punishment experiments16, which allow ‘impartial’ observers to punish norm violators, with indigenous groups in Papua New Guinea. Here we show that these experiments confirm the prediction of parochialism. We found that punishers protect ingroup victims—who suffer from a norm violation—much more than they do outgroup victims, regardless of the norm violator's group affiliation. Norm violators also expect that punishers will be lenient if the latter belong to their social group. As a consequence, norm violations occur more often if the punisher and the norm violator belong to the same group. Our results are puzzling for evolutionary multi-level selection theories based on selective group extinction2,3,4,5 as well as for theories of individual selection17,18,19; they also indicate the need to explicitly examine the interactions between individuals stemming from different groups in evolutionary models.

Journal ArticleDOI
TL;DR: It is proposed that the different molecular composition and higher phosphorylation of FAs on supermature islets, compared with FAs with classical islet status, accounts for higher stress resistance.
Abstract: Expression of α-smooth muscle actin (α-SMA) renders fibroblasts highly contractile and hallmarks myofibroblast differentiation. We identify α-SMA as a mechanosensitive protein that is recruited to stress fibers under high tension. Generation of this threshold tension requires the anchoring of stress fibers at sites of 8–30-μm-long “supermature” focal adhesions (suFAs), which exert a stress approximately fourfold higher (∼12 nN/μm2) on micropatterned deformable substrates than 2–6-μm-long classical FAs. Inhibition of suFA formation by growing myofibroblasts on substrates with a compliance of ≤11 kPa and on rigid micropatterns of 6-μm-long classical FA islets confines α-SMA to the cytosol. Reincorporation of α-SMA into stress fibers is established by stretching 6-μm-long classical FAs to 8.1-μm-long suFA islets on extendable membranes; the same stretch producing 5.4-μm-long classical FAs from initially 4-μm-long islets is without effect. We propose that the different molecular composition and higher phosphorylation of FAs on supermature islets, compared with FAs on classical islets, accounts for higher stress resistance.

Proceedings ArticleDOI
TL;DR: The SPHERE instrument as discussed by the authors was designed for direct detection and spectral characterization of extra-solar planets, where the main challenge consists in the very large contrast between the host star and the planet, typically inside the seeing halo.
Abstract: Direct detection and spectral characterization of extra-solar planets is one of the most exciting but also one of the most challenging areas in modern astronomy. The challenge consists in the very large contrast between the host star and the planet, larger than 12.5 magnitudes at very small angular separations, typically inside the seeing halo. The whole design of a "Planet Finder" instrument is therefore optimized towards reaching the highest contrast in a limited field of view and at short distances from the central star. Both evolved and young planetary systems can be detected, respectively through their reflected light and through the intrinsic planet emission. We present the science objectives, conceptual design and expected performance of the SPHERE instrument.