scispace - formally typeset
Search or ask a question
Institution

European Southern Observatory

FacilityGarching bei München, Germany
About: European Southern Observatory is a facility organization based out in Garching bei München, Germany. It is known for research contribution in the topics: Galaxy & Stars. The organization has 3594 authors who have published 16157 publications receiving 823095 citations. The organization is also known as: The European Southern Observatory,ESO & ESO.
Topics: Galaxy, Stars, Star formation, Redshift, Population


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the mass function of a complete sample of dense molecular cores in a single cloud employing a robust method that uses uses extinction of background starlight to measure core masses and enables the reliable extension of such measurements to lower masses.
Abstract: Context. Stars form in the cold dense cores of interstellar molecular clouds and the detailed knowledge of the spectrum of masses of such cores is clearly a key for the understanding of the origin of the IMF. To date, observations have presented somewhat contradictory evidence relating to this issue. Aims. In this paper we propose to derive the mass function of a complete sample of dense molecular cores in a single cloud employing a robust method that uses uses extinction of background starlight to measure core masses and enables the reliable extension of such measurements to lower masses than previously possible. Methods. We use a map of near-infrared extinction in the nearby Pipe dark cloud to identify the population of dense cores in the cloud and measure their masses. Results. We identify 159 dense cores and construct the mass function for this population. We present the first robust evidence for a departure from a single power-law form in the mass function of a population of cores and find that this mass function is surprisingly similar in shape to the stellar IMF but scaled to a higher mass by a factor of about 3. This suggests that the distribution of stellar birth masses (IMF) is the direct product of the dense core mass function and a uniform star formation efficiency of 30%±10%, and that the stellar IMF may already be fixed during or before the earliest stages of core evolution. These results are consistent with previous dust continuum studies which suggested that the IMF directly originates from the core mass function. The typical density of ∼10 4 cm −3 measured for the dense cores in this cloud suggests that the mass scale that characterizes the dense core mass function may be the result of a simple process of thermal (Jeans) fragmentation.

572 citations

Journal ArticleDOI
TL;DR: Reflex as discussed by the authors is an environment to automate data reduction workflows for astronomical data processing, which includes a rule-based data organiser, infrastructure to re-use results, thorough book-keeping, data progeny tracking, interactive user interfaces, and a novel concept to exploit information created during data organisation for the workflow execution.
Abstract: Context. Data from complex modern astronomical instruments often consist of a large number of di erent science and calibration files, and their reduction requires a variety of software tools. The execution chain of the tools represents a complex workflow that needs to be tuned and supervised, often by individual researchers that are not necessarily experts for any specific instrument. Aims. The e ciency of data reduction can be improved by using automatic workflows to organise data and execute a sequence of data reduction steps. To realize such e ciency gains, we designed a system that allows intuitive representation, execution and modification of the data reduction workflow, and has facilities for inspection and interaction with the data. Methods. The European Southern Observatory (ESO) has developed Reflex, an environment to automate data reduction workflows. Reflex is implemented as a package of customized components for the Kepler workflow engine. Kepler provides the graphical user interface to create an executable flowchart-like representation of the data reduction process. Key features of Reflex are a rule-based data organiser, infrastructure to re-use results, thorough book-keeping, data progeny tracking, interactive user interfaces, and a novel concept to exploit information created during data organisation for the workflow execution. Results. Automated workflows can greatly increase the e ciency of astronomical data reduction. In Reflex, workflows can be run noninteractively as a first step. Subsequent optimization can then be carried out while transparently re-using all unchanged intermediate products. We found that such workflows enable the reduction of complex data by non-expert users and minimizes mistakes due to book-keeping errors. Conclusions. Reflex includes novel concepts to increase the e ciency of astronomical data processing. While Reflex is a specific implementation of astronomical scientific workflows within the Kepler workflow engine, the overall design choices and methods can also be applied to other environments for running automated science workflows.

569 citations

Journal ArticleDOI
TL;DR: In this paper, high-resolution spectra obtained with three ground-based facilities and the Hubble Space Telescope (HST) have been combined to produce a new abundance analysis of CS 22892-052, an extremely metal-poor giant with large relative enhancements of neutron capture elements.
Abstract: High-resolution spectra obtained with three ground-based facilities and the Hubble Space Telescope (HST) have been combined to produce a new abundance analysis of CS 22892-052, an extremely metal-poor giant with large relative enhancements of neutron capture elements. A revised model stellar atmosphere has been derived with the aid of a large number of Fe peak transitions, including both neutral and ionized species of six elements. Several elements, including Mo, Lu, Au, Pt, and Pb, have been detected for the first time in CS 22892-052, and significant upper limits have been placed on the abundances of Ga, Ge, Cd, Sn, and U in this star. In total, abundance measurements or upper limits have been determined for 57 elements, far more than previously possible. New Be and Li detections in CS 22892-052 indicate that the abundances of both these elements are significantly depleted compared to unevolved main-sequence turnoff stars of similar metallicity. Abundance comparisons show an excellent agreement between the heaviest n-capture elements (Z ≥ 56) and scaled solar system r-process abundances, confirming earlier results for CS 22892-052 and other metal-poor stars. New theoretical r-process calculations also show good agreement with CS 22892-052 abundances and the solar r-process abundance components. The abundances of lighter elements (40 ≤ Z ≤ 50), however, deviate from the same scaled abundance curves that match the heavier elements, suggesting different synthesis conditions or sites for the low-mass and high-mass ends of the abundance distribution. The detection of Th and the upper limit on the U abundance together imply a lower limit of 10.4 Gyr on the age of CS 22892-052, quite consistent with the Th/Eu age estimate of 12.8± 3 Gyr. An average of several chronometric ratios yields an age 14.2± 3 Gyr.

567 citations

Journal ArticleDOI
TL;DR: In this paper, the authors used HST photometry with ground-based discovery for three supernovae: Type Ia supernova near z ≈ 0.5 (SN 1997ce, SN 1997cj) and a third event at z = 0.97 (SN1997ck).
Abstract: We have coordinated Hubble Space Telescope (HST) photometry with ground-based discovery for three supernovae: Type Ia supernovae near z ≈ 0.5 (SN 1997ce, SN 1997cj) and a third event at z = 0.97 (SN 1997ck). The superb spatial resolution of HST separates each supernova from its host galaxy and leads to good precision in the light curves. We use these light curves and relations between luminosity, light-curve shape, and color calibrated from low-z samples to derive relative luminosity distances that are accurate to 10% at z ≈ 0.5 and 20% at z = 1. When the HST sample is combined with the distance to SN 1995K (z = 0.48), analyzed by the same precepts, we find that matter alone is insufficient to produce a flat universe. Specifically, for Ωm+ΩΛ = 1, Ωm is less than 1 with more than 95% confidence, and our best estimate of Ωm is -0.1±0.5 if ΩΛ = 0. Although this result is based on a very small sample whose systematics remain to be explored, it demonstrates the power of HST measurements for high-redshift supernovae.

562 citations

Journal ArticleDOI
TL;DR: In this paper, the first results of a large Advanced Camera for Surveys (ACS) survey of Galactic globular clusters were presented, where the authors used fiducial sequences for three standard clusters (M92, NGC 6752, and 47 Tuc) with well-known metallicities and distances.
Abstract: We present the first results of a large Advanced Camera for Surveys (ACS) survey of Galactic globular clusters. This Hubble Space Telescope (HST) Treasury project is designed to obtain photometry with S/N (signal-to-noise ratio) 10 for main-sequence stars with masses 0.2 M⊙ in a sample of globulars using the ACS Wide Field Channel. Here we focus on clusters without previous HST imaging data. These include NGC 5466, NGC 6779, NGC 5053, NGC 6144, Palomar 2, E3, Lynga 7, Palomar 1, and NGC 6366. Our color-magnitude diagrams (CMDs) extend reliably from the horizontal branch to as much as 7 mag fainter than the main-sequence turnoff and represent the deepest CMDs published to date for these clusters. Using fiducial sequences for three standard clusters (M92, NGC 6752, and 47 Tuc) with well-known metallicities and distances, we perform main-sequence fitting on the target clusters in order to obtain estimates of their distances and reddenings. These comparisons, along with fitting the cluster main sequences to theoretical isochrones, yield ages for the target clusters. We find that the majority of the clusters have ages that are consistent with the standard clusters at their metallicities. The exceptions are E3, which appears ~2 Gyr younger than 47 Tuc, and Pal 1, which could be as much as 8 Gyr younger than 47 Tuc.

560 citations


Authors

Showing all 3617 results

NameH-indexPapersCitations
Robert C. Nichol187851162994
Richard S. Ellis169882136011
Rob Ivison1661161102314
Alvio Renzini16290895452
Timothy C. Beers156934102581
Krzysztof M. Gorski132380105912
Emanuele Daddi12958163187
P. R. Christensen12731388445
Mark Dickinson12438966770
Christopher W. Stubbs122622109429
Eva K. Grebel11886383915
Martin Asplund11861252527
Jesper Sollerman11872653436
E. F. van Dishoeck11574249190
Jørgen Christensen-Dalsgaard11458548272
Network Information
Related Institutions (5)
INAF
30.8K papers, 1.2M citations

98% related

Space Telescope Science Institute
14.1K papers, 947.2K citations

96% related

National Radio Astronomy Observatory
8.1K papers, 431.1K citations

95% related

Kapteyn Astronomical Institute
3.5K papers, 180.9K citations

95% related

Institut d'Astrophysique de Paris
7.6K papers, 491.5K citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20233
202231
2021557
2020920
2019759
2018941