scispace - formally typeset
Search or ask a question
Institution

European Southern Observatory

FacilityGarching bei München, Germany
About: European Southern Observatory is a facility organization based out in Garching bei München, Germany. It is known for research contribution in the topics: Galaxy & Stars. The organization has 3594 authors who have published 16157 publications receiving 823095 citations. The organization is also known as: The European Southern Observatory,ESO & ESO.
Topics: Galaxy, Stars, Star formation, Redshift, Population


Papers
More filters
Journal ArticleDOI
TL;DR: The MaNGA Survey (Mapping Nearby Galaxies at Apache Point Observatory) as discussed by the authors is one of the core programs in the Sloan Digital Sky Survey IV, which is obtaining integral field spectroscopy for 10,000 nearby galaxies at a spectral resolution of R ∼ 2000 from 3622 to 10354 A.
Abstract: The MaNGA Survey (Mapping Nearby Galaxies at Apache Point Observatory) is one of three core programs in the Sloan Digital Sky Survey IV. It is obtaining integral field spectroscopy for 10,000 nearby galaxies at a spectral resolution of R ∼ 2000 from 3622 to 10354 A. The design of the survey is driven by a set of science requirements on the precision of estimates of the following properties: star formation rate surface density, gas metallicity, stellar population age, metallicity, and abundance ratio, and their gradients; stellar and gas kinematics; and enclosed gravitational mass as a function of radius. We describe how these science requirements set the depth of the observations and dictate sample selection. The majority of targeted galaxies are selected to ensure uniform spatial coverage in units of effective radius (Re) while maximizing spatial resolution. About two-thirds of the sample is covered out to 1.5Re (Primary sample), and one-third of the sample is covered to 2.5Re (Secondary sample). We describe the survey execution with details that would be useful in the design of similar future surveys. We also present statistics on the achieved data quality, specifically the point-spread function, sampling uniformity, spectral resolution, sky subtraction, and flux calibration. For our Primary sample, the median r-band signal-to-noise ratio is ∼70 per 1.4 A pixel for spectra stacked between 1Re and 1.5Re. Measurements of various galaxy properties from the first-year data show that we are meeting or exceeding the defined requirements for the majority of our science goals.

268 citations

Journal ArticleDOI
TL;DR: In this paper, the evolution of the abundances of O, Mg, Si, Ca, K, Ti, Sc, Ni, Mn, Co, Fe and Zn in the Milky Way was investigated.
Abstract: We computed the evolution of the abundances of O, Mg, Si, Ca, K, Ti, Sc, Ni, Mn, Co, Fe and Zn in the Milky Way. We made use of the most widely adopted nucleosynthesis calculations and compared the model results with observational data with the aim of imposing constraints upon stellar yields. To best fit the data in the solar neighborhood, when adopting the Woosley & Weaver (1995, ApJS, 101, 181) yields for massive stars and the Iwamoto et al. (1999, ApJS, 125, 439) ones for type Ia SNe, it is required that: i) the Mg yields should be increased in stars with masses from 11 to 20 Mand decreased in masses larger than 20 M� . The Mg yield should be also increased in SNe Ia. ii) The Si yields should be slightly increased in stars above 40 M� , whereas those of Ti should be increased between 11 and 20 Mand above 30 M� . iii) The Cr and Mn yields should be increased in stars with masses in the range 11-20 M� ; iv) the Co yields in SNe Ia should be larger and smaller in stars in the range 11-20 M� ; v) the Ni yield from type Ia SNe should be decreased; vi) the Zn yield from type Ia SNe should be increased. vii) The yields of O (metallicity dependent SN models), Ca, Fe, Ni, and Zn (the solar abundance case) in massive stars from Woosley & Weaver (1995) are the best to fit the abundance patterns of these elements since they do not need any changes. We also adopted the yields by Nomoto et al. (1997, Nucl. Phys. A, 621, 467) and Limongi & Chieffi (2003, ApJ, 592, 404) for massive stars and discuss the corrections required in these yields in order to fit the observations. Finally, the small spread in the (el/Fe) ratios in the metallicity range from (Fe/H) = − 4.0 up to−3.0 dex (Cayrel et al. 2004, A&A, 416, 1117) is a clear sign that the halo of the Milky Way was well mixed even in the earliest phases of its evolution.

267 citations

Journal ArticleDOI
TL;DR: In this article, the abundances of light elements, α-elements, and Fe-group elements from high-resolution FLAMES spectra are presented for 76 red giant stars in NGC 6715 (M 54), a massive globular cluster (GC) lying in the nucleus of the Sagittarius dwarf galaxy.
Abstract: Homogeneous abundances of light elements, α-elements, and Fe-group elements from high-resolution FLAMES spectra are presented for 76 red giant stars in NGC 6715 (M 54), a massive globular cluster (GC) lying in the nucleus of the Sagittarius dwarf galaxy. We also derived detailed abundances for 27 red giants belonging to the Sgr nucleus. Our abundances measure the intrinsic metallicity dispersion (∼0.19 dex, rms scatter) of M 54, with the bulk of stars peaking at [Fe/H] ∼− 1.6 and a long tail extending to higher metallicities, similar to ω Cen. The spread in these probable nuclear star clusters exceeds those of most GCs: these massive clusters are located in a region intermediate between normal GCs and dwarf galaxies. The GC M 54 exibits a Na-O anticorrelation, a typical signature of GCs, which is instead absent for the Sgr nucleus. The light elements (Mg, Al, Si) participating in the high temperature Mg-Al cycle show that the entire pattern of (anti)correlations produced by proton-capture reactions in H-burning is clearly different between the most metal-rich and most metal-poor components in the two most massive GCs in the Galaxy, confirming early results based on the Na-O anticorrelation. As in ω Cen, stars affected by most extreme processing, i.e. showing the signature of more massive polluters, are those of the metal-rich component. These observations can be understood if the burst of star formation giving birth to the metal-rich component was delayed by as much as 10−30 Myr with respect to the metal-poor one. The evolution of these massive GCs can be easily reconciled in the general scenario for the formation of GCs sketched previously by ourselves, taking into account that ω Cen may have already incorporated the surrounding nucleus of its progenitor and lost the remainder of the hosting galaxy while the two are still observable as distinct components in M 54 and the surrounding field.

267 citations

Journal ArticleDOI
R. Adam1, Peter A. R. Ade2, Nabila Aghanim3, Monique Arnaud4  +304 moreInstitutions (71)
TL;DR: In this article, the authors presented foreground-reduced cosmic microwave background (CMB) maps derived from the full Planck data set in both temperature and polarization, and compared to the corresponding Planck 2013 temperature sky maps, the total data volume is larger by a factor of 3.
Abstract: We present foreground-reduced cosmic microwave background (CMB) maps derived from the full Planck data set in both temperature and polarization. Compared to the corresponding Planck 2013 temperature sky maps, the total data volume is larger by a factor of 3.2 for frequencies between 30 and 70 GHz, and by 1.9 for frequencies between 100 and 857 GHz. In addition, systematic errors in the forms of temperature-to-polarization leakage, analogue-to-digital conversion uncertainties, and very long time constant errors have been dramatically reduced, to the extent that the cosmological polarization signal may now be robustly recovered on angular scales l ≳ 40. On the very largest scales, instrumental systematic residuals are still non-negligible compared to the expected cosmological signal, and modes with l< 20 are accordingly suppressed in the current polarization maps by high-pass filtering. As in 2013, four different CMB component separation algorithms are applied to these observations, providing a measure of stability with respect to algorithmic and modelling choices. The resulting polarization maps have rms instrumental noise ranging between 0.21 and 0.27μK averaged over 55′ pixels, and between 4.5 and 6.1μK averaged over pixels. The cosmological parameters derived from the analysis of temperature power spectra are in agreement at the 1σ level with the Planck 2015 likelihood. Unresolved mismatches between the noise properties of the data and simulations prevent a satisfactory description of the higher-order statistical properties of the polarization maps. Thus, the primary applications of these polarization maps are those that do not require massive simulations for accurate estimation of uncertainties, for instance estimation of cross-spectra and cross-correlations, or stacking analyses. However, the amplitude of primordial non-Gaussianity is consistent with zero within 2σ for all local, equilateral, and orthogonal configurations of the bispectrum, including for polarization E-modes. Moreover, excellent agreement is found regarding the lensing B-mode power spectrum, both internally among the various component separation codes and with the best-fit Planck 2015 Λ cold dark matter model.

266 citations

Journal ArticleDOI
TL;DR: In this article, an outburst spectroscopy of GX 339-4 was presented to reveal the motion of its elusive companion star, which may indicate shielding by a variable accretion geometry such as a warp.
Abstract: We present outburst spectroscopy of GX 339-4 that may reveal the motion of its elusive companion star. N III lines exhibit sharp emission components moving over ~300 km s-1 in a single night. The most plausible interpretation of these components is that they are formed by irradiation of the companion star and the velocities indicate its orbital motion. We also detect motion of the wings of the He II 4686 A line and changes in its morphology. No previously proposed period is consistent with periodic behavior of all of these measures. However, consistent and sensible solutions are obtained for periods around 1.7 days. For the best period, 1.7557 days, we estimate a mass function of 5.8 ± 0.5 M☉. Even allowing for aliases, the 95% confidence lower limit on the mass function is 2.0 M☉. GX 339-4 can therefore be added to the list of dynamical black hole candidates. This is supported by the small motion in the wings of the He II line; if the compact object velocity is not larger than the observed motion, then the mass ratio is q 0.08, similar to other systems harboring black holes. Finally, we note that the sharp components are not always present but do seem to occur within a repeating phase range. This appears to migrate between our epochs of observation and may indicate shielding of the companion star by a variable accretion geometry such as a warp.

266 citations


Authors

Showing all 3617 results

NameH-indexPapersCitations
Robert C. Nichol187851162994
Richard S. Ellis169882136011
Rob Ivison1661161102314
Alvio Renzini16290895452
Timothy C. Beers156934102581
Krzysztof M. Gorski132380105912
Emanuele Daddi12958163187
P. R. Christensen12731388445
Mark Dickinson12438966770
Christopher W. Stubbs122622109429
Eva K. Grebel11886383915
Martin Asplund11861252527
Jesper Sollerman11872653436
E. F. van Dishoeck11574249190
Jørgen Christensen-Dalsgaard11458548272
Network Information
Related Institutions (5)
INAF
30.8K papers, 1.2M citations

98% related

Space Telescope Science Institute
14.1K papers, 947.2K citations

96% related

National Radio Astronomy Observatory
8.1K papers, 431.1K citations

95% related

Kapteyn Astronomical Institute
3.5K papers, 180.9K citations

95% related

Institut d'Astrophysique de Paris
7.6K papers, 491.5K citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20233
202231
2021557
2020920
2019759
2018941