scispace - formally typeset
Search or ask a question
Institution

European Southern Observatory

FacilityGarching bei München, Germany
About: European Southern Observatory is a facility organization based out in Garching bei München, Germany. It is known for research contribution in the topics: Galaxy & Stars. The organization has 3594 authors who have published 16157 publications receiving 823095 citations. The organization is also known as: The European Southern Observatory,ESO & ESO.
Topics: Galaxy, Stars, Star formation, Redshift, Population


Papers
More filters
Journal ArticleDOI
01 Mar 2019-Nature
TL;DR: In this article, a new calibration of the surface brightness-colour relation of eclipsing binary stars gives a distance to the Large Magellanic Cloud that is precise to one per cent.
Abstract: In the era of precision cosmology, it is essential to determine the Hubble constant empirically with an accuracy of one per cent or better1. At present, the uncertainty on this constant is dominated by the uncertainty in the calibration of the Cepheid period–luminosity relationship2,3 (also known as the Leavitt law). The Large Magellanic Cloud has traditionally served as the best galaxy with which to calibrate Cepheid period–luminosity relations, and as a result has become the best anchor point for the cosmic distance scale4,5. Eclipsing binary systems composed of late-type stars offer the most precise and accurate way to measure the distance to the Large Magellanic Cloud. Currently the limit of the precision attainable with this technique is about two per cent, and is set by the precision of the existing calibrations of the surface brightness–colour relation5,6. Here we report a calibration of the surface brightness–colour relation with a precision of 0.8 per cent. We use this calibration to determine a geometrical distance to the Large Magellanic Cloud that is precise to 1 per cent based on 20 eclipsing binary systems. The final distance is 49.59 ± 0.09 (statistical) ± 0.54 (systematic) kiloparsecs. A new calibration of the surface brightness–colour relation of eclipsing binary stars gives a distance to the Large Magellanic Cloud that is precise to one per cent.

221 citations

Journal ArticleDOI
TL;DR: In this paper, the abundance variations of numerous elements in these low mass stars with a range of ages (1-15Gyr old) were measured using the spectra of 15 individual red giant stars in the centers of four nearby dwarfs.
Abstract: We have used UVES on VLT-UT2 to take spectra of 15 individual red giant stars in the centers of four nearby dwarf spheroidal galaxies: Sculptor, Fornax, Carina and Leo I. We measure the abundance variations of numerous elements in these low mass stars with a range of ages (1-15Gyr old). This means that we can effectively measure the chemical evolution of these galaxies WITH TIME. Our results show a significant spread in metallicity with age, but an overall trend consistent with what might be expected from a closed (or perhaps leaky) box chemical evolution scenario over the last 10-15Gyr. We notice that each of these galaxies show broadly similar abundance patterns for all elements measured. This suggests a fairly uniform progression of chemical evolution with time, despite quite a large range of star formation histories. It seems likely that these galaxies had similar initial conditions, and evolve in a similar manner with star formation occurring at a uniformly low rate, even if at different times. With our accurate measurements we find evidence for small variations in abundances which are correlated to variations in star formation histories. The alpha-elements suggest that dSph chemical evolution has not been affected by very high mass stars (>15-20 Msun). The abundance patterns we measure for stars in dwarf spheroidal galaxies are significantly different from those typically observed in the disk, bulge and inner-halo of our Galaxy. This suggests that it is NOT possible to construct a significant fraction of our Galaxy from STARS formed in these dwarf spheroidal galaxies which subsequently merged into our own. Any merger scenario involving dSph has to occur in the very early Universe whilst they are still gas rich, so the majority of mass transfer is gas, and few stars.

220 citations

Journal ArticleDOI
28 Mar 2014-Science
TL;DR: A highly asymmetric disk of dust and carbon monoxide orbiting the planet-hosting star, β Pictoris, delineates a region of enhanced collisions, either from a mean motion resonance with an unseen giant planet or from the remnants of a collision of Mars-mass planets.
Abstract: Many stars are surrounded by disks of dusty debris formed in the collisions of asteroids, comets, and dwarf planets, but is gas also released in such events? Observations at submillimeter wavelengths of the archetypal debris disk around β Pictoris show that 0.3% of a Moon mass of carbon monoxide orbits in its debris belt. The gas distribution is highly asymmetric, with 30% found in a single clump 85 astronomical units from the star, in a plane closely aligned with the orbit of the inner planet, β Pictoris b. This gas clump delineates a region of enhanced collisions, either from a mean motion resonance with an unseen giant planet or from the remnants of a collision of Mars-mass planets.

220 citations

Journal ArticleDOI
TL;DR: In this article, the authors presented an updated mid-infrared versus X-ray correlation for the local active galactic nuclei (AGN) population based on the high angular resolution 12 and 18?m continuum fluxes from the AGN subarcsecond MIR atlas and 2-10 keV and 14-195 keV data collected from the literature.
Abstract: We present an updated mid-infrared (MIR) versus X-ray correlation for the local active galactic nuclei (AGN) population based on the high angular resolution 12 and 18?m continuum fluxes from the AGN subarcsecond MIR atlas and 2–10 keV and 14–195 keV data collected from the literature. We isolate a sample of 152 objects with reliable AGN nature and multi-epoch X-ray data and minimal MIR contribution from star formation. Although the sample is not homogeneous or complete, we show that our results are unlikely to be affected by significant biases. The MIR–X-ray correlation is nearly linear and within a factor of 2 independent of the AGN type and the wavebands used. The observed scatter is <0.4 dex. A possible flattening of the correlation slope at the highest luminosities probed (?1045? erg s?1) towards low MIR luminosities for a given X-ray luminosity is indicated but not significant. Unobscured objects have, on average, an MIR–X-ray ratio that is only ?0.15?dex higher than that of obscured objects. Objects with intermediate X-ray column densities (22 < log?NH < 23) actually show the highest MIR–X-ray ratio on average. Radio-loud objects show a higher mean MIR–X-ray ratio at low luminosities while the ratio is lower than average at high luminosities. This may be explained by synchrotron emission from the jet contributing to the MIR at low luminosities and additional X-ray emission at high luminosities. True Seyfert 2 candidates do not show any deviation from the general behaviour suggesting that they possess a dusty obscurer as in other AGN. Double AGN also do not deviate. Finally, we show that the MIR–X-ray correlation can be used to investigate the AGN nature of uncertain objects. Specifically, we give equations that allow us to determine the intrinsic 2–10 keV luminosities and column densities for objects with complex X-ray properties to within 0.34 dex. These techniques are applied to the uncertain objects of the remaining AGN MIR atlas, demonstrating the usefulness of the MIR–X-ray correlation as an empirical tool.

220 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provided a library of some 7000 SEDs for the nuclei of starburst and ultra luminous galaxies, which can be used to estimate the basic parameters, such as luminosity, size and gas mass and to predict the flux at yet unobserved wavelengths.
Abstract: Aims. We provide a library of some 7000 SEDs for the nuclei of starburst and ultra luminous galaxies. Its purpose is to quickly ob tain estimates of the basic parameters, such as luminosity, size and dust or gas mass and to predict the flux at yet unobserved wavelengths . The procedure is simple and consists of finding an element in the library that m atches the observations. The objects may be in the local universe or at high z. Methods. We calculate the radiative transfer in spherical symmetry for a stellar cluster permeated by an interstellar medium with standard (Milky Way) dust properties. The cluster contains two stellar populations: old bulge stars and OB stars. Because the latter are young, a certain fraction of them will be embedded in compact clouds which constitute hot spots that determine the MIR fluxes. Results. We present SEDs for a broad range of luminosities, sizes and obscurations. We argue that the assumption of spherical symmetry and the neglect of clumpiness of the medium are not severe shortcomings for computing the dust emission. The validity of the approach is demonstrated by matching the SED of seven of the best studied galaxies, including M82 and Arp220, by library elements. In all cases, one finds an element which fits the observed SED very well, and the p arameters defining the element are in full accord with what is known about the galaxy from detailed studies. We also compare our method of computing SEDs with other techniques described in the literature.

220 citations


Authors

Showing all 3617 results

NameH-indexPapersCitations
Robert C. Nichol187851162994
Richard S. Ellis169882136011
Rob Ivison1661161102314
Alvio Renzini16290895452
Timothy C. Beers156934102581
Krzysztof M. Gorski132380105912
Emanuele Daddi12958163187
P. R. Christensen12731388445
Mark Dickinson12438966770
Christopher W. Stubbs122622109429
Eva K. Grebel11886383915
Martin Asplund11861252527
Jesper Sollerman11872653436
E. F. van Dishoeck11574249190
Jørgen Christensen-Dalsgaard11458548272
Network Information
Related Institutions (5)
INAF
30.8K papers, 1.2M citations

98% related

Space Telescope Science Institute
14.1K papers, 947.2K citations

96% related

National Radio Astronomy Observatory
8.1K papers, 431.1K citations

95% related

Kapteyn Astronomical Institute
3.5K papers, 180.9K citations

95% related

Institut d'Astrophysique de Paris
7.6K papers, 491.5K citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20233
202231
2021557
2020920
2019759
2018941