scispace - formally typeset
Search or ask a question
Institution

European Southern Observatory

FacilityGarching bei München, Germany
About: European Southern Observatory is a facility organization based out in Garching bei München, Germany. It is known for research contribution in the topics: Galaxy & Stars. The organization has 3594 authors who have published 16157 publications receiving 823095 citations. The organization is also known as: The European Southern Observatory,ESO & ESO.
Topics: Galaxy, Stars, Star formation, Redshift, Population


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the stellar population content of early-type galaxies from the ATLAS^(3D) survey is analyzed using spectra integrated within apertures covering up to one effective radius.
Abstract: We present the stellar population content of early-type galaxies from the ATLAS^(3D) survey. Using spectra integrated within apertures covering up to one effective radius, we apply two methods: one based on measuring line-strength indices and applying single stellar population (SSP) models to derive SSP-equivalent values of stellar age, metallicity, and alpha enhancement; and one based on spectral fitting to derive non-parametric star formation histories, mass-weighted average values of age, metallicity, and half-mass formation time-scales. Using homogeneously derived effective radii and dynamically determined galaxy masses, we present the distribution of stellar population parameters on the Mass Plane (M_(JAM), σ_e, R^(maj)_e), showing that at fixed mass, compact early-type galaxies are on average older, more metal-rich, and more alpha-enhanced than their larger counterparts. From non-parametric star formation histories, we find that the duration of star formation is systematically more extended in lower mass objects. Assuming that our sample represents most of the stellar content of today's local Universe, approximately 50 per cent of all stars formed within the first 2 Gyr following the big bang. Most of these stars reside today in the most massive galaxies (>10^(10.5) M⊙), which themselves formed 90 per cent of their stars by z ∼ 2. The lower mass objects, in contrast, have formed barely half their stars in this time interval. Stellar population properties are independent of environment over two orders of magnitude in local density, varying only with galaxy mass. In the highest density regions of our volume (dominated by the Virgo cluster), galaxies are older, alpha-enhanced, and have shorter star formation histories with respect to lower density regions.

411 citations

Journal ArticleDOI
08 Jul 2004-Nature
TL;DR: The spectroscopic and morphological identification of four old, fully assembled, massive spheroidal galaxies at l.6 < z < 1.9, the most distant such objects currently known, shows that the build-up of massive early-type galaxies was much faster in the early Universe than has been expected from theoretical simulations.
Abstract: More than half of all stars in the local Universe are found in massive spheroidal galaxies1, which are characterized by old stellar populations2,3 with little or no current star formation. In present models, such galaxies appear rather late in the history of the Universe as the culmination of a hierarchical merging process, in which larger galaxies are assembled through mergers of smaller precursor galaxies. But observations have not yet established how, or even when, the massive spheroidals formed2,3, nor if their seemingly sudden appearance when the Universe was about half its present age (at redshift z ≈ 1) results from a real evolutionary effect (such as a peak of mergers) or from the observational difficulty of identifying them at earlier epochs. Here we report the spectroscopic and morphological identification of four old, fully assembled, massive (1011 solar masses) spheroidal galaxies at l.6 < z < 1.9, the most distant such objects currently known. The existence of such systems when the Universe was only about one-quarter of its present age shows that the build-up of massive early-type galaxies was much faster in the early Universe than has been expected from theoretical simulations4.

410 citations

Journal ArticleDOI
TL;DR: In this paper, the authors studied the kinematic morphology-density T-Sigma relation using fast and slow rotators to replace lenticulars and elliptical galaxies and found that the segregation is driven by local effects at the small-group scale.
Abstract: In Paper I of this series we introduced a volume-limited parent sample of 871 galaxies from which we extracted the ATLAS(3D) sample of 260 early-type galaxies (ETGs). In Papers II and III we classified the ETGs using their stellar kinematics, in a way that is nearly insensitive to the projection effects, and we separated them into fast and slow rotators. Here we look at galaxy morphology and note that the edge-on fast rotators generally are lenticular galaxies. They appear like spiral galaxies with the gas and dust removed, and in some cases are flat ellipticals (E5 or flatter) with discy isophotes. Fast rotators are often barred and span the same full range of bulge fractions as spiral galaxies. The slow rotators are rounder (E4 or rounder, except for counter-rotating discs) and are generally consistent with being genuine, namely spheroidal-like, elliptical galaxies. We propose a revision to the tuning-fork diagram by Hubble as it gives a misleading description of ETGs by ignoring the large variation in the bulge sizes of fast rotators. Motivated by the fact that only one third (34 per cent) of the ellipticals in our sample are slow rotators, we study for the first time the kinematic morphology-density T-Sigma relation using fast and slow rotators to replace lenticulars and ellipticals. We find that our relation is cleaner than using classic morphology. Slow rotators are nearly absent at the lowest density environments [f(SR) less than or similar to 2 per cent] and generally constitute a small fraction [f (SR) approximate to 4 per cent] of the total galaxy population in the relatively low-density environments explored by our survey, with the exception of the densest core of the Virgo cluster [f(SR) approximate to 20 per cent]. This contrasts with the classic studies that invariably find significant fractions of (misclassified) ellipticals down to the lowest environmental densities. We find a clean log-linear relation between the fraction f(Sp) of spiral galaxies and the local galaxy surface density Sigma(3), within a cylinder enclosing the three nearest galaxies. This holds for nearly four orders of magnitude in the surface density down to Sigma(3) approximate to 0.01 Mpc(-2), with f(Sp) decreasing by 10 per cent per dex in Sigma(3), while f(FR) correspondingly increases. The existence of a smooth kinematic T-Sigma relation in the field excludes processes related to the cluster environment, like e.g. ram-pressure stripping, as main contributors to the apparent conversion of spirals into fast rotators in low-density environments. It shows that the segregation is driven by local effects at the small-group scale. This is supported by the relation becoming shallower when using a surface density estimator Sigma(10) with a cluster scale. Only at the largest densities in the Virgo core does the f(Sp) relation break down and steepen sharply, while the fraction of slow rotators starts to significantly increase. This suggests that a different mechanism is at work there, possibly related to the stripping of the gas from spirals by the hot intergalactic medium in the cluster core and the corresponding lack of cold accretion.

409 citations

Journal ArticleDOI
TL;DR: The LABOCA Extended Chandra Deep Field South (ECDFS) survey as discussed by the authors is the largest contiguous deep sub-millimeter survey undertaken to date and has a uniform noise level of sigma{sub 870{sub m}}u{subm} approx 1.2 mJy beam{sup -1}.
Abstract: We present a sensitive 870 mum survey of the Extended Chandra Deep Field South (ECDFS) combining 310 hr of observing time with the Large Apex BOlometer Camera (LABOCA) on the APEX telescope. The LABOCA ECDFS Submillimetre Survey (LESS) covers the full 30' x 30' field size of the ECDFS and has a uniform noise level of sigma{sub 870{sub m}}u{sub m} approx 1.2 mJy beam{sup -1}. LESS is thus the largest contiguous deep submillimeter survey undertaken to date. The noise properties of our map show clear evidence that we are beginning to be affected by confusion noise. We present a catalog of 126 submillimeter galaxies (SMGs) detected with a significance level above 3.7sigma, at which level we expect five false detections given our map area of 1260 arcmin{sup 2}. The ECDFS exhibits a deficit of bright SMGs relative to previously studied blank fields but not of normal star-forming galaxies that dominate the extragalactic background light (EBL). This is in line with the underdensities observed for optically defined high redshift source populations in the ECDFS (BzKs, DRGs, optically bright active galactic nucleus, and massive K-band-selected galaxies). The differential source counts in the full field are well described by a power law withmore » a slope of alpha = -3.2, comparable to the results from other fields. We show that the shape of the source counts is not uniform across the field. Instead, it steepens in regions with low SMG density. Towards the highest overdensities we measure a source-count shape consistent with previous surveys. The integrated 870 mum flux densities of our source-count models down to S{sub 870{sub m}}u{sub m} = 0.5 mJy account for >65% of the estimated EBL from COBE measurements. We have investigated the clustering of SMGs in the ECDFS by means of a two-point correlation function and find evidence for strong clustering on angular scales <1' with a significance of 3.4sigma. Assuming a power-law dependence for the correlation function and a typical redshift distribution for the SMGs we derive a characteristic angular clustering scale of theta{sub 0} = 14'' +- 7'' and a spatial correlation length of r{sub 0} = 13 +- 6 h {sup -1} Mpc.« less

408 citations

Journal ArticleDOI
TL;DR: In this article, the authors presented the initial result of a large spectroscopic survey aimed at measuring the timescale of mass accretion in young, pre-main-sequence stars in the spectral type range K0-M5.
Abstract: We present the initial result of a large spectroscopic survey aimed at measuring the timescale of mass accretion in young, pre-main-sequence stars in the spectral type range K0-M5. Using multi-object spectroscopy with VIMOS at the VLT we identified the fraction of accreting stars in a number of young stellar clusters and associations of the ages of between 1-30 Myr. The fraction of accreting stars decreases from ~60% at 1.5-2 Myr to ~2% at 10 Myr. No accreting stars are found after 10 Myr at a sensitivity limit of 10 -11 M ⊙ yr -1 We compared the fraction of stars showing ongoing accretion (f acc ) to the fraction of stars with near-to-mid infrared excess (f IRAC ). In most cases we find f acc < F IRAC , i.e., mass accretion appears to cease (or drop below detectable level) earlier than the dust is dissipated in the inner disk. At 5 Myr, 95% of the stellar population has stopped accreting material at a rate of ≳10 -11 M ⊙ yr -1 while ~20% of the stars show near-infrared excess emission. Assuming an exponential decay, we measure a mass accretion timescale (τ acc ) of 2.3 Myr, compared to a near-to-mid infrared excess timescale (τ IRAC ) of 3 Myr. Planet formation and/or migration, in the inner disk might be a viable mechanism to halt further accretion onto the central star on such a short timescale.

407 citations


Authors

Showing all 3617 results

NameH-indexPapersCitations
Robert C. Nichol187851162994
Richard S. Ellis169882136011
Rob Ivison1661161102314
Alvio Renzini16290895452
Timothy C. Beers156934102581
Krzysztof M. Gorski132380105912
Emanuele Daddi12958163187
P. R. Christensen12731388445
Mark Dickinson12438966770
Christopher W. Stubbs122622109429
Eva K. Grebel11886383915
Martin Asplund11861252527
Jesper Sollerman11872653436
E. F. van Dishoeck11574249190
Jørgen Christensen-Dalsgaard11458548272
Network Information
Related Institutions (5)
INAF
30.8K papers, 1.2M citations

98% related

Space Telescope Science Institute
14.1K papers, 947.2K citations

96% related

National Radio Astronomy Observatory
8.1K papers, 431.1K citations

95% related

Kapteyn Astronomical Institute
3.5K papers, 180.9K citations

95% related

Institut d'Astrophysique de Paris
7.6K papers, 491.5K citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20233
202231
2021557
2020920
2019759
2018941