scispace - formally typeset
Search or ask a question
Institution

Hydro-Québec

GovernmentMontreal, Quebec, Canada
About: Hydro-Québec is a government organization based out in Montreal, Quebec, Canada. It is known for research contribution in the topics: Electric power system & Dielectric. The organization has 2596 authors who have published 4433 publications receiving 100878 citations.


Papers
More filters
Proceedings ArticleDOI
25 Jul 2010
TL;DR: In this article, the authors present a review of some of the impacts associated with the integration of distributed generation, together with some active distribution network enabling technologies, intended to deal with the aforementioned problems.
Abstract: High levels of distributed generation have been installed in power systems and even a greater amount is expected to be deployed in the near future, with a large percentage likely to come from renewable energy sources. As such, Distribution System Operators (DNOs) will need to change their old “business as usual” passive approach, to one that adopts integration of control and communication technologies, together with emerging distribution network technologies, as a means of accommodating new generation in an optimal and economical manner. This paper presents a review of some of the impacts associated with the integration of distributed generation, together with some active distribution networks enabling technologies, intended to deal with the aforementioned problems. In particular, the present review focuses on technologies that are in advanced stages of Research and Development, or are even at the trial stage or are commercially available. However, further analyses are required in order to develop cheaper and more secure means to the increasing Distributed Generation connections.

89 citations

Journal ArticleDOI
TL;DR: In this paper, the broadband electrochromic properties of Li4Ti5O12 (LTO) and its suitability for infrared-camouflage and thermoregulation are investigated.
Abstract: Broadband electrochromism from visible to infrared wavelengths is attractive for applications like smart windows, thermal-camouflage, and temperature control. In this work, the broadband electrochromic properties of Li4Ti5O12 (LTO) and its suitability for infrared-camouflage and thermoregulation are investigated. Upon Li+ intercalation, LTO changes from a wide band-gap semiconductor to a metal, causing LTO nanoparticles on metal to transition from a super-broadband optical reflector to a solar absorber and thermal emitter. Large tunabilities of 0.74, 0.68 and 0.30 are observed for the solar reflectance, mid-wave infrared (MWIR) emittance and long-wave infrared (LWIR) emittance respectively. The values exceed, or are comparable to notable performances in the literature. A promising cycling stability is also observed. MWIR and LWIR thermography reveal that the emittance of LTO-based electrodes can be electrochemically tuned to conceal them amidst their environment. Moreover, under different sky conditions, LTO shows promising solar heating and sub-ambient radiative cooling capabilities depending on the degree of lithiation and device design. The demonstrated capabilities of LTO make LTO-based electrochromic devices highly promising for infrared-camouflage applications in the defense sector, and for thermoregulation in space and terrestrial environments.

89 citations

Journal ArticleDOI
K. Savadjiev1, M. Farzaneh1
TL;DR: In this paper, a statistical analysis of meteorological data for icing and ice shedding on overhead power-line conductors was performed, which aimed at establishing shape and statistical parameters of the transfer functions representing the correlations between hourly icing rate and the variations of the following meteorological variables: ambient temperature, hourly number of ice rate meter signals, wind speed and direction, and freezing precipitation rate.
Abstract: Statistical analysis of meteorological data for icing and ice shedding on overhead power-line conductors was performed. The data studied were recorded during the 57 icing events (1659 h), which occurred in the period between February 1998 and January 2000 at the Mont Be/spl acute/lair icing test site in Quebec, Canada. The analysis aims at establishing shape and statistical parameters of the transfer functions representing the correlations between hourly icing rate and the variations of the following meteorological variables: ambient temperature, hourly number of ice-rate meter signals, wind speed and direction, and freezing precipitation rate. Two different regimes of the ice formation process, in-cloud icing, and freezing precipitation icing, are considered for characterizing ice events. The set of fitting regression curves obtained is the statistical base for creating an empirical probabilistic icing, and ice shedding model for studying and forecasting atmospheric-icing loads on overhead power-line conductors.

89 citations

Journal ArticleDOI
TL;DR: The nacre-inspired design of ceramic/polymer solid composite electrolyte with a "brick-and-mortar" microstructure is proposed, which provides a new design for solid Composite electrolyte and opens up new possibilities for future solid-state lithium-metal batteries and structural energy storage.
Abstract: Solid-state lithium-metal batteries with solid electrolytes are promising for next-generation energy-storage devices. However, it remains challenging to develop solid electrolytes that are both mechanically robust and strong against external mechanical load, due to the brittleness of ceramic electrolytes and the softness of polymer electrolytes. Herein, a nacre-inspired design of ceramic/polymer solid composite electrolytes with a "brick-and-mortar" microstructure is proposed. The nacre-like ceramic/polymer electrolyte (NCPE) simultaneously possesses a much higher fracture strain (1.1%) than pure ceramic electrolytes (0.13%) and a much larger ultimate flexural modulus (7.8 GPa) than pure polymer electrolytes (20 MPa). The electrochemical performance of NCPE is also much better than pure ceramic or polymer electrolytes, especially under mechanical load. A 5 × 5 cm2 pouch cell with LAGP/poly(ether-acrylate) NCPE exhibits stable cycling with a capacity retention of 95.6% over 100 cycles at room temperature, even undergoes a large point load of 10 N. In contrast, cells based on pure ceramic and pure polymer electrolyte show poor cycle life. The NCPE provides a new design for solid composite electrolyte and opens up new possibilities for future solid-state lithium-metal batteries and structural energy storage.

89 citations


Authors

Showing all 2603 results

NameH-indexPapersCitations
John B. Goodenough1511064113741
Mark Sutton128100978703
Pierre Legendre9836682995
Jackie Y. Ying8958735694
Karim Zaghib6953316785
Geza Joos6751415880
M. V. Reddy6625415772
Kamal Al-Haddad6182821017
Jean-Pol Dodelet5916418473
Taha B. M. J. Ouarda5834912230
Michael R. Wertheimer5432011003
Richard Martin5433911465
Michel Armand5415244873
Marc Lucotte501698088
Abdelbast Guerfi492156739
Network Information
Related Institutions (5)
Westinghouse Electric
38K papers, 523.3K citations

82% related

École Polytechnique de Montréal
18.3K papers, 494.3K citations

82% related

General Electric
110.5K papers, 1.8M citations

80% related

United States Department of Energy
14.1K papers, 556.9K citations

79% related

Polytechnic University of Milan
58.4K papers, 1.2M citations

79% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20231
202256
2021115
2020173
2019162
2018156