scispace - formally typeset
Search or ask a question
Institution

Hydro-Québec

GovernmentMontreal, Quebec, Canada
About: Hydro-Québec is a government organization based out in Montreal, Quebec, Canada. It is known for research contribution in the topics: Electric power system & Dielectric. The organization has 2596 authors who have published 4433 publications receiving 100878 citations.


Papers
More filters
Journal ArticleDOI
J. Gretz, B. Drolet, D. Kluyskens1, F. Sandmann, O. Ullmann 
TL;DR: The concept of a hydrogen-based, clean, renewable energy system is currently being investigated by European and Canadian industries, coordinated by the Joint Research Centre Ispra of the Commission of the European Communities and the Government of Quebec as discussed by the authors.

36 citations

Journal ArticleDOI
10 Jun 2020-Small
TL;DR: Combined with advanced characterization techniques, electrochemical probe experiments, and density functional theory calculation, the pyrrole-type FeN4 structure is identified as the real catalytic site in HzOR.
Abstract: The rational design of catalytically active sites in porous materials is essential in electrocatalysis. Herein, atomically dispersed Fe-Nx sites supported by hierarchically porous carbon membranes are designed to electrocatalyze the hydrazine oxidation reaction (HzOR), one of the key techniques in electrochemical nitrogen transformation. The high intrinsic catalytic activity of the Fe-Nx single-atom catalyst together with the uniquely mixed micro-/macroporous membrane support positions such an electrode among the best-known heteroatom-based carbon anodes for hydrazine fuel cells. Combined with advanced characterization techniques, electrochemical probe experiments, and density functional theory calculation, the pyrrole-type FeN4 structure is identified as the real catalytic site in HzOR.

36 citations

Journal ArticleDOI
TL;DR: In this paper, the structural and electrochemical properties of LiMoO2, synthesized by a carbothermal method using citric acid as a chelating agent, were revisited by means of X-ray diffractometry, Fourier transform infrared (FTIR), and Raman scattering (RS) spectroscopy.

36 citations

Journal ArticleDOI
TL;DR: In this paper, the authors compared different approaches to estimate hydropower reservoir emissions in LCA, to select the most appropriate one, and to apply it to the calculation of the carbon footprint of electricity distributed in the Canadian province of Quebec.
Abstract: Hydropower is usually considered as a low-carbon electricity source, as it does not lead to direct greenhouse gas (GHG) emissions, unlike producing electricity from fossil fuels. However, the flooding of lands following the construction of the dam generally leads to an increase in biogenic GHG emissions due to the degradation of biomass found in the newly created reservoir. The life cycle assessment (LCA) methodology is widely used to calculate and compare the carbon footprint of different electricity production pathways, while considering all life cycle stages. Net biogenic GHG emissions from hydropower reservoirs have been poorly considered in LCA because of the scarcity of data. These emissions are complex to quantify as several mechanisms are involved, and extrapolating observations from one reservoir to another is risky as emissions vary greatly depending on different parameters, such as climate, geographic location, age of impoundment, and watershed properties. The objective of this article is to compare different approaches to estimate hydropower reservoir emissions in LCA, to select the most appropriate one, and to apply it to the calculation of the carbon footprint of electricity distributed in the Canadian province of Quebec. Net biogenic GHG emissions of all hydropower reservoirs in the province (with 2.5 and 97.5% confidence intervals), as estimated using the G-res model, are 16.5 (14.7–18.6) gCO2∙kWh−1 and 0.29 (0.23–0.35) gCH4∙kWh−1. Combined to ecoinvent data for other life cycle emissions, the carbon footprint of electricity distributed in the province in 2017 is 34.5 gCO2eq∙kWh−1.

36 citations

Journal ArticleDOI
TL;DR: In this article, the effect of variation of the divertor geometry in ITER is re-evaluated with the recently developed non-linear model of the transport of the neutral particles, taking into account neutral-neutral and molecule-ion collisions.

36 citations


Authors

Showing all 2603 results

NameH-indexPapersCitations
John B. Goodenough1511064113741
Mark Sutton128100978703
Pierre Legendre9836682995
Jackie Y. Ying8958735694
Karim Zaghib6953316785
Geza Joos6751415880
M. V. Reddy6625415772
Kamal Al-Haddad6182821017
Jean-Pol Dodelet5916418473
Taha B. M. J. Ouarda5834912230
Michael R. Wertheimer5432011003
Richard Martin5433911465
Michel Armand5415244873
Marc Lucotte501698088
Abdelbast Guerfi492156739
Network Information
Related Institutions (5)
Westinghouse Electric
38K papers, 523.3K citations

82% related

École Polytechnique de Montréal
18.3K papers, 494.3K citations

82% related

General Electric
110.5K papers, 1.8M citations

80% related

United States Department of Energy
14.1K papers, 556.9K citations

79% related

Polytechnic University of Milan
58.4K papers, 1.2M citations

79% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20231
202256
2021115
2020173
2019162
2018156