scispace - formally typeset
Search or ask a question
Institution

Hydro-Québec

GovernmentMontreal, Quebec, Canada
About: Hydro-Québec is a government organization based out in Montreal, Quebec, Canada. It is known for research contribution in the topics: Electric power system & Dielectric. The organization has 2596 authors who have published 4433 publications receiving 100878 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, two multi-input multi-output (MIMO) procedures for the identification of low-order state space models of power systems, by probing the network in open loop with low-energy pulses or random signals, are presented.
Abstract: The paper studies two multi-input multi-output (MIMO) procedures for the identification of low-order state space models of power systems, by probing the network in open loop with low-energy pulses or random signals. Although such data may result from actual measurements, the development assumes simulated responses from a transient stability program, hence benefiting from the existing large base of stability models. While pulse data is processed using the eigensystem realization algorithm, the analysis of random responses is done by means of subspace identification methods. On a prototype Hydro-Quebec power system, including SVCs, DC power lines, series compensation, and more than 1100 buses, it is verified that the two approaches are equivalent only when strict requirements are imposed on the pulse length and magnitude. The 10th-order equivalent models derived by random-signal probing allow for effective tuning of decentralized power system stabilizers (PSSs) able to damp both local and very slow inter-area modes.

110 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of H 2 O on carbon-coated LiFePO 4 particles was investigated by chemical analysis, structural analysis (X-ray diffraction, SEM, TEM), optical spectroscopy (FTIR, Raman) and magnetic measurements.

109 citations

Journal ArticleDOI
TL;DR: A photochemical diode array to harvest visible light and split pure water at high solar-to-hydrogen efficiencies and the highest values ever reported for one-step visible-light driven photocatalytic overall pure water splitting are constructed.
Abstract: The conversion of solar energy into chemical fuels can potentially address many of the energy and environment related challenges we face today. In this study, we have demonstrated a photochemical diode artificial photosynthesis system that can enable efficient, unassisted overall pure water splitting without using any sacrificial reagent. By precisely controlling charge carrier flow at the nanoscale, the wafer-level photochemical diode arrays exhibited solar-to-hydrogen efficiency ~3.3% in neutral (pH ~ 7.0) overall water splitting reaction. In part of the visible spectrum (400–485 nm), the energy conversion efficiency and apparent quantum yield reaches ~8.75% and ~20%, respectively, which are the highest values ever reported for one-step visible-light driven photocatalytic overall pure water splitting. The effective manipulation and control of charge carrier flow in nanostructured photocatalysts provides critical insight in achieving high efficiency artificial photosynthesis, including the efficient and selective reduction of CO2 to hydrocarbon fuels. A major challenge facing solar-to-fuel technologies is the integration of light-absorbing and catalytic components into efficient water-splitting devices. Here, the authors construct a photochemical diode array to harvest visible light and split pure water at high solar-to-hydrogen efficiencies.

109 citations

Journal ArticleDOI
TL;DR: In this article, a methodology for calculating reserves in the latter category, referred to as balancing reserves (BRs), following the integration of wind generation in a power system is presented.
Abstract: A challenge now facing utilities is how to adjust reserves in the operations-planning horizon of 0 to 48 hours ahead to mitigate the effects of wind variability and forecast uncertainties, in addition to those of load uncertainties and unavailability of generation. Reserves are maintained to ensure a high level of reliability and security to the system. They are subdivided into two groups: those responding within an intrahourly time horizon to regulate power imbalances, and those responding over a 1-48 hours ahead time horizon addressing the net forecast uncertainties. In this paper, we present a methodology for calculating reserves in the latter category, referred to as balancing reserves (BRs), following the integration of wind generation in a power system. Their computation is based on maintaining a predefined level of risk. The novelty here is that wind forecast error distributions are adjusted as a function of wind generation forecast levels. Gamma-like distributions with time-varying parameters, estimated from real data, were chosen to approximate the wind generation forecast errors. It is shown that this improved modeling significantly modifies the values of required balancing reserves and associated risk. The methodology developed is based on a clear criterion, namely risk, and it demonstrates the imperativeness of considering dynamic balancing reserves as a function of the imminent wind generation forecast.

109 citations

Journal ArticleDOI
TL;DR: In this article, functional porous hybrid materials, demonstrating enhanced selectivity towards heavier rare-earth elements compared to commercially available products, are proposed, and they demonstrate a higher degree of reusability, increasing their marketable potential.
Abstract: The importance of rare-earth elements (REEs) in the global economy is booming as they are used in numerous advanced technologies. Industrially, the extraction and purification of REEs involve multiple liquid–liquid extraction (LLE) steps as they exhibit very similar complexation properties with most common ligands. In order to substantially improve this process and provide a greener alternative to LLE, functional porous hybrid materials, demonstrating enhanced selectivity towards heavier REEs compared to commercially-available products, are proposed. In addition, because of the grafting procedure used in the synthesis, the proposed materials demonstrate a higher degree of reusability, increasing their marketable potential.

109 citations


Authors

Showing all 2603 results

NameH-indexPapersCitations
John B. Goodenough1511064113741
Mark Sutton128100978703
Pierre Legendre9836682995
Jackie Y. Ying8958735694
Karim Zaghib6953316785
Geza Joos6751415880
M. V. Reddy6625415772
Kamal Al-Haddad6182821017
Jean-Pol Dodelet5916418473
Taha B. M. J. Ouarda5834912230
Michael R. Wertheimer5432011003
Richard Martin5433911465
Michel Armand5415244873
Marc Lucotte501698088
Abdelbast Guerfi492156739
Network Information
Related Institutions (5)
Westinghouse Electric
38K papers, 523.3K citations

82% related

École Polytechnique de Montréal
18.3K papers, 494.3K citations

82% related

General Electric
110.5K papers, 1.8M citations

80% related

United States Department of Energy
14.1K papers, 556.9K citations

79% related

Polytechnic University of Milan
58.4K papers, 1.2M citations

79% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20231
202256
2021115
2020173
2019162
2018156