scispace - formally typeset
Search or ask a question
Institution

Laboratory of Molecular Biology

FacilityCambridge, Cambridgeshire, United Kingdom
About: Laboratory of Molecular Biology is a facility organization based out in Cambridge, Cambridgeshire, United Kingdom. It is known for research contribution in the topics: Gene & RNA. The organization has 19395 authors who have published 24236 publications receiving 2101480 citations.
Topics: Gene, RNA, DNA, Population, Receptor


Papers
More filters
Journal ArticleDOI
TL;DR: In vivo, BHB or a ketogenic diet attenuates caspase-1 activation and IL-1β secretion in mouse models of NLRP3-mediated diseases such as Muckle–Wells syndrome, familial cold autoinflammatory syndrome and urate crystal–induced peritonitis and the findings suggest that the anti-inflammatory effects of caloric restriction or ketogenic diets may be linked to BHB-mediated inhibition of theNLRP3 inflammasome.
Abstract: The ketone bodies β-hydroxybutyrate (BHB) and acetoacetate (AcAc) support mammalian survival during states of energy deficit by serving as alternative sources of ATP. BHB levels are elevated by starvation, caloric restriction, high-intensity exercise, or the low-carbohydrate ketogenic diet. Prolonged fasting reduces inflammation; however, the impact that ketones and other alternative metabolic fuels produced during energy deficits have on the innate immune response is unknown. We report that BHB, but neither AcAc nor the structurally related short-chain fatty acids butyrate and acetate, suppresses activation of the NLRP3 inflammasome in response to urate crystals, ATP and lipotoxic fatty acids. BHB did not inhibit caspase-1 activation in response to pathogens that activate the NLR family, CARD domain containing 4 (NLRC4) or absent in melanoma 2 (AIM2) inflammasome and did not affect non-canonical caspase-11, inflammasome activation. Mechanistically, BHB inhibits the NLRP3 inflammasome by preventing K(+) efflux and reducing ASC oligomerization and speck formation. The inhibitory effects of BHB on NLRP3 are not dependent on chirality or starvation-regulated mechanisms like AMP-activated protein kinase (AMPK), reactive oxygen species (ROS), autophagy or glycolytic inhibition. BHB blocks the NLRP3 inflammasome without undergoing oxidation in the TCA cycle, and independently of uncoupling protein-2 (UCP2), sirtuin-2 (SIRT2), the G protein-coupled receptor GPR109A or hydrocaboxylic acid receptor 2 (HCAR2). BHB reduces NLRP3 inflammasome-mediated interleukin (IL)-1β and IL-18 production in human monocytes. In vivo, BHB or a ketogenic diet attenuates caspase-1 activation and IL-1β secretion in mouse models of NLRP3-mediated diseases such as Muckle-Wells syndrome, familial cold autoinflammatory syndrome and urate crystal-induced peritonitis. Our findings suggest that the anti-inflammatory effects of caloric restriction or ketogenic diets may be linked to BHB-mediated inhibition of the NLRP3 inflammasome.

1,205 citations

Journal ArticleDOI
17 Jun 1976-Nature
TL;DR: A simple diagrammatic representation has been used to show the arrangement of α helices and β sheets in 31 globular proteins, which are classified into four clearly separated classes.
Abstract: A simple diagrammatic representation has been used to show the arrangement of α helices and β sheets in 31 globular proteins, which are classified into four clearly separated classes. The observed arrangements are significantly non-random in that pieces of secondary structure adjacent in sequence along the polypeptide chain are also often in contact in three dimensions.

1,197 citations

Journal ArticleDOI
04 May 2001-Science
TL;DR: Crystal structures of the 30S ribosomal subunit in complex with messenger RNA and cognate transfer RNA in the A site, both in the presence and absence of the antibiotic paromomycin, have been solved at between 3.1 and 3.3 angstroms resolution.
Abstract: Crystal structures of the 30S ribosomal subunit in complex with messenger RNA and cognate transfer RNA in the A site, both in the presence and absence of the antibiotic paromomycin, have been solved at between 3.1 and 3.3 angstroms resolution. Cognate transfer RNA (tRNA) binding induces global domain movements of the 30S subunit and changes in the conformation of the universally conserved and essential bases A1492, A1493, and G530 of 16S RNA. These bases interact intimately with the minor groove of the first two base pairs between the codon and anticodon, thus sensing Watson-Crick base-pairing geometry and discriminating against near-cognate tRNA. The third, or “wobble,” position of the codon is free to accommodate certain noncanonical base pairs. By partially inducing these structural changes, paromomycin facilitates binding of near-cognate tRNAs. During protein synthesis, the ribosome catalyzes the sequential addition of amino acids to a growing polypeptide chain, using mRNA as a template and aminoacylated tRNAs (aatRNAs) as substrates. Correct base pairing between the three bases of the codon on mRNA and those of the anticodon of the cognate aatRNA dictates the sequence of the polypeptide

1,177 citations

Journal ArticleDOI
TL;DR: Improved the affinity of one such “primary” antibody is improved by sequentially replacing the heavy and light chain variable (V) region genes with repertoires of V–genes (chain shuffling) obtained from unimmunized donors.
Abstract: Diverse antibody libraries can be displayed on the surface of filamentous bacteriophage, and selected by panning of the phage with antigen. This allows human antibodies to be made directly in vitro without prior immunization, thus mimicking the primary immune response. Here we have improved the affinity of one such "primary" antibody by sequentially replacing the heavy and light chain variable (V) region genes with repertoires of V-genes (chain shuffling) obtained from unimmunized donors. For a human phage antibody for the hapten 2-phenyloxazol-5-one (phOx) (Kd = 3.2 x 10(-7) M), we shuffled the light chains and isolated an antibody with a 20 fold improved affinity. By shuffling the first two hypervariable loops of the heavy chain, we isolated an antibody with a further 15-fold improved affinity. The reshuffled antibody differed in five of the six hypervariable loops from the original antibody and the affinity for phOx (Kd = 1.1 x 10(-9) M) was comparable to that of mouse hybridomas from the tertiary immune response. Reshuffling offers an alternative to random point mutation for affinity maturation of human antibodies in vitro.

1,171 citations

Journal ArticleDOI
24 Jan 1991-Nature
TL;DR: This work has shown that monoclonal antibodies can be genetically engineered and endowed with new properties and could be extended to production of 'in vitro' repertoires of variable domain genes, and obviate the immunization of animals.
Abstract: Monoclonal antibodies can now be genetically engineered and endowed with new properties. In the future, gene technology could enable antigen-binding fragments to be made by exploiting repertoires of variable domain genes derived from immunized animals and expressed in bacteria. How readily can this approach be extended to production of 'in vitro' repertoires of variable domain genes, and obviate the immunization of animals?

1,170 citations


Authors

Showing all 19431 results

NameH-indexPapersCitations
Robert J. Lefkowitz214860147995
Ronald M. Evans199708166722
Tony Hunter175593124726
Marc G. Caron17367499802
Mark Gerstein168751149578
Timothy A. Springer167669122421
Harvey F. Lodish165782101124
Ira Pastan1601286110069
Bruce N. Ames158506129010
Philip Cohen154555110856
Gerald M. Rubin152382115248
Ashok Kumar1515654164086
Kim Nasmyth14229459231
Kenneth M. Yamada13944672136
Harold E. Varmus13749676320
Network Information
Related Institutions (5)
Howard Hughes Medical Institute
34.6K papers, 5.2M citations

96% related

Salk Institute for Biological Studies
13.1K papers, 1.6M citations

96% related

Wellcome Trust Sanger Institute
9.6K papers, 1.2M citations

94% related

National Institutes of Health
297.8K papers, 21.3M citations

94% related

Scripps Research Institute
32.8K papers, 2.9M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20239
202265
20211,222
20201,165
20191,082
2018945