scispace - formally typeset
Search or ask a question
Institution

Laboratory of Molecular Biology

FacilityCambridge, Cambridgeshire, United Kingdom
About: Laboratory of Molecular Biology is a facility organization based out in Cambridge, Cambridgeshire, United Kingdom. It is known for research contribution in the topics: Gene & RNA. The organization has 19395 authors who have published 24236 publications receiving 2101480 citations.
Topics: Gene, RNA, DNA, Population, Receptor


Papers
More filters
Journal ArticleDOI
22 Apr 2005-Cell
TL;DR: It is reported that hDOT1L interacts with AF10, an MLL (mixed lineage leukemia) fusion partner involved in acute myeloid leukemia, through the OM-LZ region of AF10 required for MLL-AF10-mediated leukemogenesis, and suggests that the enzymatic activity of hDot1L may provide a potential target for therapeutic intervention.

778 citations

Journal ArticleDOI
06 Sep 2001-Nature
TL;DR: It is demonstrated that the bacterial MreB protein assembles into filaments with a subunit repeat similar to that of F-actin—the physiological polymer of eukaryotic actin, demonstrating that M reB and actin are very similar in three dimensions.
Abstract: It was thought until recently that bacteria lack the actin or tubulin filament networks that organize eukaryotic cytoplasm. However, we show here that the bacterial MreB protein assembles into filaments with a subunit repeat similar to that of F-actin-the physiological polymer of eukaryotic actin. By elucidating the MreB crystal structure we demonstrate that MreB and actin are very similar in three dimensions. Moreover, the crystals contain protofilaments, allowing visualization of actin-like strands at atomic resolution. The structure of the MreB protofilament is in remarkably good agreement with the model for F-actin, showing that the proteins assemble in identical orientations. The actin-like properties of MreB explain the finding that MreB forms large fibrous spirals under the cell membrane of rod-shaped cells, where they are involved in cell-shape determination. Thus, prokaryotes are now known to possess homologues both of tubulin, namely FtsZ, and of actin.

778 citations

Journal ArticleDOI
TL;DR: The present review focuses on the emerging complexity of the ubiquitin system, and reviews what is known about individual chain types, and highlights recent advances that explain how the ubiqu itin system achieves its intrinsic specificity.
Abstract: Protein ubiquitination and protein phosphorylation are two fundamental regulatory post-translational modifications controlling intracellular signalling events. However, the ubiquitin system is vastly more complex compared with phosphorylation. This is due to the ability of ubiquitin to form polymers, i.e. ubiquitin chains, of at least eight different linkages. The linkage type of the ubiquitin chain determines whether a modified protein is degraded by the proteasome or serves to attract proteins to initiate signalling cascades or be internalized. The present review focuses on the emerging complexity of the ubiquitin system. I review what is known about individual chain types, and highlight recent advances that explain how the ubiquitin system achieves its intrinsic specificity. There is much to be learnt from the better-studied phosphorylation system, and many key regulatory mechanisms underlying control by protein phosphorylation may be similarly employed within the ubiquitin system. For example, ubiquitination may have important allosteric roles in protein regulation that are currently not appreciated.

776 citations

Journal ArticleDOI
TL;DR: The complete structure of the anterior sensory nervous system of the small nematode C. elegans has been determined by reconstruction from serial section electronmicrographs and is found to be largely invariant.
Abstract: The complete structure of the anterior sensory nervous system of the small nematode C. elegans has been determined by reconstruction from serial section electronmicrographs. There are 58 neurons in the tip of the head. Fifty-two of these are arranged in sensilla. These include six inner labial sensilla, six outer labial sensilla, four cephalic sensilla and two amphids. Each sensillum consists of ciliated sensory neurons ending in a channel enclosed by two non-neuronal cells, the sheath and socket cells. The amphidial channel opens to the outside as does that of the inner labial sensilla so that these probably contain chemoreceptive neurons. The endings of the other sensilla are embedded in the cuticle and may be mechanoreceptive. The cell bodies of all the neurons lie near the nerve ring and their axons project into the ring or into ventral ganglia. One of the ciliated sensory neurons in each of the six inner labial sensilla makes direct chemical synapses onto a muscle making these sensory-motor neurons. The anatomy of four isogenic animals was compared in detail and found to be largely invariant. The anatomy of juveniles is nearly identical to that of the adult, but males have four additional neuron processes.

776 citations

Journal ArticleDOI
16 Jan 1992-Nature
TL;DR: The increasingly detailed biochemical definition of the protein complexes that regulate gene transcription has led to the re-emergence of questions about the role of histones, and evidence suggests that transcriptional activation requires that transcription factors successfully compete with histones for binding to promoters.
Abstract: The increasingly detailed biochemical definition of the protein complexes that regulate gene transcription has led to the re-emergence of questions about the role of histones. Much recent evidence suggests that transcriptional activation requires that transcription factors successfully compete with histones for binding to promoters, and that there may be more than one mechanism by which this is achieved.

774 citations


Authors

Showing all 19431 results

NameH-indexPapersCitations
Robert J. Lefkowitz214860147995
Ronald M. Evans199708166722
Tony Hunter175593124726
Marc G. Caron17367499802
Mark Gerstein168751149578
Timothy A. Springer167669122421
Harvey F. Lodish165782101124
Ira Pastan1601286110069
Bruce N. Ames158506129010
Philip Cohen154555110856
Gerald M. Rubin152382115248
Ashok Kumar1515654164086
Kim Nasmyth14229459231
Kenneth M. Yamada13944672136
Harold E. Varmus13749676320
Network Information
Related Institutions (5)
Howard Hughes Medical Institute
34.6K papers, 5.2M citations

96% related

Salk Institute for Biological Studies
13.1K papers, 1.6M citations

96% related

Wellcome Trust Sanger Institute
9.6K papers, 1.2M citations

94% related

National Institutes of Health
297.8K papers, 21.3M citations

94% related

Scripps Research Institute
32.8K papers, 2.9M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20239
202265
20211,222
20201,165
20191,082
2018945