scispace - formally typeset
Search or ask a question
Institution

Michigan Technological University

EducationHoughton, Michigan, United States
About: Michigan Technological University is a education organization based out in Houghton, Michigan, United States. It is known for research contribution in the topics: Population & Volcano. The organization has 8023 authors who have published 17422 publications receiving 481780 citations. The organization is also known as: MTU & Michigan Tech.


Papers
More filters
Journal ArticleDOI
TL;DR: This paper examines an agent- based approach and its applications in different modes of transportation, including roadway, railway, and air transportation, and addresses some critical issues in developing agent-based traffic control and management systems, such as interoperability, flexibility, and extendibility.
Abstract: The agent computing paradigm is rapidly emerging as one of the powerful technologies for the development of large-scale distributed systems to deal with the uncertainty in a dynamic environment. The domain of traffic and transportation systems is well suited for an agent-based approach because transportation systems are usually geographically distributed in dynamic changing environments. Our literature survey shows that the techniques and methods resulting from the field of agent and multiagent systems have been applied to many aspects of traffic and transportation systems, including modeling and simulation, dynamic routing and congestion management, and intelligent traffic control. This paper examines an agent-based approach and its applications in different modes of transportation, including roadway, railway, and air transportation. This paper also addresses some critical issues in developing agent-based traffic control and management systems, such as interoperability, flexibility, and extendibility. Finally, several future research directions toward the successful deployment of agent technology in traffic and transportation systems are discussed.

590 citations

Posted Content
TL;DR: The Berlin Numeracy Test as discussed by the authors is a psychometrically sound instrument that quickly assesses statistical numeracy and risk literacy and has been shown to be the strongest predictor of comprehension of everyday risks (e.g., evaluating claims about products and treatments; interpreting forecasts).
Abstract: We introduce the Berlin Numeracy Test, a new psychometrically sound instrument that quickly assesses statistical numeracy and risk literacy. We present 21 studies (n=5336) showing robust psychometric discriminability across 15 countries (e.g., Germany, Pakistan, Japan, USA) and diverse samples (e.g., medical professionals, general populations, Mechanical Turk web panels). Analyses demonstrate desirable patterns of convergent validity (e.g., numeracy, general cognitive abilities), discriminant validity (e.g., personality, motivation), and criterion validity (e.g., numerical and nonnumerical questions about risk). The Berlin Numeracy Test was found to be the strongest predictor of comprehension of everyday risks (e.g., evaluating claims about products and treatments; interpreting forecasts), doubling the predictive power of other numeracy instruments and accounting for unique variance beyond other cognitive tests (e.g., cognitive reflection, working memory, intelligence). The Berlin Numeracy Test typically takes about three minutes to complete and is available in multiple languages and formats, including a computer adaptive test that automatically scores and reports data to researchers (www.riskliteracy.org). The online forum also provides interactive content for public outreach and education, and offers a recommendation system for test format selection. Discussion centers on construct validity of numeracy for risk literacy, underlying cognitive mechanisms, and applications in adaptive decision support.

582 citations

Journal ArticleDOI
TL;DR: In this article, the authors assess the progress, opportunities, and challenges in this emerging field, which consists of a geochemical reaction regulated by subsurface microbiology, including mineral precipitation, gas generation, biofilm formation and biopolymer generation.
Abstract: Consideration of soil as a living ecosystem offers the potential for innovative and sustainable solutions to geotechnical problems. This is a new paradigm for many in geotechnical engineering. Realising the potential of this paradigm requires a multidisciplinary approach that embraces biology and geochemistry to develop techniques for beneficial ground modification. This paper assesses the progress, opportunities, and challenges in this emerging field. Biomediated geochemical processes, which consist of a geochemical reaction regulated by subsurface microbiology, currently being explored include mineral precipitation, gas generation, biofilm formation and biopolymer generation. For each of these processes, subsurface microbial processes are employed to create an environment conducive to the desired geochemical reactions among the minerals, organic matter, pore fluids, and gases that constitute soil. Geotechnical applications currently being explored include cementation of sands to enhance bearing capacity and liquefaction resistance, sequestration of carbon, soil erosion control, groundwater flow control, and remediation of soil and groundwater impacted by metals and radionuclides. Challenges in biomediated ground modification include upscaling processes from the laboratory to the field, in situ monitoring of reactions, reaction products and properties, developing integrated biogeochemical and geotechnical models, management of treatment by-products, establishing the durability and longevity/reversibility of the process, and education of engineers and researchers.

578 citations

Journal ArticleDOI
TL;DR: In this paper, the application of passive damping technology using viscoelastic materials to control noise and vibration in vehicles and commercial airplanes is described, and the material presented in this paper will be useful for instruction and further research in developing new and innovative applications in other industries.

570 citations

Journal ArticleDOI
TL;DR: In this paper, a group effort to improve the accuracy of source parameters used by VATDs in the early hours of an eruption was reported, by compiling a list of eruptions for which these parameters are well constrained, and then using these data to review and update previously studied parameter relationships.

567 citations


Authors

Showing all 8104 results

NameH-indexPapersCitations
Anil K. Jain1831016192151
Marc W. Kirschner162457102145
Yonggang Huang13679769290
Hong Wang110163351811
Fei Wang107182453587
Emanuele Bonamente10521940826
Haoshen Zhou10451937609
Nicholas J. Turro104113153827
Yang Shao-Horn10245849463
Richard P. Novick9929534542
Markus J. Buehler9560933054
Martin L. Yarmush9170234591
Alan Robock9034627022
Patrick M. Schlievert9044432037
Lonnie O. Ingram8831622217
Network Information
Related Institutions (5)
Texas A&M University
164.3K papers, 5.7M citations

93% related

Georgia Institute of Technology
119K papers, 4.6M citations

93% related

Arizona State University
109.6K papers, 4.4M citations

93% related

Pennsylvania State University
196.8K papers, 8.3M citations

93% related

Purdue University
163.5K papers, 5.7M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202349
2022154
2021882
2020891
2019892
2018893