scispace - formally typeset
Search or ask a question
Institution

Université Paris-Saclay

EducationGif-sur-Yvette, France
About: Université Paris-Saclay is a education organization based out in Gif-sur-Yvette, France. It is known for research contribution in the topics: Population & Context (language use). The organization has 29307 authors who have published 43183 publications receiving 867404 citations.


Papers
More filters
Journal ArticleDOI
Jalal Abdallah, P. Abreu1, Wolfgang Adam2, Petar Adzic  +373 moreInstitutions (44)
TL;DR: In this article, the DELPHI data was combined with earlier data to search for phenomena beyond the Standard Model and the measured number of light neutrino families was consistent with three and the absence of an excess of events beyond that predicted by the standard model processes was used to set limits on new physics.
Abstract: The production of single- and multi-photon events has been studied in the reaction e+e- -> gamma (gamma) + invisible particles. The data collected with the DELPHI detector during the years 1999 and 2000 at centre-of-mass energies between 191 GeV and 209 GeV was combined with earlier data to search for phenomena beyond the Standard Model. The measured number of light neutrino families was consistent with three and the absence of an excess of events beyond that predicted by the Standard Model processes was used to set limits on new physics. Both model-independent searches and searches for new processes predicted by supersymmetric and extra-dimensional models have been made. Limits on new non-standard model interactions between neutrinos and electrons were also determined.

182 citations

Journal ArticleDOI
TL;DR: Ezquiaga and Zumalacarregui as mentioned in this paper reviewed the different ways in which Gravitational Wave (GW) can be used to test gravity and models for late-time cosmic acceleration.
Abstract: Author(s): Ezquiaga, JM; Zumalacarregui, M | Abstract: Gravitational waves (GWs) provide a new tool to probe the nature of dark energy (DE) and the fundamental properties of gravity. We review the different ways in which GWs can be used to test gravity and models for late-time cosmic acceleration. Lagrangian-based gravitational theories beyond general relativity (GR) are classified into those breaking fundamental assumptions, containing additional fields and massive graviton(s). In addition to Lagrangian based theories we present the effective theory of DE and the μ-Σ parametrization as general descriptions of cosmological gravity. Multi-messenger GW detections can be used to measure the cosmological expansion (standard sirens), providing an independent test of the DE equation of state and measuring the Hubble parameter. Several key tests of gravity involve the cosmological propagation of GWs, including anomalous GW speed, massive graviton excitations, Lorentz violating dispersion relation, modified GW luminosity distance and additional polarizations, which may also induce GW oscillations. We summarize present constraints and their impact on DE models, including those arising from the binary neutron star merger GW170817. Upgrades of LIGO-Virgo detectors to design sensitivity and the next generation facilities such as LISA or Einstein Telescope will significantly improve these constraints in the next two decades.

182 citations

Journal ArticleDOI
TL;DR: In this article, a measurement of the baryon acoustic oscillation (BAO) scale at redshift z ǫ = 2.35 from the three-dimensional correlation of Lyman-α (Lyα ) forest absorption and quasars is presented.
Abstract: We present a measurement of the baryon acoustic oscillation (BAO) scale at redshift z = 2.35 from the three-dimensional correlation of Lyman-α (Lyα ) forest absorption and quasars. The study uses 266 590 quasars in the redshift range 1.77 absorption occurring in the Lyβ wavelength band of the spectra. From the measured BAO peak position along and across the line of sight, we determined the Hubble distance D H and the comoving angular diameter distance D M relative to the sound horizon at the drag epoch r d : D H (z = 2.35)/r d = 9.20 ± 0.36 and D M (z = 2.35)/r d = 36.3 ± 1.8. These results are consistent at 1.5σ with the prediction of the best-fit spatially-flat cosmological model with the cosmological constant reported for the Planck (2016) analysis of cosmic microwave background anisotropies. Combined with the Lyα auto-correlation measurement presented in a companion paper, the BAO measurements at z = 2.34 are within 1.7σ of the predictions of this model.

182 citations

Journal ArticleDOI
TL;DR: The C4MIP simulations that will be formally part of CMIP6 are described, their rationale and planned analysis are explained, and how to set up and run the simulations are described.
Abstract: . Coordinated experimental design and implementation has become a cornerstone of global climate modelling. Model Intercomparison Projects (MIPs) enable systematic and robust analysis of results across many models, by reducing the influence of ad hoc differences in model set-up or experimental boundary conditions. As it enters its 6th phase, the Coupled Model Intercomparison Project (CMIP6) has grown significantly in scope with the design and documentation of individual simulations delegated to individual climate science communities. The Coupled Climate–Carbon Cycle Model Intercomparison Project (C4MIP) takes responsibility for design, documentation, and analysis of carbon cycle feedbacks and interactions in climate simulations. These feedbacks are potentially large and play a leading-order contribution in determining the atmospheric composition in response to human emissions of CO2 and in the setting of emissions targets to stabilize climate or avoid dangerous climate change. For over a decade, C4MIP has coordinated coupled climate–carbon cycle simulations, and in this paper we describe the C4MIP simulations that will be formally part of CMIP6. While the climate–carbon cycle community has created this experimental design, the simulations also fit within the wider CMIP activity, conform to some common standards including documentation and diagnostic requests, and are designed to complement the CMIP core experiments known as the Diagnostic, Evaluation and Characterization of Klima (DECK). C4MIP has three key strands of scientific motivation and the requested simulations are designed to satisfy their needs: (1) pre-industrial and historical simulations (formally part of the common set of CMIP6 experiments) to enable model evaluation, (2) idealized coupled and partially coupled simulations with 1 % per year increases in CO2 to enable diagnosis of feedback strength and its components, (3) future scenario simulations to project how the Earth system will respond to anthropogenic activity over the 21st century and beyond. This paper documents in detail these simulations, explains their rationale and planned analysis, and describes how to set up and run the simulations. Particular attention is paid to boundary conditions, input data, and requested output diagnostics. It is important that modelling groups participating in C4MIP adhere as closely as possible to this experimental design.

182 citations

Journal ArticleDOI
Albert M. Sirunyan1, Armen Tumasyan1, Wolfgang Adam, Federico Ambrogi  +2357 moreInstitutions (197)
TL;DR: In this article, a low-mass search for resonances decaying into pairs of jets is performed using proton-proton collision data collected at s√=13 TeV corresponding to an integrated luminosity of up to 36 fb−1.
Abstract: Searches for resonances decaying into pairs of jets are performed using proton-proton collision data collected at s√=13 TeV corresponding to an integrated luminosity of up to 36 fb−1. A low-mass search, for resonances with masses between 0.6 and 1.6 TeV, is performed based on events with dijets reconstructed at the trigger level from calorimeter information. A high-mass search, for resonances with masses above 1.6 TeV, is performed using dijets reconstructed offline with a particle-flow algorithm. The dijet mass spectrum is well described by a smooth parameterization and no evidence for the production of new particles is observed. Upper limits at 95% confidence level are reported on the production cross section for narrow resonances with masses above 0.6 TeV. In the context of specific models, the limits exclude string resonances with masses below 7.7 TeV, scalar diquarks below 7.2 TeV, axigluons and colorons below 6.1 TeV, excited quarks below 6.0 TeV, color-octet scalars below 3.4 TeV, W′ bosons below 3.3 TeV, Z′ bosons below 2.7 TeV, Randall-Sundrum gravitons below 1.8 TeV and in the range 1.9 to 2.5 TeV, and dark matter mediators below 2.6 TeV. The limits on both vector and axial-vector mediators, in a simplified model of interactions between quarks and dark matter particles, are presented as functions of dark matter particle mass and coupling to quarks. Searches are also presented for broad resonances, including for the first time spin-1 resonances with intrinsic widths as large as 30% of the resonance mass. The broad resonance search improves and extends the exclusions of a dark matter mediator to larger values of its mass and coupling to quarks.

181 citations


Authors

Showing all 29679 results

NameH-indexPapersCitations
Guido Kroemer2361404246571
Patrick O. Brown183755200985
Didier Raoult1733267153016
Sophie Henrot-Versille171957157040
Philippe Ciais149965114503
Stanislas Dehaene14945686539
Marc Humbert1491184100577
Jean Bousquet145128896769
Jean-François Cardoso145373115144
Marc Besancon1431799106869
Maksym Titov1391573128335
W. Kozanecki138149899758
Nabila Aghanim137416100914
Yves Sirois137133495714
Patrick Janot136148593626
Network Information
Related Institutions (5)
Centre national de la recherche scientifique
382.4K papers, 13.6M citations

96% related

ETH Zurich
122.4K papers, 5.1M citations

96% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

96% related

University of Paris
174.1K papers, 5M citations

95% related

Technische Universität München
123.4K papers, 4M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023214
2022735
20218,412
20208,032
20197,008
20186,458