scispace - formally typeset
Search or ask a question
Institution

Université Paris-Saclay

EducationGif-sur-Yvette, France
About: Université Paris-Saclay is a education organization based out in Gif-sur-Yvette, France. It is known for research contribution in the topics: Population & Context (language use). The organization has 29307 authors who have published 43183 publications receiving 867404 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This survey sets out to review recent research in this area, including different optimization approaches, and to provide guidelines and promising directions for future research, making a distinction between prearranged and real-time problem settings and their methods of solution.
Abstract: The rise of research into shared mobility systems reflects emerging challenges, such as rising traffic congestion, rising oil prices and rising environmental concern. The operations research community has turned towards more sharable and sustainable systems of transportation. Shared mobility systems can be collapsed into two main streams: Those where people share rides and those where parcel transportation and people transportation are combined. This survey sets out to review recent research in this area, including different optimization approaches, and to provide guidelines and promising directions for future research. It makes a distinction between prearranged and real-time problem settings and their methods of solution, and also gives an overview of real-case applications relevant to the research area.

184 citations

Journal ArticleDOI
Elena Aprile1, Jelle Aalbers2, F. Agostini3, M. Alfonsi4, L. Althueser5, F. D. Amaro6, V. C. Antochi2, E. Angelino7, F. Arneodo8, D. Barge2, Laura Baudis9, Boris Bauermeister2, L. Bellagamba3, M. L. Benabderrahmane8, T. Berger10, P. A. Breur11, April S. Brown9, Ethan Brown10, S. Bruenner12, Giacomo Bruno8, Ran Budnik13, C. Capelli9, João Cardoso6, D. Cichon12, D. Coderre14, Auke-Pieter Colijn11, Jan Conrad2, Jean-Pierre Cussonneau15, M. P. Decowski11, P. de Perio1, A. Depoian16, P. Di Gangi3, A. Di Giovanni8, Sara Diglio15, A. Elykov14, G. Eurin12, J. Fei17, A. D. Ferella2, A. Fieguth5, W. Fulgione7, P. Gaemers11, A. Gallo Rosso, Michelle Galloway9, F. Gao1, M. Garbini3, L. Grandi18, Z. Greene1, C. Hasterok12, C. Hils4, E. Hogenbirk11, J. Howlett1, M. Iacovacci, R. Itay13, F. Joerg12, Shingo Kazama19, A. Kish9, M. Kobayashi1, G. Koltman13, A. Kopec16, H. Landsman13, R. F. Lang16, L. Levinson13, Qing Lin1, Sebastian Lindemann14, Manfred Lindner12, F. Lombardi6, J. A. M. Lopes6, E. López Fune20, C. Macolino21, Jörn Mahlstedt2, M. Manenti8, A. Manfredini13, A. Manfredini9, Fabrizio Marignetti, T. Marrodán Undagoitia12, Julien Masbou15, S. Mastroianni, M. Messina8, K. Micheneau15, Kate C. Miller18, A. Molinario, K. Morå2, Y. Mosbacher13, M. Murra5, J. Naganoma, Kaixuan Ni17, Uwe Oberlack4, K. Odgers10, J. Palacio15, Bart Pelssers2, R. Peres9, J. Pienaar18, V. Pizzella12, Guillaume Plante1, R. Podviianiuk, J. Qin16, H. Qiu13, D. Ramírez García14, S. Reichard9, B. Riedel18, A. Rocchetti14, N. Rupp12, J.M.F. dos Santos6, Gabriella Sartorelli3, N. Šarčević14, M. Scheibelhut4, S. Schindler4, J. Schreiner12, D. Schulte5, Marc Schumann14, L. Scotto Lavina20, M. Selvi3, P. Shagin22, E. Shockley18, Manuel Gameiro da Silva6, H. Simgen12, C. Therreau15, Dominique Thers15, F. Toschi14, Gian Carlo Trinchero7, C. Tunnell22, N. Upole18, M. Vargas5, G. Volta9, O. Wack12, Hongwei Wang23, Yuehuan Wei17, Ch. Weinheimer5, D. Wenz4, C. Wittweg5, J. Wulf9, J. Ye17, Yanxi Zhang1, T. Zhu1, J. P. Zopounidis20 
TL;DR: A probe of low-mass dark matter with masses down to about 85 MeV/c^{2} is reported on by looking for electronic recoils induced by the Migdal effect and bremsstrahlung using data from the XENON1T experiment, and exploiting an approach that uses ionization signals only allows for a lower detection threshold.
Abstract: Direct dark matter detection experiments based on a liquid xenon target are leading the search for dark matter particles with masses above ∼5 GeV/c2, but have limited sensitivity to lighter masses because of the small momentum transfer in dark matter-nucleus elastic scattering. However, there is an irreducible contribution from inelastic processes accompanying the elastic scattering, which leads to the excitation and ionization of the recoiling atom (the Migdal effect) or the emission of a bremsstrahlung photon. In this Letter, we report on a probe of low-mass dark matter with masses down to about 85 MeV/c2 by looking for electronic recoils induced by the Migdal effect and bremsstrahlung using data from the XENON1T experiment. Besides the approach of detecting both scintillation and ionization signals, we exploit an approach that uses ionization signals only, which allows for a lower detection threshold. This analysis significantly enhances the sensitivity of XENON1T to light dark matter previously beyond its reach.

184 citations

Journal ArticleDOI
TL;DR: It is revealed that ribosomal RNA 2′-O-methylation can be modulated in human ribosomes, including at key functional sites for translation, and that changes in the 2′'-O- methylation pattern control the intrinsic capabilities of ribosome to translate mRNAs.
Abstract: Ribosomal RNAs (rRNAs) are main effectors of messenger RNA (mRNA) decoding, peptide-bond formation, and ribosome dynamics during translation. Ribose 2′-O-methylation (2′-O-Me) is the most abundant rRNA chemical modification, and displays a complex pattern in rRNA. 2′-O-Me was shown to be essential for accurate and efficient protein synthesis in eukaryotic cells. However, whether rRNA 2′-O-Me is an adjustable feature of the human ribosome and a means of regulating ribosome function remains to be determined. Here we challenged rRNA 2′-O-Me globally by inhibiting the rRNA methyl-transferase fibrillarin in human cells. Using RiboMethSeq, a nonbiased quantitative mapping of 2′-O-Me, we identified a repertoire of 2′-O-Me sites subjected to variation and demonstrate that functional domains of ribosomes are targets of 2′-O-Me plasticity. Using the cricket paralysis virus internal ribosome entry site element, coupled to in vitro translation, we show that the intrinsic capability of ribosomes to translate mRNAs is modulated through a 2′-O-Me pattern and not by nonribosomal actors of the translational machinery. Our data establish rRNA 2′-O-Me plasticity as a mechanism providing functional specificity to human ribosomes.

184 citations

Journal ArticleDOI
TL;DR: It is shown that short-chain fatty acids, which are generated through bacterial fermentation, increases immune tolerance leading to resistance to anti-CTLA-4 immunotherapy in mice and patients with metastatic melanoma.
Abstract: Gut microbiota composition influences the clinical benefit of immune checkpoints in patients with advanced cancer but mechanisms underlying this relationship remain unclear. Molecular mechanism whereby gut microbiota influences immune responses is mainly assigned to gut microbial metabolites. Short-chain fatty acids (SCFA) are produced in large amounts in the colon through bacterial fermentation of dietary fiber. We evaluate in mice and in patients treated with anti-CTLA-4 blocking mAbs whether SCFA levels is related to clinical outcome. High blood butyrate and propionate levels are associated with resistance to CTLA-4 blockade and higher proportion of Treg cells. In mice, butyrate restrains anti-CTLA-4-induced up-regulation of CD80/CD86 on dendritic cells and ICOS on T cells, accumulation of tumor-specific T cells and memory T cells. In patients, high blood butyrate levels moderate ipilimumab-induced accumulation of memory and ICOS + CD4 + T cells and IL-2 impregnation. Altogether, these results suggest that SCFA limits anti-CTLA-4 activity. The gut microbiota has been reported to regulate the efficacy of cancer therapy. Here, the authors show that short-chain fatty acids, which are generated through bacterial fermentation, increases immune tolerance leading to resistance to anti-CTLA-4 immunotherapy in mice and patients with metastatic melanoma.

183 citations

Journal ArticleDOI
01 Jul 2004-Diabetes
TL;DR: The patient with no EIF2AK3 involvement did not have any of the other variable clinical manifestations associated with WRS, which supports the idea that the genetic heterogeneity between this variant form of WRS and EIF 2AK3 WRS correlates with some clinical heterogeneity.
Abstract: Wolcott-Rallison syndrome (WRS) is a rare autosomal-recessive disorder characterized by the association of permanent neonatal or early-infancy insulin-dependent diabetes, multiple epiphyseal dysplasia and growth retardation, and other variable multisystemic clinical manifestations. Based on genetic studies of two inbred families, we previously identified the gene responsible for this disorder as EIF2AK3, the pancreatic eukaryotic initiation factor 2alpha (eIF2alpha) kinase. Here, we have studied 12 families with WRS, totalling 18 cases. With the exception of one case, all patients carried EIF2AK3 mutations resulting in truncated or missense versions of the protein. Exclusion of EIF2AK3 mutations in the one patient case was confirmed by both linkage and sequence data. The activities of missense versions of EIF2AK3 were characterized in vivo and in vitro and found to have a complete lack of activity in four mutant proteins and residual kinase activity in one. Remarkably, the onset of diabetes was relatively late (30 months) in the patient expressing the partially defective EIF2AK3 mutant and in the patient with no EIF2AK3 involvement (18 months) compared with other patients (<6 months). The patient with no EIF2AK3 involvement did not have any of the other variable clinical manifestations associated with WRS, which supports the idea that the genetic heterogeneity between this variant form of WRS and EIF2AK3 WRS correlates with some clinical heterogeneity.

183 citations


Authors

Showing all 29679 results

NameH-indexPapersCitations
Guido Kroemer2361404246571
Patrick O. Brown183755200985
Didier Raoult1733267153016
Sophie Henrot-Versille171957157040
Philippe Ciais149965114503
Stanislas Dehaene14945686539
Marc Humbert1491184100577
Jean Bousquet145128896769
Jean-François Cardoso145373115144
Marc Besancon1431799106869
Maksym Titov1391573128335
W. Kozanecki138149899758
Nabila Aghanim137416100914
Yves Sirois137133495714
Patrick Janot136148593626
Network Information
Related Institutions (5)
Centre national de la recherche scientifique
382.4K papers, 13.6M citations

96% related

ETH Zurich
122.4K papers, 5.1M citations

96% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

96% related

University of Paris
174.1K papers, 5M citations

95% related

Technische Universität München
123.4K papers, 4M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023214
2022735
20218,412
20208,032
20197,008
20186,458