scispace - formally typeset
Search or ask a question
Institution

Université Paris-Saclay

EducationGif-sur-Yvette, France
About: Université Paris-Saclay is a education organization based out in Gif-sur-Yvette, France. It is known for research contribution in the topics: Population & Context (language use). The organization has 29307 authors who have published 43183 publications receiving 867404 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors provide a detailed overview and historical perspective on state-of-the-art solutions, and elaborate on the fundamental differences with other technologies, the most important open research issues to tackle, and the reasons why the use of reconfigurable intelligent surfaces necessitates to rethink the communication-theoretic models currently employed in wireless networks.
Abstract: The future of mobile communications looks exciting with the potential new use cases and challenging requirements of future 6th generation (6G) and beyond wireless networks. Since the beginning of the modern era of wireless communications, the propagation medium has been perceived as a randomly behaving entity between the transmitter and the receiver, which degrades the quality of the received signal due to the uncontrollable interactions of the transmitted radio waves with the surrounding objects. The recent advent of reconfigurable intelligent surfaces in wireless communications enables, on the other hand, network operators to control the scattering, reflection, and refraction characteristics of the radio waves, by overcoming the negative effects of natural wireless propagation. Recent results have revealed that reconfigurable intelligent surfaces can effectively control the wavefront, e.g., the phase, amplitude, frequency, and even polarization, of the impinging signals without the need of complex decoding, encoding, and radio frequency processing operations. Motivated by the potential of this emerging technology, the present article is aimed to provide the readers with a detailed overview and historical perspective on state-of-the-art solutions, and to elaborate on the fundamental differences with other technologies, the most important open research issues to tackle, and the reasons why the use of reconfigurable intelligent surfaces necessitates to rethink the communication-theoretic models currently employed in wireless networks. This article also explores theoretical performance limits of reconfigurable intelligent surface-assisted communication systems using mathematical techniques and elaborates on the potential use cases of intelligent surfaces in 6G and beyond wireless networks.

2,021 citations

Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, Fausto Acernese3  +1113 moreInstitutions (117)
TL;DR: For the first time, the nature of gravitational-wave polarizations from the antenna response of the LIGO-Virgo network is tested, thus enabling a new class of phenomenological tests of gravity.
Abstract: On August 14, 2017 at 10∶30:43 UTC, the Advanced Virgo detector and the two Advanced LIGO detectors coherently observed a transient gravitational-wave signal produced by the coalescence of two stellar mass black holes, with a false-alarm rate of ≲1 in 27 000 years. The signal was observed with a three-detector network matched-filter signal-to-noise ratio of 18. The inferred masses of the initial black holes are 30.5-3.0+5.7M⊙ and 25.3-4.2+2.8M⊙ (at the 90% credible level). The luminosity distance of the source is 540-210+130 Mpc, corresponding to a redshift of z=0.11-0.04+0.03. A network of three detectors improves the sky localization of the source, reducing the area of the 90% credible region from 1160 deg2 using only the two LIGO detectors to 60 deg2 using all three detectors. For the first time, we can test the nature of gravitational-wave polarizations from the antenna response of the LIGO-Virgo network, thus enabling a new class of phenomenological tests of gravity.

1,979 citations

Journal ArticleDOI
TL;DR: In this article, the authors developed energy-efficient designs for both the transmit power allocation and the phase shifts of the surface reflecting elements subject to individual link budget guarantees for the mobile users.
Abstract: The adoption of a reconfigurable intelligent surface (RIS) for downlink multi-user communication from a multi-antenna base station is investigated in this paper. We develop energy-efficient designs for both the transmit power allocation and the phase shifts of the surface reflecting elements subject to individual link budget guarantees for the mobile users. This leads to non-convex design optimization problems for which to tackle we propose two computationally affordable approaches, capitalizing on alternating maximization, gradient descent search, and sequential fractional programming. Specifically, one algorithm employs gradient descent for obtaining the RIS phase coefficients, and fractional programming for optimal transmit power allocation. Instead, the second algorithm employs sequential fractional programming for the optimization of the RIS phase shifts. In addition, a realistic power consumption model for RIS-based systems is presented, and the performance of the proposed methods is analyzed in a realistic outdoor environment. In particular, our results show that the proposed RIS-based resource allocation methods are able to provide up to 300% higher energy efficiency in comparison with the use of regular multi-antenna amplify-and-forward relaying.

1,967 citations

Journal ArticleDOI
TL;DR: European consensus for the management of patients with differentiated thyroid carcinoma of the follicular epithelium Furio Pacini, Martin Schlumberger, Henning Dralle, Rossella Elisei, Johannes W A Smit, Wilmar Wiersinga and the European Thyroid Cancer Taskforce Section of Endocrinology and Metabolism are presented.
Abstract: European consensus for the management of patients with differentiated thyroid carcinoma of the follicular epithelium Furio Pacini, Martin Schlumberger, Henning Dralle, Rossella Elisei, Johannes W A Smit, Wilmar Wiersinga and the European Thyroid Cancer Taskforce Section of Endocrinology and Metabolism, University of Siena, Via Bracci, 53100 Siena, Italy, Service de Medicine Nucleaire, Institut Gustave Roussy, Villejuif, France, Department of General, Visceral and Vascular Surgery, University of Halle, Germany, Department of Endocrinology, University of Pisa, Italy, Department of Endocrinology and Metabolic Disease, Leiden University Medical Center, The Netherlands and Department of Endocrinology and Metabolism, University of Amsterdam, The Netherlands

1,926 citations

Journal ArticleDOI
Pierre Friedlingstein1, Pierre Friedlingstein2, Michael O'Sullivan2, Matthew W. Jones3, Robbie M. Andrew, Judith Hauck, Are Olsen, Glen P. Peters, Wouter Peters4, Wouter Peters5, Julia Pongratz6, Julia Pongratz7, Stephen Sitch1, Corinne Le Quéré3, Josep G. Canadell8, Philippe Ciais9, Robert B. Jackson10, Simone R. Alin11, Luiz E. O. C. Aragão12, Luiz E. O. C. Aragão1, Almut Arneth, Vivek K. Arora, Nicholas R. Bates13, Nicholas R. Bates14, Meike Becker, Alice Benoit-Cattin, Henry C. Bittig, Laurent Bopp15, Selma Bultan6, Naveen Chandra16, Naveen Chandra17, Frédéric Chevallier9, Louise Chini18, Wiley Evans, Liesbeth Florentie4, Piers M. Forster19, Thomas Gasser20, Marion Gehlen9, Dennis Gilfillan, Thanos Gkritzalis21, Luke Gregor22, Nicolas Gruber22, Ian Harris23, Kerstin Hartung24, Kerstin Hartung6, Vanessa Haverd8, Richard A. Houghton25, Tatiana Ilyina7, Atul K. Jain26, Emilie Joetzjer27, Koji Kadono28, Etsushi Kato, Vassilis Kitidis29, Jan Ivar Korsbakken, Peter Landschützer7, Nathalie Lefèvre30, Andrew Lenton31, Sebastian Lienert32, Zhu Liu33, Danica Lombardozzi34, Gregg Marland35, Nicolas Metzl30, David R. Munro36, David R. Munro11, Julia E. M. S. Nabel7, S. Nakaoka16, Yosuke Niwa16, Kevin D. O'Brien37, Kevin D. O'Brien11, Tsuneo Ono, Paul I. Palmer, Denis Pierrot38, Benjamin Poulter, Laure Resplandy39, Eddy Robertson40, Christian Rödenbeck7, Jörg Schwinger, Roland Séférian27, Ingunn Skjelvan, Adam J. P. Smith3, Adrienne J. Sutton11, Toste Tanhua41, Pieter P. Tans11, Hanqin Tian42, Bronte Tilbrook43, Bronte Tilbrook31, Guido R. van der Werf44, N. Vuichard9, Anthony P. Walker45, Rik Wanninkhof38, Andrew J. Watson1, David R. Willis23, Andy Wiltshire40, Wenping Yuan46, Xu Yue47, Sönke Zaehle7 
University of Exeter1, École Normale Supérieure2, Norwich Research Park3, Wageningen University and Research Centre4, University of Groningen5, Ludwig Maximilian University of Munich6, Max Planck Society7, Commonwealth Scientific and Industrial Research Organisation8, Université Paris-Saclay9, Stanford University10, National Oceanic and Atmospheric Administration11, National Institute for Space Research12, University of Southampton13, Bermuda Institute of Ocean Sciences14, PSL Research University15, National Institute for Environmental Studies16, Japan Agency for Marine-Earth Science and Technology17, University of Maryland, College Park18, University of Leeds19, International Institute of Minnesota20, Flanders Marine Institute21, ETH Zurich22, University of East Anglia23, German Aerospace Center24, Woods Hole Research Center25, University of Illinois at Urbana–Champaign26, University of Toulouse27, Japan Meteorological Agency28, Plymouth Marine Laboratory29, University of Paris30, Hobart Corporation31, Oeschger Centre for Climate Change Research32, Tsinghua University33, National Center for Atmospheric Research34, Appalachian State University35, University of Colorado Boulder36, University of Washington37, Atlantic Oceanographic and Meteorological Laboratory38, Princeton University39, Met Office40, Leibniz Institute of Marine Sciences41, Auburn University42, University of Tasmania43, VU University Amsterdam44, Oak Ridge National Laboratory45, Sun Yat-sen University46, Nanjing University47
TL;DR: In this paper, the authors describe and synthesize data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties, including emissions from land use and land-use change data and bookkeeping models.
Abstract: Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere in a changing climate – the “global carbon budget” – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe and synthesize data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. Fossil CO2 emissions (EFOS) are based on energy statistics and cement production data, while emissions from land-use change (ELUC), mainly deforestation, are based on land use and land-use change data and bookkeeping models. Atmospheric CO2 concentration is measured directly and its growth rate (GATM) is computed from the annual changes in concentration. The ocean CO2 sink (SOCEAN) and terrestrial CO2 sink (SLAND) are estimated with global process models constrained by observations. The resulting carbon budget imbalance (BIM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the last decade available (2010–2019), EFOS was 9.6 ± 0.5 GtC yr−1 excluding the cement carbonation sink (9.4 ± 0.5 GtC yr−1 when the cement carbonation sink is included), and ELUC was 1.6 ± 0.7 GtC yr−1. For the same decade, GATM was 5.1 ± 0.02 GtC yr−1 (2.4 ± 0.01 ppm yr−1), SOCEAN 2.5 ± 0.6 GtC yr−1, and SLAND 3.4 ± 0.9 GtC yr−1, with a budget imbalance BIM of −0.1 GtC yr−1 indicating a near balance between estimated sources and sinks over the last decade. For the year 2019 alone, the growth in EFOS was only about 0.1 % with fossil emissions increasing to 9.9 ± 0.5 GtC yr−1 excluding the cement carbonation sink (9.7 ± 0.5 GtC yr−1 when cement carbonation sink is included), and ELUC was 1.8 ± 0.7 GtC yr−1, for total anthropogenic CO2 emissions of 11.5 ± 0.9 GtC yr−1 (42.2 ± 3.3 GtCO2). Also for 2019, GATM was 5.4 ± 0.2 GtC yr−1 (2.5 ± 0.1 ppm yr−1), SOCEAN was 2.6 ± 0.6 GtC yr−1, and SLAND was 3.1 ± 1.2 GtC yr−1, with a BIM of 0.3 GtC. The global atmospheric CO2 concentration reached 409.85 ± 0.1 ppm averaged over 2019. Preliminary data for 2020, accounting for the COVID-19-induced changes in emissions, suggest a decrease in EFOS relative to 2019 of about −7 % (median estimate) based on individual estimates from four studies of −6 %, −7 %, −7 % (−3 % to −11 %), and −13 %. Overall, the mean and trend in the components of the global carbon budget are consistently estimated over the period 1959–2019, but discrepancies of up to 1 GtC yr−1 persist for the representation of semi-decadal variability in CO2 fluxes. Comparison of estimates from diverse approaches and observations shows (1) no consensus in the mean and trend in land-use change emissions over the last decade, (2) a persistent low agreement between the different methods on the magnitude of the land CO2 flux in the northern extra-tropics, and (3) an apparent discrepancy between the different methods for the ocean sink outside the tropics, particularly in the Southern Ocean. This living data update documents changes in the methods and data sets used in this new global carbon budget and the progress in understanding of the global carbon cycle compared with previous publications of this data set (Friedlingstein et al., 2019; Le Quere et al., 2018b, a, 2016, 2015b, a, 2014, 2013). The data presented in this work are available at https://doi.org/10.18160/gcp-2020 (Friedlingstein et al., 2020).

1,764 citations


Authors

Showing all 29679 results

NameH-indexPapersCitations
Guido Kroemer2361404246571
Patrick O. Brown183755200985
Didier Raoult1733267153016
Sophie Henrot-Versille171957157040
Philippe Ciais149965114503
Stanislas Dehaene14945686539
Marc Humbert1491184100577
Jean Bousquet145128896769
Jean-François Cardoso145373115144
Marc Besancon1431799106869
Maksym Titov1391573128335
W. Kozanecki138149899758
Nabila Aghanim137416100914
Yves Sirois137133495714
Patrick Janot136148593626
Network Information
Related Institutions (5)
Centre national de la recherche scientifique
382.4K papers, 13.6M citations

96% related

ETH Zurich
122.4K papers, 5.1M citations

96% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

96% related

University of Paris
174.1K papers, 5M citations

95% related

Technische Universität München
123.4K papers, 4M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023214
2022735
20218,412
20208,032
20197,008
20186,458