scispace - formally typeset
Search or ask a question
Institution

University of Antwerp

EducationAntwerp, Belgium
About: University of Antwerp is a education organization based out in Antwerp, Belgium. It is known for research contribution in the topics: Population & Context (language use). The organization has 16682 authors who have published 48837 publications receiving 1689748 citations. The organization is also known as: Universiteit Antwerpen & UAntwerp.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors analyse observations from an extensive network of flux towers in Europe that reveal a difference between the temporal responses of forest and grassland ecosystems during heatwaves and conclude that the conservative water use of forest contributes to increased temperatures in the short term, but mitigates the impact of the most extreme heat and/or long-lasting events.
Abstract: Recent European heatwaves have raised interest in the impact of land cover conditions on temperature extremes. At present, it is believed that such extremes are enhanced by stronger surface heating of the atmosphere, when soil moisture content is below average. However, the impact of land cover on the exchange of water and energy and the interaction of this exchange with the soil water balance during heatwaves is largely unknown. Here we analyse observations from an extensive network of flux towers in Europe that reveal a difference between the temporal responses of forest and grassland ecosystems during heatwaves. We find that initially, surface heating is twice as high over forest than over grassland. Over grass, heating is suppressed by increased evaporation in response to increased solar radiation and temperature. Ultimately, however, this process accelerates soil moisture depletion and induces a critical shift in the regional climate system that leads to increased heating. We propose that this mechanism may explain the extreme temperatures in August 2003. We conclude that the conservative water use of forest contributes to increased temperatures in the short term, but mitigates the impact of the most extreme heat and/or long-lasting events.

517 citations

Journal ArticleDOI
Halina Abramowicz1, Halina Abramowicz2, I. Abt3, Leszek Adamczyk4  +325 moreInstitutions (55)
TL;DR: A combination of all inclusive deep inelastic cross sections previously published by the H1 and ZEUS collaborations at HERA for neutral and charged current scattering for zero beam polarisation is presented in this paper.
Abstract: A combination is presented of all inclusive deep inelastic cross sections previously published by the H1 and ZEUS collaborations at HERA for neutral and charged current $e^{\pm}p$ scattering for zero beam polarisation. The data were taken at proton beam energies of 920, 820, 575 and 460 GeV and an electron beam energy of 27.5 GeV. The data correspond to an integrated luminosity of about 1 fb$^{-1}$ and span six orders of magnitude in negative four-momentum-transfer squared, $Q^2$, and Bjorken $x$. The correlations of the systematic uncertainties were evaluated and taken into account for the combination. The combined cross sections were input to QCD analyses at leading order, next-to-leading order and at next-to-next-to-leading order, providing a new set of parton distribution functions, called HERAPDF2.0. In addition to the experimental uncertainties, model and parameterisation uncertainties were assessed for these parton distribution functions. Variants of HERAPDF2.0 with an alternative gluon parameterisation, HERAPDF2.0AG, and using fixed-flavour-number schemes, HERAPDF2.0FF, are presented. The analysis was extended by including HERA data on charm and jet production, resulting in the variant HERAPDF2.0Jets. The inclusion of jet-production cross sections made a simultaneous determination of these parton distributions and the strong coupling constant possible, resulting in $\alpha_s(M_Z)=0.1183 \pm 0.0009 {\rm(exp)} \pm 0.0005{\rm (model/parameterisation)} \pm 0.0012{\rm (hadronisation)} ^{+0.0037}_{-0.0030}{\rm (scale)}$. An extraction of $xF_3^{\gamma Z}$ and results on electroweak unification and scaling violations are also presented.

514 citations

Journal ArticleDOI
TL;DR: This document summarises the conclusions of a European Respiratory Society Task Force on the diagnosis and management of obstructive sleep disordered breathing (SDB) in childhood and refers to children aged 2–18 years.
Abstract: This document summarises the conclusions of a European Respiratory Society Task Force on the diagnosis and management of obstructive sleep disordered breathing (SDB) in childhood and refers to children aged 2-18 years. Prospective cohort studies describing the natural history of SDB or randomised, double-blind, placebo-controlled trials regarding its management are scarce. Selected evidence (362 articles) can be consolidated into seven management steps. SDB is suspected when symptoms or abnormalities related to upper airway obstruction are present (step 1). Central nervous or cardiovascular system morbidity, growth failure or enuresis and predictors of SDB persistence in the long-term are recognised (steps 2 and 3), and SDB severity is determined objectively preferably using polysomnography (step 4). Children with an apnoea-hypopnoea index (AHI) >5 episodes·h(-1), those with an AHI of 1-5 episodes·h(-1) and the presence of morbidity or factors predicting SDB persistence, and children with complex conditions (e.g. Down syndrome and Prader-Willi syndrome) all appear to benefit from treatment (step 5). Treatment interventions are usually implemented in a stepwise fashion addressing all abnormalities that predispose to SDB (step 6) with re-evaluation after each intervention to detect residual disease and to determine the need for additional treatment (step 7).

513 citations

Journal ArticleDOI
TL;DR: It is shown that the biogeography of fish invasions matches the geography of human impact at the global scale, which means that natural processes are blurred by human activities in drivingFish invasions in the world's river systems.
Abstract: Because species invasions are a principal driver of the human-induced biodiversity crisis, the identification of the major determinants of global invasions is a prerequisite for adopting sound conservation policies. Three major hypotheses, which are not necessarily mutually exclusive, have been proposed to explain the establishment of non-native species: the “human activity” hypothesis, which argues that human activities facilitate the establishment of non-native species by disturbing natural landscapes and by increasing propagule pressure; the “biotic resistance” hypothesis, predicting that species-rich communities will readily impede the establishment of non-native species; and the “biotic acceptance” hypothesis, predicting that environmentally suitable habitats for native species are also suitable for non-native species. We tested these hypotheses and report here a global map of fish invasions (i.e., the number of non-native fish species established per river basin) using an original worldwide dataset of freshwater fish occurrences, environmental variables, and human activity indicators for 1,055 river basins covering more than 80% of Earth's surface. First, we identified six major invasion hotspots where non-native species represent more than a quarter of the total number of species. According to the World Conservation Union, these areas are also characterised by the highest proportion of threatened fish species. Second, we show that the human activity indicators account for most of the global variation in non-native species richness, which is highly consistent with the “human activity” hypothesis. In contrast, our results do not provide support for either the “biotic acceptance” or the “biotic resistance” hypothesis. We show that the biogeography of fish invasions matches the geography of human impact at the global scale, which means that natural processes are blurred by human activities in driving fish invasions in the world's river systems. In view of our findings, we fear massive invasions in developing countries with a growing economy as already experienced in developed countries. Anticipating such potential biodiversity threats should therefore be a priority.

513 citations

Journal ArticleDOI
TL;DR: In this paper, the authors presented the results of a project with the European Research Council and EPLANET (European Union) with the objective of supporting the development of a research network in the field of nuclear energy.
Abstract: Austrian Federal Ministry of Science and Research and the Austrian Science Fund; the Belgian Fonds de la Recherche Scientifique and Fonds voor Wetenschappelijk Onderzoek; the Brazilian Funding Agencies (CNPq, CAPES, FAPERJ, and FAPESP); the Bulgarian Ministry of Education and Science; CERN; the Chinese Academy of Sciences, Ministry of Science and Technology, and National Natural Science Foundation of China; the Colombian Funding Agency (COLCIENCIAS); the Croatian Ministry of Science, Education and Sport, and the Croatian Science Foundation; the Research Promotion Foundation, Cyprus; the Ministry of Education and Research, Recurrent Financing Contract No. SF0690030s09 and European Regional Development Fund, Estonia; the Academy of Finland, Finnish Ministry of Education and Culture, and Helsinki Institute of Physics; the Institut National de Physique Nucleaire et de Physique des Particules/CNRS and Commissariat a l’Energie Atomique et aux Energies Alternatives/CEA, France; the Bundesministerium fur Bildung und Forschung, Deutsche Forschungsgemeinschaft, and Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany; the General Secretariat for Research and Technology, Greece; the National Scientific Research Foundation and National Innovation Office, Hungary; the Department of Atomic Energy and the Department of Science and Technology, India; the Institute for Studies in Theoretical Physics and Mathematics, Iran; the Science Foundation, Ireland; the Istituto Nazionale di Fisica Nucleare, Italy; the Korean Ministry of Education, Science and Technology and the World Class University program of NRF, Republic of Korea; the Lithuanian Academy of Sciences; the Mexican Funding Agencies (CINVESTAV, CONACYT, SEP, and UASLP-FAI); the Ministry of Business, Innovation and Employment, New Zealand; the Pakistan Atomic Energy Commission; the Ministry of Science and Higher Education and the National Science Centre, Poland; the Fundacao para a Ciencia e a Tecnologia, Portugal; JINR, Dubna, the Ministry of Education and Science of the Russian Federation, the Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, and the Russian Foundation for Basic Research; the Ministry of Education, Science and Technological Development of Serbia; the Secretaria de Estado de Investigacion, Desarrollo e Innovacion and Programa Consolider-Ingenio 2010, Spain; the Swiss Funding Agencies (ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, and SER); the National Science Council, Taipei; the Thailand Center of Excellence in Physics, the Institute for the Promotion of Teaching Science and Technology of Thailand, Special Task Force for Activating Research and the National Science and Technology Development Agency of Thailand; the Scientific and Technical Research Council of Turkey and the Turkish Atomic Energy Authority; the Science and Technology Facilities Council, United Kingdom; the U.S. Department of Energy and the U.S. National Science Foundation.Individuals have received support from the Marie-Curie program and the European Research Council and EPLANET (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation a la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Council of Science and Industrial Research, India; the Compagnia di San Paolo (Torino); the HOMING PLUS programme of Foundation for Polish Science, cofinanced by EU, Regional Development Fund; and the Thalis and Aristeia programmes cofinanced by EU-ESF and the Greek NSRF.

512 citations


Authors

Showing all 16957 results

NameH-indexPapersCitations
Cornelia M. van Duijn1831030146009
John Hardy1771178171694
Mark Gerstein168751149578
Hannes Jung1592069125069
Rui Zhang1512625107917
Dirk Inzé14964774468
Walter Paulus14980986252
Robin Erbacher1381721100252
Rupert Leitner136120190597
Alison Goate13672185846
Andrea Giammanco135136298093
Maria Spiropulu135145596674
Peter Robmann135143897569
Michael Tytgat134144994133
Matthew Herndon133173297466
Network Information
Related Institutions (5)
Utrecht University
139.3K papers, 6.2M citations

95% related

Katholieke Universiteit Leuven
176.5K papers, 6.2M citations

95% related

University of Amsterdam
140.8K papers, 5.9M citations

95% related

University of Helsinki
113.1K papers, 4.6M citations

94% related

University of British Columbia
209.6K papers, 9.2M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023137
2022460
20213,656
20203,332
20192,982
20182,844