scispace - formally typeset
Search or ask a question
Institution

University of Electronic Science and Technology of China

EducationChengdu, China
About: University of Electronic Science and Technology of China is a education organization based out in Chengdu, China. It is known for research contribution in the topics: Computer science & Antenna (radio). The organization has 50594 authors who have published 58502 publications receiving 711188 citations. The organization is also known as: UESTC.


Papers
More filters
Journal ArticleDOI
TL;DR: It was observed that the overall success rate achieved by iHSP-PseRAAAC in identifying the functional types of HSPs among the aforementioned six types was more than 87%, which was derived by the jackknife test on a stringent benchmark dataset.

270 citations

Journal ArticleDOI
TL;DR: The pseudo nucleotide composition or PseKNC approach developed very recently has the following advantages: it can convert length-different DNA/RNA sequences into dimension-fixed digital vectors that can be directly handled by all the existing machine-learning algorithms or operation engines.
Abstract: With the avalanche of DNA/RNA sequences generated in the post-genomic age, it is urgent to develop automated methods for analyzing the relationship between the sequences and their functions. Towards this goal, a series of sequence-based methods have been proposed and applied to analyze various character-unknown DNA/RNA sequences in order for in-depth understanding their action mechanisms and processes. Compared with the classical sequence-based methods, the pseudo nucleotide composition or PseKNC approach developed very recently has the following advantages: (1) it can convert length-different DNA/RNA sequences into dimension-fixed digital vectors that can be directly handled by all the existing machine-learning algorithms or operation engines; (2) it can contain the desired features and properties according to the selection or definition of users; (3) it can cover considerable sequence pattern information, both local and global. This minireview is focused on the concept of pseudo nucleotide composition, its development and applications.

269 citations

Journal ArticleDOI
TL;DR: Wang et al. as mentioned in this paper proposed a privacy-preserving and efficient data aggregation scheme, which divides users into different groups, and each group has a private blockchain to record its members' data.
Abstract: Intelligence is one of the most important aspects in the development of our future communities. Ranging from smart home to smart building to smart city, all these smart infrastructures must be supported by intelligent power supply. Smart grid is proposed to solve all challenges of future electricity supply. In smart grid, in order to realize optimal scheduling, an SM is installed at each home to collect the near-real-time electricity consumption data, which can be used by the utilities to offer better smart home services. However, the near-real-time data may disclose a user's private information. An adversary may track the application usage patterns by analyzing the user's electricity consumption profile. In this article, we propose a privacy-preserving and efficient data aggregation scheme. We divide users into different groups, and each group has a private blockchain to record its members' data. To preserve the inner privacy within a group, we use pseudonyms to hide users' identities, and each user may create multiple pseudonyms and associate his/ her data with different pseudonyms. In addition, the bloom filter is adopted for fast authentication. The analysis shows that the proposed scheme can meet the security requirements and achieve better performance than other popular methods.

269 citations

Journal ArticleDOI
TL;DR: A generalized soft cost consensus model under a certain degree of consensus is developed, which is built by defining a consensus level function and a generalized aggregation operator and is applied to a loan consensus scenario using data from an online peer-to-peer lending platform.

268 citations

Journal ArticleDOI
TL;DR: It is shown that a large-area WS2 film synthesized by sulfurization of a tungsten film exhibits high humidity sensing performance both in natural flat and high mechanical flexible states, indicating a potential mask-free breath monitoring for healthcare application.
Abstract: Skin-mountable chemical sensors using flexible chemically sensitive nanomaterials are of great interest for electronic skin (e-skin) application. To build these sensors, the emerging atomically thin two-dimensional (2D) layered semiconductors could be a good material candidate. Herein, we show that a large-area WS2 film synthesized by sulfurization of a tungsten film exhibits high humidity sensing performance both in natural flat and high mechanical flexible states (bending curvature down to 5 mm). The conductivity of as-synthesized WS2 increases sensitively over a wide relative humidity range (up to 90%) with fast response and recovery times in a few seconds. By using graphene as electrodes and thin polydimethylsiloxane (PDMS) as substrate, a transparent, flexible, and stretchable humidity sensor was fabricated. This senor can be well laminated onto skin and shows stable water moisture sensing behaviors in the undeformed relaxed state as well as under compressive and tensile loadings. Furthermore, its high sensing performance enables real-time monitoring of human breath, indicating a potential mask-free breath monitoring for healthcare application. We believe that such a skin-activity compatible WS2 humidity sensor may shed light on developing low power consumption wearable chemical sensors based on 2D semiconductors.

268 citations


Authors

Showing all 51090 results

NameH-indexPapersCitations
Gang Chen1673372149819
Frede Blaabjerg1472161112017
Kuo-Chen Chou14348757711
Yi Yang143245692268
Guanrong Chen141165292218
Shuit-Tong Lee138112177112
Lei Zhang135224099365
Rajkumar Buyya133106695164
Lei Zhang130231286950
Bin Wang126222674364
Haiyan Wang119167486091
Bo Wang119290584863
Yi Zhang11643673227
Qiang Yang112111771540
Chun-Sing Lee10997747957
Network Information
Related Institutions (5)
Nanyang Technological University
112.8K papers, 3.2M citations

93% related

Tsinghua University
200.5K papers, 4.5M citations

92% related

City University of Hong Kong
60.1K papers, 1.7M citations

92% related

University of Science and Technology of China
101K papers, 2.4M citations

92% related

Zhejiang University
183.2K papers, 3.4M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20241
2023159
2022980
20217,385
20207,220
20196,976