scispace - formally typeset
Search or ask a question
Institution

University of Electronic Science and Technology of China

EducationChengdu, China
About: University of Electronic Science and Technology of China is a education organization based out in Chengdu, China. It is known for research contribution in the topics: Computer science & Antenna (radio). The organization has 50594 authors who have published 58502 publications receiving 711188 citations. The organization is also known as: UESTC.


Papers
More filters
Proceedings ArticleDOI
14 Jun 2020
TL;DR: The proposed Information Retention Network (IR-Net) is the first to investigate both forward and backward processes of binary networks from the unified information perspective, which provides new insight into the mechanism of network binarization.
Abstract: Weight and activation binarization is an effective approach to deep neural network compression and can accelerate the inference by leveraging bitwise operations. Although many binarization methods have improved the accuracy of the model by minimizing the quantization error in forward propagation, there remains a noticeable performance gap between the binarized model and the full-precision one. Our empirical study indicates that the quantization brings information loss in both forward and backward propagation, which is the bottleneck of training accurate binary neural networks. To address these issues, we propose an Information Retention Network (IR-Net) to retain the information that consists in the forward activations and backward gradients. IR-Net mainly relies on two technical contributions: (1) Libra Parameter Binarization (Libra-PB): simultaneously minimizing both quantization error and information loss of parameters by balanced and standardized weights in forward propagation; (2) Error Decay Estimator (EDE): minimizing the information loss of gradients by gradually approximating the sign function in backward propagation, jointly considering the updating ability and accurate gradients. We are the first to investigate both forward and backward processes of binary networks from the unified information perspective, which provides new insight into the mechanism of network binarization. Comprehensive experiments with various network structures on CIFAR-10 and ImageNet datasets manifest that the proposed IR-Net can consistently outperform state-of-the-art quantization methods.

253 citations

Journal ArticleDOI
TL;DR: The results illustrate that the proposed GDM method cannot only avoid information loss, but also effectively integrate heterogeneous information in heterogeneous GDM environment.
Abstract: This paper proposes a group decision-making (GDM) method for integrating heterogeneous information. To avoid information loss, instead of transforming heterogeneous information into a single form, the proposed method integrates heterogeneous information using a weighted-power average operator. The consensus degree between the individual-decision matrix and the group-decision matrix is then calculated based on the deviation degree. In addition, the feedback mechanism with the iterative algorithm is used to adjust the individual decision matrix, which does not reach the consensus. Furthermore, a ranking formula with heterogeneous technique for order preference by similarity to an ideal solution is adopted to select the best alternative. A numerical example of supplier selection is introduced to validate the proposed model and compare it with other similar GDM models. The results illustrate that the proposed method cannot only avoid information loss, but also effectively integrate heterogeneous information in heterogeneous GDM environment.

253 citations

Journal ArticleDOI
TL;DR: These findings firmly established how the elemental species in the lattice of LMR cathode transfer from the bulk lattice to surface layer and further into the electrolyte, clarifying the long-standing confusion and debate on the structure and chemistry of the surfacelayer and their correlation with the voltage fading and capacity decaying of L MR cathode.
Abstract: Voltage and capacity fading of layer structured lithium and manganese rich (LMR) transition metal oxide is directly related to the structural and composition evolution of the material during the cycling of the battery. However, understanding such evolution at atomic level remains elusive. On the basis of atomic level structural imaging, elemental mapping of the pristine and cycled samples, and density functional theory calculations, it is found that accompanying the hoping of Li ions is the simultaneous migration of Ni ions toward the surface from the bulk lattice, leading to the gradual depletion of Ni in the bulk lattice and thickening of a Ni enriched surface reconstruction layer (SRL). Furthermore, Ni and Mn also exhibit concentration partitions within the thin layer of SRL in the cycled samples where Ni is almost depleted at the very surface of the SRL, indicating the preferential dissolution of Ni ions in the electrolyte. Accompanying the elemental composition evolution, significant structural evolu...

253 citations

Journal ArticleDOI
13 Jan 2009-Sensors
TL;DR: A novel energy-aware routing protocol (EAP) for a long-lived sensor network that achieves a good performance in terms of lifetime by minimizing energy consumption for in-network communications and balancing the energy load among all the nodes.
Abstract: The most important issue that must be solved in designing a data gathering algorithm for wireless sensor networks (WSNS) is how to save sensor node energy while meeting the needs of applications/users. In this paper, we propose a novel energy-aware routing protocol (EAP) for a long-lived sensor network. EAP achieves a good performance in terms of lifetime by minimizing energy consumption for in-network communications and balancing the energy load among all the nodes. EAP introduces a new clustering parameter for cluster head election, which can better handle the heterogeneous energy capacities. Furthermore, it also introduces a simple but efficient approach, namely, intra-cluster coverage to cope with the area coverage problem. We use a simple temperature sensing application to evaluate the performance of EAP and results show that our protocol significantly outperforms LEACH and HEED in terms of network lifetime and the amount of data gathered.

253 citations

Journal ArticleDOI
TL;DR: The authors apply the inverse design approach to identify and experimentally realize TaFeSb-based half Heuslers with high thermoelectric performance and demonstrate that the TaFe Sb- based half-Heuslers are highly promising for thermoelectedric power generation.
Abstract: Discovery of thermoelectric materials has long been realized by the Edisonian trial and error approach. However, recent progress in theoretical calculations, including the ability to predict structures of unknown phases along with their thermodynamic stability and functional properties, has enabled the so-called inverse design approach. Compared to the traditional materials discovery, the inverse design approach has the potential to substantially reduce the experimental efforts needed to identify promising compounds with target functionalities. By adopting this approach, here we have discovered several unreported half-Heusler compounds. Among them, the p-type TaFeSb-based half-Heusler demonstrates a record high ZT of ~1.52 at 973 K. Additionally, an ultrahigh average ZT of ~0.93 between 300 and 973 K is achieved. Such an extraordinary thermoelectric performance is further verified by the heat-to-electricity conversion efficiency measurement and a high efficiency of ~11.4% is obtained. Our work demonstrates that the TaFeSb-based half-Heuslers are highly promising for thermoelectric power generation. The discovery of thermodynamically stable thermoelectric materials for power generation has relied on empirical methods that were not effective. Here, the authors apply the inverse design approach to identify and experimentally realize TaFeSb-based half Heuslers with high thermoelectric performance.

253 citations


Authors

Showing all 51090 results

NameH-indexPapersCitations
Gang Chen1673372149819
Frede Blaabjerg1472161112017
Kuo-Chen Chou14348757711
Yi Yang143245692268
Guanrong Chen141165292218
Shuit-Tong Lee138112177112
Lei Zhang135224099365
Rajkumar Buyya133106695164
Lei Zhang130231286950
Bin Wang126222674364
Haiyan Wang119167486091
Bo Wang119290584863
Yi Zhang11643673227
Qiang Yang112111771540
Chun-Sing Lee10997747957
Network Information
Related Institutions (5)
Nanyang Technological University
112.8K papers, 3.2M citations

93% related

Tsinghua University
200.5K papers, 4.5M citations

92% related

City University of Hong Kong
60.1K papers, 1.7M citations

92% related

University of Science and Technology of China
101K papers, 2.4M citations

92% related

Zhejiang University
183.2K papers, 3.4M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20241
2023159
2022980
20217,385
20207,220
20196,976