scispace - formally typeset
Search or ask a question
Institution

University of Electronic Science and Technology of China

EducationChengdu, China
About: University of Electronic Science and Technology of China is a education organization based out in Chengdu, China. It is known for research contribution in the topics: Computer science & Antenna (radio). The organization has 50594 authors who have published 58502 publications receiving 711188 citations. The organization is also known as: UESTC.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the co-effects of Bi metal nanoparticles and oxygen vacancies in defective photocatalyst were investigated, and fundamental guidance for maintaining the active role of oxygen vacancies was provided.
Abstract: Surface oxygen vacancies can normally enhance photocatalytic activity, but also easily suffers from instability and deactivation in continuous photocatalytic purification of air pollutants. Therefore, it is necessary to develop an effective method to improve the photocatalytic stability of oxygen vacancies. In this work, Bi metal nanoparticle decorated Bi2O2CO3 nanosheets with oxygen vacancy (Bi@OV-BOC) are fabricated and exhibited higher photocatalytic activity and stability than Bi2O2CO3 with oxygen vacancy (OV-BOC). The co-effect of Bi metal nanoparticles and oxygen vacancies could also effectively inhibit the formation of toxic intermediates (NO2) and promote it to form final products (NO3−). First-principles density functional theory (DFT) calculation and experimental results suggested that the co-effects of Bi metal nanoparticles and oxygen vacancies (OVs) can largely promote the separation and transfer of photo-generated electron and hole to generate abundant active radicals. More importantly, the Bi metal nanoparticles could be as the active site to activate O2 and H2O molecules so that the O2 and H2O molecules would not fill into oxygen vacancies, resulting in preventing the deactivation of oxygen vacancies. The sufficient active radicals can realize complete oxidation of intermediates into final products and avoid toxic intermediates (e.g. NO2) accumulation. This study reveals the co-effects of Bi and OVs in defective photocatalyst, and also provides fundamental guidance for maintaining the active role of oxygen vacancies.

197 citations

Journal ArticleDOI
TL;DR: The smartphone technology is introduced as a challenge for diagnostics in the study of Internet use disorders and the term “smartphone addiction” is reflected on and it is believed that it is necessary to divide research on Internet use disorder (IUD) into a mobile and non-mobile IUD branch.
Abstract: AimsThe present theoretical paper introduces the smartphone technology as a challenge for diagnostics in the study of Internet use disorders and reflects on the term “smartphone addiction.”MethodsS...

197 citations

Journal ArticleDOI
TL;DR: In this work, for the first time, MoSe2 /Mo core-shell 3D-shell 4D-hierarchical nanostructures are created, which are derived from the Mo 3Ds through a low-temperature plasma-assisted selenization process with controlled shapes grown by a glancing angle deposition system.
Abstract: The necessity for new sources for greener and cleaner energy production to replace the existing ones has been increasingly growing in recent years. Of those new sources, the hydrogen evolution reaction has a large potential. In this work, for the first time, MoSe2 /Mo core-shell 3D-hierarchical nanostructures are created, which are derived from the Mo 3D-hierarchical nanostructures through a low-temperature plasma-assisted selenization process with controlled shapes grown by a glancing angle deposition system.

196 citations

Journal ArticleDOI
21 Oct 2021-Science
TL;DR: Atomically ordered intermetallic nanoparticles are promising for catalytic applications but are difficult to produce because the high-temperature annealing required for atom ordering inevitably acc...
Abstract: Atomically ordered intermetallic nanoparticles are promising for catalytic applications but are difficult to produce because the high-temperature annealing required for atom ordering inevitably acc...

196 citations

Journal ArticleDOI
TL;DR: In this paper, a facile method is presented to synthesize three-dimensional carbon nanotube/graphene-sulfur (3DCGS) sponge with a high sulfur loading of 80.1%.
Abstract: A facile method is presented to synthesize three-dimensional carbon nanotube/graphene–sulfur (3DCGS) sponge with a high sulfur loading of 80.1%. In the well-designed 3D architecture, the two-dimensional graphene nanosheets function as the 3D porous backbone and the one-dimensional (1D) highly conductive carbon nanotubes (CNTs) can not only significantly enhance the conductivity, but also effectively tune the mesoporous structure. Compared to the three-dimensional graphene–sulfur (3DGS) sponge without CNTs, the conductivity of 3DCGS is enhanced by 324.7%; most importantly, compared to the monomodal mesopores (with a size of 3.5 nm) formed in the 3DG, bimodal mesopores (with sizes of 3.5 and 32.1 nm) were formed in 3DCG; the bimodal mesopores, especially the newly formed 32.1 nm mesopores, provide abundant electrochemical nanoreactors, accommodate plenty of sulfur and polysulfides, and facilitate charge transportation and electrolyte penetration. The significantly enhanced conductivity and the unique bimodal-mesopore structure in 3DCGS result in its superior electrochemical performance. The reversible discharge capacity for sulfur is 1217 mA h g−1; the corresponding capacity for the whole electrode (including the 3DCGS, the conductive additive and the binder) is 877.4 mA h ge−1, which is the highest ever reported. In addition, the capacity decay is as low as 0.08% per cycle, and the high-rate capacity up to 4C is as large as 653.4 mA h g−1. The 3DCGS sponge with high sulfur loading is promising as a superior-capacity cathode for lithium–sulfur batteries.

196 citations


Authors

Showing all 51090 results

NameH-indexPapersCitations
Gang Chen1673372149819
Frede Blaabjerg1472161112017
Kuo-Chen Chou14348757711
Yi Yang143245692268
Guanrong Chen141165292218
Shuit-Tong Lee138112177112
Lei Zhang135224099365
Rajkumar Buyya133106695164
Lei Zhang130231286950
Bin Wang126222674364
Haiyan Wang119167486091
Bo Wang119290584863
Yi Zhang11643673227
Qiang Yang112111771540
Chun-Sing Lee10997747957
Network Information
Related Institutions (5)
Nanyang Technological University
112.8K papers, 3.2M citations

93% related

Tsinghua University
200.5K papers, 4.5M citations

92% related

City University of Hong Kong
60.1K papers, 1.7M citations

92% related

University of Science and Technology of China
101K papers, 2.4M citations

92% related

Zhejiang University
183.2K papers, 3.4M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20241
2023159
2022980
20217,385
20207,220
20196,976