scispace - formally typeset
Search or ask a question
Institution

University of Florence

EducationFlorence, Toscana, Italy
About: University of Florence is a education organization based out in Florence, Toscana, Italy. It is known for research contribution in the topics: Population & Carbonic anhydrase. The organization has 27292 authors who have published 79599 publications receiving 2341684 citations. The organization is also known as: Università degli studi di Firenze & Universita degli studi di Firenze.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the transverse-momentum distribution of generic high-mass systems (lepton pairs, vector bosons, Higgs particles, etc) produced in hadron collisions is considered, and all-order resummation of the logarithmically-enhanced contributions in QCD perturbation theory is investigated.

407 citations

Journal ArticleDOI
A. Abada1, Marcello Abbrescia2, Marcello Abbrescia3, Shehu S. AbdusSalam4  +1501 moreInstitutions (239)
TL;DR: In this article, the physics opportunities of the Future Circular Collider (FC) were reviewed, covering its e+e-, pp, ep and heavy ion programs, and the measurement capabilities of each FCC component, addressing the study of electroweak, Higgs and strong interactions.
Abstract: We review the physics opportunities of the Future Circular Collider, covering its e+e-, pp, ep and heavy ion programmes. We describe the measurement capabilities of each FCC component, addressing the study of electroweak, Higgs and strong interactions, the top quark and flavour, as well as phenomena beyond the Standard Model. We highlight the synergy and complementarity of the different colliders, which will contribute to a uniquely coherent and ambitious research programme, providing an unmatchable combination of precision and sensitivity to new physics.

407 citations

Journal ArticleDOI
20 Sep 2019-Science
TL;DR: The climate change–impact literature is reviewed, expanding on the recent report of the Intergovernmental Panel on Climate Change, and it is argued that impacts accelerating as a function of distance from the optimal temperature for an organism or an ecosystem process is a consequence of impacts accelerating.
Abstract: Increased concentrations of atmospheric greenhouse gases have led to a global mean surface temperature 1.0°C higher than during the pre-industrial period. We expand on the recent IPCC Special Report on global warming of 1.5°C and review the additional risks associated with higher levels of warming, each having major implications for multiple geographies, climates, and ecosystems. Limiting warming to 1.5°C rather than 2.0°C would be required to maintain substantial proportions of ecosystems and would have clear benefits for human health and economies. These conclusions are relevant for people everywhere, particularly in low- and middle-income countries, where the escalation of climate-related risks may prevent the achievement of the United Nations Sustainable Development Goals.

406 citations

Journal ArticleDOI
TL;DR: The T cell branch of the immune system can respond to a virtually infinite variety of exogenous antigens, thus including the possibility of self‐antigen recognition and dangerous autoimmune reactions, and regulatory mechanisms operate both during ontogeny within the thymus and after birth in the periphery.
Abstract: The T cell branch of the immune system can respond to a virtually infinite variety of exogenous antigens, thus including the possibility of self-antigen recognition and dangerous autoimmune reactions Therefore, regulatory mechanisms operate both during ontogeny within the thymus and after birth in the periphery The control of self-reactive T cells occurs through a process of negative selection that results in apoptosis of T cells showing high affinity for self-peptides expressed at the thymic level by means of promiscuous gene expression Self-reactive T cells escaped to negative selection are controlled in the periphery by other regulatory mechanisms, the most important being natural Foxp3+ T regulatory (Treg) cells Regulation is also required to control excessive effector T cell responses against exogenous antigens, when they become dangerous for the body Three types of effector T cells have been recognized: T helper 1 (Th1) cells, which are protective against intracellular bacteria; Th2 cells, which play some role in the protection against nematodes, but are responsible for allergic reactions; Th17 cells, which are probably effective in the protection against extracellular bacteria, but also play a role in the amplification of autoimmune disorders Abnormal or excessive Th effector responses are regulated by different mechanisms Redirection or immune deviation of Th1- or Th2-dominated responses is provided by cytokines [interferon-gamma (IFN-gamma) vs interleukin-4 (IL-4)] produced by the same cell types and by the CXCR3-binding chemokines CXCL4 and CXCL10 Moreover, both Th1 and Th2 responses can be suppressed by adaptive Treg cells through contact-dependent mechanisms and/or the production of IL-10 and transforming growth factor-beta (TGF-beta) Finally, TGF-beta1 can promote the development of both Th17 effector and adaptive Treg cells, while the contemporaneous production of IL-6 contributes to the development of Th17 cells, but inhibits Treg cells The development of Th17 cells is also down-regulated by IL-4 produced by Th2 cells and by IFN-gamma produced by Th1 cells

405 citations


Authors

Showing all 27699 results

NameH-indexPapersCitations
Charles A. Dinarello1901058139668
D. M. Strom1763167194314
Gregory Y.H. Lip1693159171742
Christopher M. Dobson1501008105475
Dirk Inzé14964774468
Thomas Hebbeker1481984114004
Marco Zanetti1451439104610
Richard B. Devereux144962116403
Gunther Roland1411471100681
Markus Klute1391447104196
Tariq Aziz138164696586
Guido Tonelli138145897248
Giorgio Trinchieri13843378028
Christof Roland137130896632
Christoph Paus1371585100801
Network Information
Related Institutions (5)
Sapienza University of Rome
155.4K papers, 4.3M citations

98% related

University of Padua
114.8K papers, 3.6M citations

97% related

University of Milan
139.7K papers, 4.6M citations

97% related

University of Bologna
115.1K papers, 3.4M citations

97% related

University of Turin
77.9K papers, 2.4M citations

97% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023244
2022631
20215,298
20205,251
20194,652
20184,147