scispace - formally typeset
Search or ask a question
Institution

University of Naples Federico II

EducationNaples, Campania, Italy
About: University of Naples Federico II is a education organization based out in Naples, Campania, Italy. It is known for research contribution in the topics: Population & Cancer. The organization has 29291 authors who have published 68803 publications receiving 1920149 citations. The organization is also known as: Università degli Studi di Napoli Federico II & Naples University.


Papers
More filters
Journal ArticleDOI
TL;DR: The 2013 European Society of Hypertension/European Society of Cardiology (ESH/ESC) guidelines continue to adhere to some fundamental principles that inspired the 2003 and 2007 guidelines, namely to base recommendations on properly conducted studies identified from an ext
Abstract: 1. INTRODUCTION1.1 PrinciplesThe 2013 European Society of Hypertension/European Society of Cardiology (ESH/ESC) guidelines continue to adhere to some fundamental principles that inspired the 2003 and 2007 guidelines, namely to base recommendations on properly conducted studies identified from an ext

1,139 citations

Journal ArticleDOI
TL;DR: In experiments with magnetoencephalographic and functional magnetic resonance imaging data, the method was able to show that expected components are reliable; furthermore, it pointed out components whose interpretation was not obvious but whose reliability should incite the experimenter to investigate the underlying technical or physical phenomena.

1,139 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes.
Abstract: In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field.

1,129 citations

Journal ArticleDOI
24 Feb 2014-PLOS ONE
TL;DR: Beta diversity analysis showed a species-based differentiation between GP-PR and M manufactures indicating differences between the preparations, and the possibility of using non rRNA targets for quantitative biotype identification in food was highlighted.
Abstract: Mozzarella (M), Grana Padano (GP) and Parmigiano Reggiano (PR) are three of the most important traditional Italian cheeses. In the three cheese manufactures the initial fermentation is carried out by adding natural whey cultures (NWCs) according to a back-slopping procedure. In this study, NWCs and the corresponding curds from M, GP and PR manufactures were analyzed by culture-independent pyrosequencing of the amplified V1–V3 regions of the 16S rRNA gene, in order to provide insights into the microbiota involved in the curd acidification. Moreover, culture-independent high-throughput sequencing of lacS gene amplicons was carried out to evaluate the biodiversity occurring within the S. thermophilus species. Beta diversity analysis showed a species-based differentiation between GP-PR and M manufactures indicating differences between the preparations. Nevertheless, all the samples shared a naturally-selected core microbiome, that is involved in the curd acidification. Type-level variability within S. thermophilus species was also found and twenty-eight lacS gene sequence types were identified. Although lacS gene did not prove variable enough within S. thermophilus species to be used for quantitative biotype monitoring, the possibility of using non rRNA targets for quantitative biotype identification in food was highlighted.

1,129 citations

Journal ArticleDOI
TL;DR: A better understanding of molecular factors involved in this complex tripartite interaction is expected to enhance not only the rapid identification of effective strains and their applications but also indicate the potentials for improvement of natural strains of Trichoderma.
Abstract: Biological control involves the use of beneficial organisms, their genes, and/or products, such as metabolites, that reduce the negative effects of plant pathogens and promote positive responses by the plant. Disease suppression, as mediated by biocontrol agents, is the consequence of the interactions between the plant, pathogens, and the microbial community. Antagonists belonging to the genus Trichoderma are among the most commonly isolated soil fungi. Due to their ability to protect plants and contain pathogen populations under different soil conditions, these fungi have been widely studied and commercially marketed as biopesticides, biofertilizers and soil amendments. Trichoderma spp. also produce numerous biologically active compounds, including cell wall degrading enzymes, and secondary metabolites. Studies of the three-way relationship established with Trichoderma, the plant and the pathogen are aimed at unravelling the mechanisms involved in partner recognition and the cross-talk used to maintain the beneficial association between the fungal antagonist and the plant. Several strategies have been used to identify the molecular factors involved in this complex tripartite interaction including genomics, proteomics and, more recently, metabolomics, in order to enhance our understanding. This review presents recent advances and findings regarding the biocontrol-resulting events that take place during the Trichoderma –plant–pathogen interaction. We focus our attention on the biological aspects of this topic, highlighting the novel findings concerning the role of Trichoderma in disease suppression. A better understanding of these factors is expected to enhance not only the rapid identification of effective strains and their applications but also indicate the potentials for improvement of natural strains of Trichoderma .

1,079 citations


Authors

Showing all 29740 results

NameH-indexPapersCitations
D. M. Strom1763167194314
Yang Gao1682047146301
Robert Stone1601756167901
Elio Riboli1581136110499
Barry J. Maron15579291595
H. Eugene Stanley1541190122321
Paul Elliott153773103839
Robert O. Bonow149808114836
Kai Simons14742693178
Peter Buchholz143118192101
Martino Margoni1412059107829
H. A. Neal1411903115480
Luca Lista1402044110645
Pierluigi Paolucci1381965105050
Ari Helenius13729864789
Network Information
Related Institutions (5)
University of Padua
114.8K papers, 3.6M citations

97% related

University of Bologna
115.1K papers, 3.4M citations

97% related

University of Florence
79.5K papers, 2.3M citations

97% related

Sapienza University of Rome
155.4K papers, 4.3M citations

96% related

University of Milan
139.7K papers, 4.6M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023234
2022660
20216,021
20205,957
20194,881
20184,267