scispace - formally typeset
Search or ask a question
Institution

University of Naples Federico II

EducationNaples, Campania, Italy
About: University of Naples Federico II is a education organization based out in Naples, Campania, Italy. It is known for research contribution in the topics: Population & Cancer. The organization has 29291 authors who have published 68803 publications receiving 1920149 citations. The organization is also known as: Università degli Studi di Napoli Federico II & Naples University.


Papers
More filters
Journal ArticleDOI
TL;DR: This work has suggested that combining L‐dopa with entacapone, an inhibitor of catechol‐O‐methyltransferase, to extend its elimination half‐life might reduce the risk of motor complications in patients with Parkinson's disease.
Abstract: Objective L-dopa is the most widely used and most effective therapy for Parkinson disease (PD), but chronic treatment is associated with motor complications in the majority of patients. It has been hypothesized that providing more continuous delivery of L-dopa to the brain would reduce the risk of motor complications, and that this might be accomplished by combining L-dopa with entacapone, an inhibitor of catechol-O-methyltransferase, to extend its elimination half-life. Methods We performed a prospective 134-week double-blind trial comparing the risk of developing dyskinesia in 747 PD patients randomized to initiate L-dopa therapy with L-dopa/carbidopa (LC) or L-dopa/carbidopa/entacapone (LCE), administered 4× daily at 3.5-hour intervals. The primary endpoint was time to onset of dyskinesia. Results In comparison to LC, patients receiving LCE had a shorter time to onset of dyskinesia (hazard ratio, 1.29; p = 0.04) and increased frequency at week 134 (42% vs 32%; p = 0.02). These effects were more pronounced in patients receiving dopamine agonists at baseline. Time to wearing off and motor scores were not significantly different, but trended in favor of LCE treatment. Patients in the LCE group received greater L-dopa dose equivalents than LC-treated patients (p < 0.001). Interpretation Initiating L-dopa therapy with LCE failed to delay the time of onset or reduce the frequency of dyskinesia compared to LC. In fact, LCE was associated with a shorter time to onset and increased frequency of dyskinesia compared to LC. These results may reflect that the treatment protocol employed did not provide continuous L-dopa availability and the higher L-dopa dose equivalents in the LCE group. ANN NEUROL 2010;68:18–27

324 citations

Journal ArticleDOI
TL;DR: In patients with an acute coronary syndrome, the rates of major adverse cardiovascular events and net adverse clinical events were not significantly lower with bivalirudin than with unfractionated heparin.
Abstract: BACKGROUND Conflicting evidence exists on the efficacy and safety of bivalirudin administered as part of percutaneous coronary intervention (PCI) in patients with an acute coronary syndrome METHODS We randomly assigned 7213 patients with an acute coronary syndrome for whom PCI was anticipated to receive either bivalirudin or unfractionated heparin Patients in the bivalirudin group were subsequently randomly assigned to receive or not to receive a post-PCI bivalirudin infusion Primary outcomes for the comparison between bivalirudin and heparin were the occurrence of major adverse cardiovascular events (a composite of death, myocardial infarction, or stroke) and net adverse clinical events (a composite of major bleeding or a major adverse cardiovascular event) The primary outcome for the comparison of a post-PCI bivalirudin infusion with no post-PCI infusion was a composite of urgent target-vessel revascularization, definite stent thrombosis, or net adverse clinical events RESULTS The rate of major adverse cardiovascular events was not significantly lower with bivalirudin than with heparin (103% and 109%, respectively; relative risk, 094; 95% confidence interval [CI], 081 to 109; P = 044), nor was the rate of net adverse clinical events (112% and 124%, respectively; relative risk, 089; 95% CI, 078 to 103; P = 012) Post-PCI bivalirudin infusion, as compared with no infusion, did not significantly decrease the rate of urgent target-vessel revascularization, definite stent thrombosis, or net adverse clinical events (110% and 119%, respectively; relative risk, 091; 95% CI, 074 to 111; P = 034) CONCLUSIONS In patients with an acute coronary syndrome, the rates of major adverse cardiovascular events and net adverse clinical events were not significantly lower with bivalirudin than with unfractionated heparin The rate of the composite of urgent target-vessel revascularization, definite stent thrombosis, or net adverse clinical events was not significantly lower with a post-PCI bivalirudin infusion than with no post-PCI infusion (Funded by the Medicines Company and Terumo Medical; MATRIX ClinicalTrialsgov number, NCT01433627) abstr act

322 citations

Journal ArticleDOI
TL;DR: This work demonstrates how a recently introduced metadynamics-based approach allows exploration of the unbinding pathways, estimation of the rates, and determination of the rate-limiting steps in the paradigmatic case of the trypsin–benzamidine system, and uncovers the complex pathways of unbinding trajectories with unprecedented detail.
Abstract: The ability to predict the mechanisms and the associated rate constants of protein–ligand unbinding is of great practical importance in drug design. In this work we demonstrate how a recently introduced metadynamics-based approach allows exploration of the unbinding pathways, estimation of the rates, and determination of the rate-limiting steps in the paradigmatic case of the trypsin–benzamidine system. Protein, ligand, and solvent are described with full atomic resolution. Using metadynamics, multiple unbinding trajectories that start with the ligand in the crystallographic binding pose and end with the ligand in the fully solvated state are generated. The unbinding rate k o f f is computed from the mean residence time of the ligand. Using our previously computed binding affinity we also obtain the binding rate k o n . Both rates are in agreement with reported experimental values. We uncover the complex pathways of unbinding trajectories and describe the critical rate-limiting steps with unprecedented detail. Our findings illuminate the role played by the coupling between subtle protein backbone fluctuations and the solvation by water molecules that enter the binding pocket and assist in the breaking of the shielded hydrogen bonds. We expect our approach to be useful in calculating rates for general protein–ligand systems and a valid support for drug design.

322 citations

Journal ArticleDOI
Eleonora Di Valentino1, Luis A. Anchordoqui2, Özgür Akarsu3, Yacine Ali-Haïmoud4, Luca Amendola5, Nikki Arendse6, Marika Asgari7, Mario Ballardini8, Spyros Basilakos9, Elia S. Battistelli10, Micol Benetti11, Simon Birrer12, François R. Bouchet13, Marco Bruni14, Erminia Calabrese15, David Camarena16, Salvatore Capozziello11, Angela Chen17, Jens Chluba1, Anton Chudaykin, Eoin Ó Colgáin18, Francis-Yan Cyr-Racine19, Paolo de Bernardis10, Javier de Cruz Pérez20, Jacques Delabrouille21, Jo Dunkley22, Celia Escamilla-Rivera23, Agnès Ferté24, Fabio Finelli25, Wendy L. Freedman26, Noemi Frusciante, Elena Giusarma27, Adrià Gómez-Valent5, Julien Guy28, Will Handley29, Ian Harrison1, Luke Hart1, Alan Heavens30, Hendrik Hildebrandt31, Daniel E. Holz26, Dragan Huterer17, Mikhail M. Ivanov4, Shahab Joudaki32, Shahab Joudaki33, Marc Kamionkowski34, Tanvi Karwal35, Lloyd Knox36, Suresh Kumar37, Luca Lamagna10, Julien Lesgourgues38, Matteo Lucca39, Valerio Marra16, Silvia Masi10, Sabino Matarrese40, Arindam Mazumdar41, Alessandro Melchiorri10, Olga Mena42, Laura Mersini-Houghton43, Vivian Miranda44, Cristian Moreno-Pulido20, David F. Mota45, J. Muir12, Ankan Mukherjee46, Florian Niedermann47, Alessio Notari20, Rafael C. Nunes48, Francesco Pace1, Andronikos Paliathanasis, Antonella Palmese49, Supriya Pan50, Daniela Paoletti25, Valeria Pettorino51, F. Piacentini10, Vivian Poulin52, Marco Raveri35, Adam G. Riess34, Vincenzo Salzano53, Emmanuel N. Saridakis, Anjan A. Sen46, Arman Shafieloo54, Anowar J. Shajib55, Joseph Silk56, Joseph Silk34, Alessandra Silvestri57, Martin S. Sloth47, Tristan L. Smith58, Joan Solà Peracaula20, Carsten van de Bruck59, Licia Verde20, Luca Visinelli60, Benjamin D. Wandelt56, Deng Wang, Jian-Min Wang, Anil Kumar Yadav61, Weiqiang Yang62 
University of Manchester1, City University of New York2, Istanbul Technical University3, New York University4, Heidelberg University5, Niels Bohr Institute6, University of Edinburgh7, University of Bologna8, Academy of Athens9, Sapienza University of Rome10, University of Naples Federico II11, Stanford University12, Institut d'Astrophysique de Paris13, University of Portsmouth14, Cardiff University15, Universidade Federal do Espírito Santo16, University of Michigan17, Asia Pacific Center for Theoretical Physics18, University of New Mexico19, University of Barcelona20, University of St. Thomas (Minnesota)21, Princeton University22, National Autonomous University of Mexico23, California Institute of Technology24, INAF25, University of Chicago26, Michigan Technological University27, Lawrence Berkeley National Laboratory28, University of Cambridge29, Imperial College London30, Ruhr University Bochum31, University of Waterloo32, University of Oxford33, Johns Hopkins University34, University of Pennsylvania35, University of California, Davis36, Birla Institute of Technology and Science37, RWTH Aachen University38, Université libre de Bruxelles39, University of Padua40, Indian Institute of Technology Kharagpur41, Spanish National Research Council42, University of North Carolina at Chapel Hill43, University of Arizona44, University of Oslo45, Jamia Millia Islamia46, University of Southern Denmark47, National Institute for Space Research48, Fermilab49, Presidency University, Kolkata50, Université Paris-Saclay51, University of Montpellier52, University of Szczecin53, Korea Astronomy and Space Science Institute54, University of California, Los Angeles55, University of Paris56, Leiden University57, Swarthmore College58, University of Sheffield59, University of Amsterdam60, United College, Winnipeg61, Liaoning Normal University62
TL;DR: In this article, the authors focus on the 4.4σ tension between the Planck estimate of the Hubble constant H0 and the SH0ES collaboration measurements and discuss how the next decade's experiments will be crucial.

322 citations

Journal ArticleDOI
TL;DR: Gene expression profiling revealed that the 3 oncogenes activate a common transcriptional program in thyroid cells that includes upregulation of the CxCL1 and CXCL10 chemokines, which in turn stimulate proliferation and invasion.
Abstract: In papillary thyroid carcinomas (PTCs), rearrangements of the RET receptor (RET/PTC) and activating mutations in the BRAF or RAS oncogenes are mutually exclusive. Here we show that the 3 proteins function along a linear oncogenic signaling cascade in which RET/PTC induces RAS-dependent BRAF activation and RAS- and BRAF-dependent ERK activation. Adoptive activation of the RET/PTC-RAS-BRAF axis induced cell proliferation and Matrigel invasion of thyroid follicular cells. Gene expression profiling revealed that the 3 oncogenes activate a common transcriptional program in thyroid cells that includes upregulation of the CXCL1 and CXCL10 chemokines, which in turn stimulate proliferation and invasion. Thus, motile and mitogenic properties are intrinsic to transformed thyroid cells and are governed by an epistatic oncogenic signaling cascade.

322 citations


Authors

Showing all 29740 results

NameH-indexPapersCitations
D. M. Strom1763167194314
Yang Gao1682047146301
Robert Stone1601756167901
Elio Riboli1581136110499
Barry J. Maron15579291595
H. Eugene Stanley1541190122321
Paul Elliott153773103839
Robert O. Bonow149808114836
Kai Simons14742693178
Peter Buchholz143118192101
Martino Margoni1412059107829
H. A. Neal1411903115480
Luca Lista1402044110645
Pierluigi Paolucci1381965105050
Ari Helenius13729864789
Network Information
Related Institutions (5)
University of Padua
114.8K papers, 3.6M citations

97% related

University of Bologna
115.1K papers, 3.4M citations

97% related

University of Florence
79.5K papers, 2.3M citations

97% related

Sapienza University of Rome
155.4K papers, 4.3M citations

96% related

University of Milan
139.7K papers, 4.6M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023234
2022660
20216,021
20205,957
20194,881
20184,267