scispace - formally typeset
Search or ask a question
Institution

University of Naples Federico II

EducationNaples, Campania, Italy
About: University of Naples Federico II is a education organization based out in Naples, Campania, Italy. It is known for research contribution in the topics: Population & Cancer. The organization has 29291 authors who have published 68803 publications receiving 1920149 citations. The organization is also known as: Università degli Studi di Napoli Federico II & Naples University.


Papers
More filters
Journal ArticleDOI
17 Jan 2014
TL;DR: In this article, a search for the standard model Higgs boson decaying to a W-boson pair at the LHC is reported, and an excess of events above background is observed.
Abstract: A search for the standard model Higgs boson decaying to a W-boson pair at the LHC is reported. The event sample corresponds to an integrated luminosity of 4.9 fb−1 and 19.4 fb−1 collected with the CMS detector in pp collisions at s√ = 7 and 8 TeV, respectively. The Higgs boson candidates are selected in events with two or three charged leptons. An excess of events above background is observed, consistent with the expectation from the standard model Higgs boson with a mass of around 125 GeV. The probability to observe an excess equal or larger than the one seen, under the background-only hypothesis, corresponds to a significance of 4.3 standard deviations for m H = 125.6 GeV. The observed signal cross section times the branching fraction to WW for m H = 125.6 GeV is 0.72+0.20−0.18 times the standard model expectation. The spin-parity J P = 0+ hypothesis is favored against a narrow resonance with J P = 2+ or J P = 0− that decays to a W-boson pair. This result provides strong evidence for a Higgs-like boson decaying to a W-boson pair.

312 citations

Journal ArticleDOI
TL;DR: A meta-analysis of two published GWAS on celiac disease and rheumatoid arthritis confirmed that 4 gene loci previously established in either CD or RA are associated with the other autoimmune disease at combined P<5×10−8, and implicate antigen presentation and T-cell activation as a shared mechanism of disease pathogenesis.
Abstract: Epidemiology and candidate gene studies indicate a shared genetic basis for celiac disease (CD) and rheumatoid arthritis (RA), but the extent of this sharing has not been systematically explored. Previous studies demonstrate that 6 of the established non-HLA CD and RA risk loci (out of 26 loci for each disease) are shared between both diseases. We hypothesized that there are additional shared risk alleles and that combining genome-wide association study (GWAS) data from each disease would increase power to identify these shared risk alleles. We performed a meta-analysis of two published GWAS on CD (4,533 cases and 10,750 controls) and RA (5,539 cases and 17,231 controls). After genotyping the top associated SNPs in 2,169 CD cases and 2,255 controls, and 2,845 RA cases and 4,944 controls, 8 additional SNPs demonstrated P,5610 28 in a combined analysis of all 50,266 samples, including four SNPs that have not been previously confirmed in either disease: rs10892279 near the DDX6 gene (Pcombined=1.2610 212 ), rs864537 near CD247 (Pcombined=2.2610 211 ), rs2298428 near UBE2L3 (Pcombined=2.5610 210 ), and rs11203203 near UBASH3A (Pcombined =1.1610 28 ). We also confirmed that 4 gene loci previously established in either CD or RA are associated with the other autoimmune disease at combined P,5610 28 (SH2B3, 8q24, STAT4, and TRAF1-C5). From the 14 shared gene loci, 7 SNPs showed a genome-wide significant effect on expression of one or more transcripts in the linkage disequilibrium (LD) block around the SNP. These associations implicate antigen presentation and T-cell activation as a shared mechanism of disease pathogenesis and underscore the utility of cross-disease meta-analysis for identification of genetic risk factors with pleiotropic effects between two clinically distinct diseases.

312 citations

Journal Article
TL;DR: It is demonstrated that all thyroid carcinomas harboring activating RET rearrangements exhibit a well-differentiated phenotype, that of papillary cancer, and indicates that the subset of RET/PTC-positive papillary carcinomas do not progress to more aggressive, less differentiated tumor phenotypes.
Abstract: Malignant tumors of the thyroid gland vary considerably in aggressiveness, ranging from a well-differentiated, clinically indolent, to an undifferentiated, often lethal phenotype. Undifferentiated (anaplastic) thyroid tumors are supposed to be derived, through a process of progression, from previously differentiated neoplasms. A common genetic alteration in thyroid tumors is the rearrangement of the tyrosine kinase-encoding RET proto-oncogene, leading to the generation of chimeric RET/PTC oncogenes. To define the characteristics of the thyroid tumor subset with RET rearrangements, we have investigated its activation by a combined immunohistochemistry and reverse transcription-PCR approach in a series of 316 well-characterized thyroid tumors representative of the main diagnostic groups. RET activation was detected in 81 of 201 (40.3%) papillary carcinomas. It correlated with tumors exhibiting the "classic" morphological features of papillary cancer or with the microcarcinoma subtype (P = 0.017). RET activation in papillary carcinoma was not associated with clinical markers (such as large tumor size, extrathyroidal extension, or metastases) of increased morbidity. Follicular-type neoplasms (61 adenomas and 22 carcinomas), as well as the aggressive poorly differentiated (15 cases) or undifferentiated (anaplastic) carcinomas (17 cases), were negative. This study demonstrates that all thyroid carcinomas harboring activating RET rearrangements exhibit a well-differentiated phenotype, that of papillary carcinoma, and indicates that the subset of RET/PTC-positive papillary carcinomas do not progress to more aggressive, less differentiated tumor phenotypes.

312 citations

Journal ArticleDOI
TL;DR: Examining wild-type or ATPase-defective spastin in several cell types shows that it interacts dynamically with microtubules, and suggests that spastsin may be involved in microtubule dynamics similarly to the highly homologous microtubULE-severing protein, katanin.
Abstract: Hereditary spastic paraplegia (HSP) is characterized by progressive weakness and spasticity of the lower limbs, caused by the specific degeneration of the corticospinal tracts, the longest axons in humans Most cases of the autosomal dominant form of the disease are due to mutations in the SPG4 gene, which encodes spastin, an ATPase belonging to the AAA family The cellular pathways in which spastin operates and its role in causing degeneration of motor axons are currently unknown By expressing wild-type or ATPase-defective spastin in several cell types, we now show that spastin interacts dynamically with microtubules Spastin association with the microtubule cytoskeleton is mediated by the N-terminal region of the protein, and is regulated through the ATPase activity of the AAA domain Expression of all the missense mutations into the AAA domain, which were previously identified in patients, leads to constitutive binding to microtubules in transfected cells and induces the disappearance of the aster and the formation of thick perinuclear bundles, suggesting a role of spastin in microtubule dynamics Consistently, wild-type spastin promotes microtubule disassembly in transfected cells These data suggest that spastin may be involved in microtubule dynamics similarly to the highly homologous microtubule-severing protein, katanin Impairment of fine regulation of the microtubule cytoskeleton in long axons, due to spastin mutations, may underlie pathogenesis of HSP

312 citations

Journal ArticleDOI
TL;DR: The results indicate that cannabidiol exerts a combination of neuroprotective, anti‐oxidative and anti‐apoptotic effects against β‐amyloid peptide toxicity, and that inhibition of caspase 3 appearance from its inactive precursor, pro‐caspase3, by cann abidiol is involved in the signalling pathway for this neuroprotection.
Abstract: Alzheimer's disease is widely held to be associated with oxidative stress due, in part, to the membrane action of beta-amyloid peptide aggregates. Here, we studied the effect of cannabidiol, a major non-psychoactive component of the marijuana plant (Cannabis sativa) on beta-amyloid peptide-induced toxicity in cultured rat pheocromocytoma PC12 cells. Following exposure of cells to beta-amyloid peptide (1 micro g/mL), a marked reduction in cell survival was observed. This effect was associated with increased reactive oxygen species (ROS) production and lipid peroxidation, as well as caspase 3 (a key enzyme in the apoptosis cell-signalling cascade) appearance, DNA fragmentation and increased intracellular calcium. Treatment of the cells with cannabidiol (10(-7)-10(-4)m) prior to beta-amyloid peptide exposure significantly elevated cell survival while it decreased ROS production, lipid peroxidation, caspase 3 levels, DNA fragmentation and intracellular calcium. Our results indicate that cannabidiol exerts a combination of neuroprotective, anti-oxidative and anti-apoptotic effects against beta-amyloid peptide toxicity, and that inhibition of caspase 3 appearance from its inactive precursor, pro-caspase 3, by cannabidiol is involved in the signalling pathway for this neuroprotection.

311 citations


Authors

Showing all 29740 results

NameH-indexPapersCitations
D. M. Strom1763167194314
Yang Gao1682047146301
Robert Stone1601756167901
Elio Riboli1581136110499
Barry J. Maron15579291595
H. Eugene Stanley1541190122321
Paul Elliott153773103839
Robert O. Bonow149808114836
Kai Simons14742693178
Peter Buchholz143118192101
Martino Margoni1412059107829
H. A. Neal1411903115480
Luca Lista1402044110645
Pierluigi Paolucci1381965105050
Ari Helenius13729864789
Network Information
Related Institutions (5)
University of Padua
114.8K papers, 3.6M citations

97% related

University of Bologna
115.1K papers, 3.4M citations

97% related

University of Florence
79.5K papers, 2.3M citations

97% related

Sapienza University of Rome
155.4K papers, 4.3M citations

96% related

University of Milan
139.7K papers, 4.6M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023234
2022660
20216,021
20205,957
20194,881
20184,267