scispace - formally typeset
Search or ask a question

Showing papers in "BMC Cancer in 2009"


Journal ArticleDOI
TL;DR: Exhaled breath analysis is promising to become a future non-invasive lung cancer screening method, but precise identification of compounds observed in exhaled breath of lung cancer patients is necessary and GCMS-SPME is a relatively insensitive method.
Abstract: Background Lung cancer is one of the leading causes of death in Europe and the western world. At present, diagnosis of lung cancer very often happens late in the course of the disease since inexpensive, non-invasive and sufficiently sensitive and specific screening methods are not available. Even though the CT diagnostic methods are good, it must be assured that "screening benefit outweighs risk, across all individuals screened, not only those with lung cancer". An early non-invasive diagnosis of lung cancer would improve prognosis and enlarge treatment options. Analysis of exhaled breath would be an ideal diagnostic method, since it is non-invasive and totally painless.

497 citations


Journal ArticleDOI
TL;DR: It is becoming increasingly evident that CYP1A1 plays an important role in the detoxication of environmental carcinogens, as well as in the metabolic activation of dietary compounds with cancer preventative activity.
Abstract: CYP1A1 is one of the main cytochrome P450 enzymes, examined extensively for its capacity to activate compounds with carcinogenic properties. Continuous exposure to inhalation chemicals and environmental carcinogens is thought to increase the level of CYP1A1 expression in extrahepatic tissues, through the aryl hydrocarbon receptor (AhR). Although the latter has long been recognized as a ligand-induced transcription factor, which is responsible for the xenobiotic activating pathway of several phase I and phase II metabolizing enzymes, recent evidence suggests that the AhR is involved in various cell signaling pathways critical to cell cycle regulation and normal homeostasis. Disregulation of these pathways is implicated in tumor progression. In addition, it is becoming increasingly evident that CYP1A1 plays an important role in the detoxication of environmental carcinogens, as well as in the metabolic activation of dietary compounds with cancer preventative activity. Ultimately the contribution of CYP1A1 to cancer progression or prevention may depend on the balance of procarcinogen activation/detoxication and dietary natural product extrahepatic metabolism.

375 citations


Journal ArticleDOI
TL;DR: A clinicopathological study to determine if overexpression of human epidermal growth factor receptor-2 is a predictor of outcome in a cohort of patients with colorectal cancer found that patients who over express HER-2 may respond to Herceptin therapy.
Abstract: The development of novel chemotherapeutic agents in colorectal cancer has improved survival. Following initial response to chemotherapeutic strategies many patients develop refractory disease. This poses a significant challenge common to many cancer subtypes. Newer agents such as Bevacizumab have successfully targeted the tyrosine kinase receptor epidermal growth factor receptor in metastatic colorectal cancer. Human epidermal growth factor receptor-2 is another member of the tyrosine kinase receptor family which has been successfully targeted in breast cancer. This may play a role in colorectal cancer. We conducted a clinicopathological study to determine if overexpression of human epidermal growth factor receptor-2 is a predictor of outcome in a cohort of patients with colorectal cancer. Clinicopathological data and paraffin-embedded specimens were collected on 132 consecutive patients who underwent colorectal resections over a 24-month period at Mayo General Hospital. Twenty-six contained non-malignant disease. Her-2/neu protein overexpression was detected using immunohistochemistry (IHC). The HER-2 4B5 Ventana monoclonal antibody was used. Fluorescent insitu hybridisation (FISH) was performed using INFORM HER-2/Neu Plus. Results were correlated with established clinical and pathological predictors of outcome including TNM stage. Statistical analysis was performed using SPSS version 11.5. 114 were HER-2/Neu negative using IHC, 7 showed barely perceptible positivity (1+), 9 showed moderate staining (2+) and 2 were strongly positive (3+). There was no correlation with gender, age, grade, Dukes' stage, TNM stage, time to recurrence and 5-year survival (p > 0.05). FISH was applied to all 2+ and 3+ cases as well as some negative cases selected at random. Three were amplified (2 were 3+ and 1 was 2+). Similarly, HER-2 gene overexpression did not correlate with established prognostic indicators. HER-2 protein is over expressed in 11% of colorectal cancer patients. The gene encoding HER-2 is amplified in 3% of cases. Overexpression of HER-2 is not a predictor of outcome. However, patients who over express HER-2 may respond to Herceptin therapy.

349 citations


Journal ArticleDOI
TL;DR: MMP-1, -2, -8, -9, -10, -11, -12, -13, -15, -19, -24, -27 and -28 might thus be associated with breast cancer development and tumor progression and are proper candidates for further functional analysis of their role in breast cancer.
Abstract: Matrix metalloproteinases (MMPs) are a family of structural and functional related endopeptidases. They play a crucial role in tumor invasion and building of metastatic formations because of their ability to degrade extracellular matrix proteins. Under physiological conditions their activity is precisely regulated in order to prevent tissue disruption. This physiological balance seems to be disrupted in cancer making tumor cells capable of invading the tissue. In breast cancer different expression levels of several MMPs have been found. To fill the gap in our knowledge about MMP expression in breast cancer, we analyzed the expression of all known human MMPs in a panel of twenty-five tissue samples (five normal breast tissues, ten grade 2 (G2) and ten grade 3 (G3) breast cancer tissues). As we found different expression levels for several MMPs in normal breast and breast cancer tissue as well as depending on tumor grade, we additionally analyzed the expression of MMPs in four breast cancer cell lines (MCF-7, MDA-MB-468, BT 20, ZR 75/1) commonly used in research. The results could thus be used as model for further studies on human breast cancer. Expression analysis was performed on mRNA and protein level using semiquantitative RT-PCR, Western blot, immunohistochemistry and immunocytochemistry. In summary, we identified several MMPs (MMP-1, -2, -8, -9, -10, -11, -12, -13, -15, -19, -23, -24, -27 and -28) with a stronger expression in breast cancer tissue compared to normal breast tissue. Of those, expression of MMP-8, -10, -12 and -27 is related to tumor grade since it is higher in analyzed G3 compared to G2 tissue samples. In contrast, MMP-7 and MMP-27 mRNA showed a weaker expression in tumor samples compared to healthy tissue. In addition, we demonstrated that the four breast cancer cell lines examined, are constitutively expressing a wide variety of MMPs. Of those, MDA-MB-468 showed the strongest mRNA and protein expression for most of the MMPs analyzed. MMP-1, -2, -8, -9, -10, -11, -12, -13, -15, -19, -23, -24, -27 and -28 might thus be associated with breast cancer development and tumor progression. Therefore, these MMPs are proper candidates for further functional analysis of their role in breast cancer.

348 citations


Journal ArticleDOI
TL;DR: Examination of the genomic regions containing differentially expressed miRNAs revealed that they were also differentially methylated in colon cancer at a far greater rate than would be expected by chance.
Abstract: Colon cancer arises from the accumulation of multiple genetic and epigenetic alterations to normal colonic tissue. microRNAs (miRNAs) are small, non-coding regulatory RNAs that post-transcriptionally regulate gene expression. Differential miRNA expression in cancer versus normal tissue is a common event and may be pivotal for tumor onset and progression. To identify miRNAs that are differentially expressed in tumors and tumor subtypes, we carried out highly sensitive expression profiling of 735 miRNAs on samples obtained from a statistically powerful set of tumors (n = 80) and normal colon tissue (n = 28) and validated a subset of this data by qRT-PCR. Tumor specimens showed highly significant and large fold change differential expression of the levels of 39 miRNAs including miR-135b, miR-96, miR-182, miR-183, miR-1, and miR-133a, relative to normal colon tissue. Significant differences were also seen in 6 miRNAs including miR-31 and miR-592, in the direct comparison of tumors that were deficient or proficient for mismatch repair. Examination of the genomic regions containing differentially expressed miRNAs revealed that they were also differentially methylated in colon cancer at a far greater rate than would be expected by chance. A network of interactions between these miRNAs and genes associated with colon cancer provided evidence for the role of these miRNAs as oncogenes by attenuation of tumor suppressor genes. Colon tumors show differential expression of miRNAs depending on mismatch repair status. miRNA expression in colon tumors has an epigenetic component and altered expression that may reflect a reversion to regulatory programs characteristic of undifferentiated proliferative developmental states.

314 citations


Journal ArticleDOI
TL;DR: Women with early-onset triple-negative breast cancer are candidates for genetic testing for BRCA1, even in the absence of a family history of breast or ovarian cancer.
Abstract: Background Molecular screening for BRCA1 and BRCA2 mutations is now an established component of risk evaluation and management of familial breast cancer. Features of hereditary breast cancer include an early age-of-onset and over-representation of the 'triple-negative' phenotype (negative for estrogen-receptor, progesterone-receptor and HER2). The decision to offer genetic testing to a breast cancer patient is usually based on her family history, but in the absence of a family history of cancer, some women may qualify for testing based on the age-of-onset and/or the pathologic features of the breast cancer.

278 citations


Journal ArticleDOI
TL;DR: Risks and benefits of supplemental breast ultrasound in women with negative mammographic screening with dense breast tissue are estimated and potential adverse impacts for women in this intermediate risk group are associated with an increased biopsy rate.
Abstract: Mammographic screening alone will miss a certain fraction of malignancies, as evidenced by retrospective reviews of mammograms following a subsequent screening. Mammographic breast density is a marker for increased breast cancer risk and is associated with a higher risk of interval breast cancer, i.e. cancer detected between screening tests. The purpose of this review is to estimate risks and benefits of supplemental breast ultrasound in women with negative mammographic screening with dense breast tissue. A systematic search and review of studies involving mammography and breast ultrasound for screening of breast cancer was conducted. The search was performed for the period 1/2000-8/2008 within the data source of PubMed, DARE, and Cochrane databases. Inclusion and exclusion criteria were determined prospectively, and the Oxford evidence classification system for diagnostic studies was used for evidence level. The parameters biopsy rate, positive predictive value (PPV) for biopsy, cancer yield for breast ultrasound alone, and carcinoma detection rate by breast density were extracted or constructed. The systematic search identified no randomized controlled trials or systematic reviews, six cohort studies of intermediate level of evidence (3b) were found. Only two of the studies included adequate follow-up of subjects with negative or benign findings. Supplemental breast ultrasound after negative mammographic screening permitted diagnosis of primarily invasive carcinomas in 0.32% of women in breast density type categories 2-4 of the American College of Radiology (ACR); mean tumor size for those identified was 9.9 mm, 90% with negative lymph node status. Most detected cancers occurred in mammographically dense breast ACR types 3 and 4. Biopsy rates were in the range 2.3%-4.7%, with PPV of 8.4-13.7% for those biopsied due to positive ultrasound, or about one third of the PPV of biopsies due to mammography. Limitations: The study populations included wide age ranges, and the application to women age 50-69 years as proposed for mammographic screening could result in less striking benefit. Further validation studies should employ a uniform assessment system such as BI-RADS and report not only PPV, but also negative predictive value, sensitivity and specificity. Supplemental breast ultrasound in the population of women with mammographically dense breast tissue (ACR 3 and 4) permits detection of small, otherwise occult, breast cancers. Potential adverse impacts for women in this intermediate risk group are associated with an increased biopsy rate.

266 citations


Journal ArticleDOI
TL;DR: MiRNAs showing altered expression at different stages of CRC could be targets for CRC therapies and be further developed as potential diagnostic and prognostic analytes.
Abstract: MicroRNAs (MiRNAs) are short non-coding RNAs that control protein expression through various mechanisms. Their altered expression has been shown to be associated with various cancers. The aim of this study was to profile miRNA expression in colorectal cancer (CRC) and to analyze the function of specific miRNAs in CRC cells. MirVana miRNA Bioarrays were used to determine the miRNA expression profile in eight CRC cell line models, 45 human CRC samples of different stages, and four matched normal colon tissue samples. SW620 CRC cells were stably transduced with miR-143 or miR-145 expression vectors and analyzed in vitro for cell proliferation, cell differentiation and anchorage-independent growth. Signalling pathways associated with differentially expressed miRNAs were identified using a gene set enrichment analysis. The expression analysis of clinical CRC samples identified 37 miRNAs that were differentially expressed between CRC and normal tissue. Furthermore, several of these miRNAs were associated with CRC tumor progression including loss of miR-133a and gain of miR-224. We identified 11 common miRNAs that were differentially expressed between normal colon and CRC in both the cell line models and clinical samples. In vitro functional studies indicated that miR-143 and miR-145 appear to function in opposing manners to either inhibit or augment cell proliferation in a metastatic CRC model. The pathways targeted by miR-143 and miR-145 showed no significant overlap. Furthermore, gene expression analysis of metastatic versus non-metastatic isogenic cell lines indicated that miR-145 targets involved in cell cycle and neuregulin pathways were significantly down-regulated in the metastatic context. MiRNAs showing altered expression at different stages of CRC could be targets for CRC therapies and be further developed as potential diagnostic and prognostic analytes. The identified biological processes and signalling pathways collectively targeted by co-expressed miRNAs in CRC provide a basis for understanding the functional role of miRNAs in cancer.

260 citations


Journal ArticleDOI
TL;DR: The results show that the zebrafish is a useful in vivo animal model for rapid analysis of invasion and metastatic behaviour of primary human tumour specimen.
Abstract: Aberrant regulation of cell migration drives progression of many diseases, including cancer cell invasion and metastasis formation. Analysis of tumour invasion and metastasis in living organisms to date is cumbersome and involves difficult and time consuming investigative techniques. For primary human tumours we establish here a simple, fast, sensitive and cost-effective in vivo model to analyse tumour invasion and metastatic behaviour. We fluorescently labelled small explants from gastrointestinal human tumours and investigated their metastatic behaviour after transplantation into zebrafish embryos and larvae. The transparency of the zebrafish embryos allows to follow invasion, migration and micrometastasis formation in real-time. High resolution imaging was achieved through laser scanning confocal microscopy of live zebrafish. In the transparent zebrafish embryos invasion, circulation of tumour cells in blood vessels, migration and micrometastasis formation can be followed in real-time. Xenografts of primary human tumours showed invasiveness and micrometastasis formation within 24 hours after transplantation, which was absent when non-tumour tissue was implanted. Furthermore, primary human tumour cells, when organotopically implanted in the zebrafish liver, demonstrated invasiveness and metastatic behaviour, whereas primary control cells remained in the liver. Pancreatic tumour cells showed no metastatic behaviour when injected into cloche mutant embryos, which lack a functional vasculature. Our results show that the zebrafish is a useful in vivo animal model for rapid analysis of invasion and metastatic behaviour of primary human tumour specimen.

235 citations


Journal ArticleDOI
TL;DR: The results suggest that PADI4 expression is increased in the blood and tissues of many malignant tumors, a finding useful for further understanding of tumorigenesis.
Abstract: Peptidylarginine deiminase type 4 (PAD4/PADI4) post-translationally converts peptidylarginine to citrulline. Recent studies suggest that PADI4 represses expression of p53-regulated genes via citrullination of histones at gene promoters. Expression of PADI4 was investigated in various tumors and non-tumor tissues (n = 1673) as well as in A549, SKOV3 and U937 tumor cell lines by immunohistochemistry, real-time PCR, and western blot. Levels of PADI4 and citrullinated antithrombin (cAT) were investigated in the blood of patients with various tumors by ELISA (n = 1121). Immunohistochemistry detected significant PADI4 expression in various malignancies including breast carcinomas, lung adenocarcinomas, hepatocellular carcinomas, esophageal squamous cancer cells, colorectal adenocarcinomas, renal cancer cells, ovarian adenocarcinomas, endometrial carcinomas, uterine adenocarcinomas, bladder carcinomas, chondromas, as well as other metastatic carcinomas. However, PADI4 expression was not observed in benign leiomyomas of stomach, uterine myomas, endometrial hyperplasias, cervical polyps, teratomas, hydatidiform moles, trophoblastic cell hyperplasias, hyroid adenomas, hemangiomas, lymph hyperplasias, schwannomas, neurofibromas, lipomas, and cavernous hemangiomas of the liver. Additionally, PADI4 expression was not detected in non-tumor tissues including cholecystitis, cervicitis and synovitis of osteoarthritis, except in certain acutely inflamed tissues such as in gastritis and appendicitis. Quantitative PCR and western blot analysis showed higher PADI4 expression in gastric adenocarcinomas, lung adenocarcinomas, hepatocellular carcinomas, esophageal squamous cell cancers and breast cancers (n = 5 for each disease) than in the surrounding healthy tissues. Furthermore, western blot analysis detected PADI4 expression in cultured tumor cell lines. ELISA detected increased PADI4 and cAT levels in the blood of patients with various malignant tumors compared to those in patients with chronic inflammation and benign tumors. This was consistent with immunohistochemical results. Additionally, PADI4 and cAT levels were significantly associated with higher levels of known tumor markers. Our results suggest that PADI4 expression is increased in the blood and tissues of many malignant tumors, a finding useful for further understanding of tumorigenesis.

229 citations


Journal ArticleDOI
TL;DR: It is shown for the first time that full-length claudins can be shed from ovarian cancer cells in culture and found in the media as part of small lipid vesicles known as exosomes.
Abstract: The absence of highly sensitive and specific serum biomarkers makes mass screening for ovarian cancer impossible. The claudin proteins are frequently overexpressed in ovarian cancers, but their potential as prognostic, diagnostic, or detection markers remains unclear. Here, we have explored the possible use of these proteins as screening biomarkers for ovarian cancer detection. Claudin protein shedding from cells was examined by immunoblotting of conditioned culture media. The presence of claudins in exosomes released from ovarian cancer cells was demonstrated by sucrose gradient separation and immunogold electron microscopy experiments. Claudin-4-containing exosomes in the plasma of ovarian cancer patients were evaluated in a pilot panel of 63 ovarian cancer patients and 50 healthy volunteers. The CA125 marker was also assessed in these samples and compared with claudin-4 positivity. We show that full-length claudins can be shed from ovarian cancer cells in culture and found in the media as part of small lipid vesicles known as exosomes. Moreover, 32 of 63 plasma samples from ovarian cancer patients exhibited the presence of claudin-4-containing exosomes. In contrast, only one of 50 samples from individuals without cancer exhibited claudin-4-positive exosomes. In our small panel, at a specificity of 98%, the claudin-4 and CA125 tests had sensitivities of 51% and 71%, respectively. The two tests did not appear to be independent and were strongly correlated. Our work shows for the first time that claudin-4 can be released from ovarian cancer cells and can be detected in the peripheral circulation of ovarian cancer patients. The development of sensitive assays for the detection of claudin-4 in blood will be crucial in determining whether this approach can be useful, alone or in combination with other screening methods, for the detection of ovarian cancer.

Journal ArticleDOI
TL;DR: Upregulation of miR-21 from normal ductal epithelial cells of the breast to FEA, DCIS and IDC parallels morphologically defined carcinogenesis.
Abstract: Background Flat epithelial atypia (FEA) of the breast is characterised by a few layers of mildly atypical luminal epithelial cells. Genetic changes found in ductal carcinoma in situ (DCIS) and invasive ductal breast cancer (IDC) are also found in FEA, albeit at a lower concentration. So far, miRNA expression changes associated with invasive breast cancer, like miR-21, have not been studied in FEA.

Journal ArticleDOI
TL;DR: These female health workers who are expected to act as role models and educate the public had poor knowledge of risk factors for breast cancer and practice of breast cancer screening.
Abstract: Background Late presentation has been observed as the hallmark of breast cancer in Nigerian women and an earlier onset has been reported in this population. This study was designed to assess the awareness of female health workers about risk factors and screening methods for early detection of breast cancer.

Journal ArticleDOI
TL;DR: The SNP-array analysis failed to detect recurrent small deletions, however, loss of chromosome 2, 10, 13, 17 and 21 is identified as discriminating alteration between chromophobe RCCs and ROs, which can be used for the accurate diagnosis in routine histology.
Abstract: Background: The diagnosis of benign renal oncocytomas (RO) and chromophobe renal cell carcinomas (RCC) based on their morphology remains uncertain in several cases. Methods: We have applied Affymetrix GeneChip Mapping 250 K NspI high-density oligoarrays to identify small genomic alterations, which may occur beyond the specific losses of entire chromosomes, and also Affymetrix GeneChip HG-U133 Plus2.0 oligoarrays for gene expression profiling. Results: By analysing of DNA extracted from 30 chRCCs and 42 ROs, we have confirmed the high specificity of monosomies of chromosomes 1, 2, 6, 10, 13, 17 and 21 in 70–93% of the chRCCs, while ROs displayed loss of chromosome 1 and 14 in 24% and 5% of the cases, respectively. We demonstrated that chromosomal gene expression biases might correlate with chromosomal abnormalities found in chromophobe RCCs and ROs. The vast majority genes downregulated in chromophobe RCC were mapped to chromosomes 2, 6, 10, 13 and 17. However, most of the genes overexpressed in chromophobe RCCs were located to chromosomes without any copy number changes indicating a transcriptional regulation as a main event. Conclusion: The SNP-array analysis failed to detect recurrent small deletions, which may mark loci of genes involved in the tumor development. However, we have identified loss of chromosome 2, 10, 13, 17 and 21 as discriminating alteration between chromophobe RCCs and ROs. Therefore, detection of these chromosomal changes can be used for the accurate diagnosis in routine histology.

Journal ArticleDOI
TL;DR: GSH protects cells from proteasome inhibition-induced oxidative stress and glutathione-dependent redox system might play an important role in the sensitivity to proteasom inhibition- induced apoptosis.
Abstract: The proteasome inhibitor bortezomib has shown impressive clinical activity alone and in combination with conventional and other novel agents for the treatment of multiple myeloma (MM) and some solid cancers. Although bortezomib is known to be a selective proteasome inhibitor, the downstream mechanisms of cytotoxicity and drug resistance are poorly understood. Proteasome activity, intracellular glutathione (GSH) and ROS levels, as well as activities of GSH synthesis enzymes were measured using spectrophotometric methods. Cell death was analyzed using flow cytometry and caspase activity assay. The expression level of GSH synthesis enzymes were measured using real-time RT-PCR. At concentrations that effectively inhibited proteasome activity, bortezomib induced apoptosis in FRO cells, but not in ARO cells. Bortezomib elevated the amount of glutathione (GSH) and the treatment with bortezomib increased the level of mRNA for GCL, a rate-limiting enzyme in glutathione synthesis. Furthermore, depletion of GSH increases apoptosis induced by bortezomib, in contrast, repletion of GSH decreases bortezomib-mediated cell death. GSH protects cells from proteasome inhibition-induced oxidative stress and glutathione-dependent redox system might play an important role in the sensitivity to proteasome inhibition-induced apoptosis.

Journal ArticleDOI
Dan Cao1, Mei Hou1, Yong-song Guan1, Ming Jiang1, Yu Yang1, Hongfeng Gou1 
TL;DR: HIF-1α and VEGF could be used as biomarkers indicating tumors in advanced stage and independently implied poor prognosis in patients with CRC, and treatment that inhibits HIF-2α might be a promising targeted approach in CRC.
Abstract: Hypoxia-inducible factor 1 alpha (HIF-1α) and vascular endothelial growth factor (VEGF) are frequently overexpressed in numerous types of cancers and are known to be important regulators of angiogenesis Until now, few studies have been carried out to investigate the prognostic role of these factors in solid tumors, especially in colorectal cancer (CRC) The purpose of this study was to evaluate the expression of HIF-1α and VEGF in CRC tissues, and to analyze the association of these two factors with several clinical and pathological characteristics, and patients' survival Paraffin-embedded tissue samples were retrospectively collected from 71 CRC patients, who received surgical resection between 2001 and 2002, with a median follow-up of 5 years We examined the patterns of expression of HIF-1α and VEGF by immunohistochemistry method Statistical analysis was performed with univariate tests and multivariate Cox proportional hazards model to evaluate the differences Expression of HIF-1α and VEGF was positively observed in 5493% and 5634% among the patients, respectively HIF-1α and VEGF status were significantly associated with tumor stage, lymph nodes and liver metastases (P < 005) Expression of both HIF-1α and VEGF remained significantly associated with overall survival (OS) (P < 001), and HIF-1α was positively correlative to VEGF in CRC (r = 072, P < 0001) HIF-1α and VEGF could be used as biomarkers indicating tumors in advanced stage and independently implied poor prognosis in patients with CRC Treatment that inhibits HIF-1α might be a promising targeted approach in CRC to exhibit its potential to improve outcomes in future perspective, just as VEGF targeting has proved to be

Journal ArticleDOI
TL;DR: The findings support the idea that neoplasia may lead to a deregulation of miRNA expression in blood cells of cancer patients compared toBlood cells of healthy individuals and provide evidence that miRNA patterns can be used to detect human cancers from blood cells.
Abstract: Deregulated miRNAs are found in cancer cells and recently in blood cells of cancer patients. Due to their inherent stability miRNAs may offer themselves for blood based tumor diagnosis. Here we addressed the question whether there is a sufficient number of miRNAs deregulated in blood cells of cancer patients to be able to distinguish between cancer patients and controls. We synthesized 866 human miRNAs and miRNA star sequences as annotated in the Sanger miRBase onto a microarray designed by febit biomed gmbh. Using the fully automated Geniom Real Time Analyzer platform, we analyzed the miRNA expression in 17 blood cell samples of patients with non-small cell lung carcinomas (NSCLC) and in 19 blood samples of healthy controls. Using t-test, we detected 27 miRNAs significantly deregulated in blood cells of lung cancer patients as compared to the controls. Some of these miRNAs were validated using qRT-PCR. To estimate the value of each deregulated miRNA, we grouped all miRNAs according to their diagnostic information that was measured by Mutual Information. Using a subset of 24 miRNAs, a radial basis function Support Vector Machine allowed for discriminating between blood cellsamples of tumor patients and controls with an accuracy of 95.4% [94.9%-95.9%], a specificity of 98.1% [97.3%-98.8%], and a sensitivity of 92.5% [91.8%-92.5%]. Our findings support the idea that neoplasia may lead to a deregulation of miRNA expression in blood cells of cancer patients compared to blood cells of healthy individuals. Furthermore, we provide evidence that miRNA patterns can be used to detect human cancers from blood cells.

Journal ArticleDOI
TL;DR: Preoperative serum IL-6 and CRP levels might be markers of tumor invasion, LN metastasis, and TNM stage, and they were proposed as a poor prognostic factor for disease recurrence and overall survival in patients with gastric cancers.
Abstract: The interleukin-6 (IL-6) pathway is one of the mechanisms that link inflammation and angiogenesis to malignancy. Because the C-reactive protein (CRP) is a representative marker for inflammation, CRP has recently been associated with the progression of disease in many cancer types. The principal objective of this study was to determine the preoperative serum levels of IL-6 and CRP in gastric carcinoma, and to correlate them with disease status and prognosis. A total of 115 patients who underwent gastrectomy were enrolled in this study. Serum levels of IL-6 were assessed via Enzyme-Linked Immuno-Sorbent Assay (ELISA), and CRP was measured via immunoturbidimetry. Histological findings included tumor size, depth of tumor invasion, lymph node (LN) metastasis, and TNM stage (6th AJCC Stage Groupings: The staging systems; Primary tumor, regional LN, metastasis). Increases in cancer invasion and staging are generally associated with increases in preoperative serum IL-6 levels. IL-6 and CRP levels were correlated with invasion depth (P < 0.001, P = 0.001), LN metastasis (P < 0.001, P = 0.024) and TNM stage (P < 0.001, P < 0.001). The presence of peritoneal seeding metastasis is associated with IL-6 levels (P = 0.012). When we established the cutoff value for IL-6 level (6.77 pg/dL) by ROC curve, we noted significant differences in time to progression (TTP; P < 0.001) and overall survival (OS; P = 0.010). However, CRP evidenced no significance with regard to patients' TTP and OS levels. Serum IL-6 levels were correlated positively with CRP levels (r 2 = 0.049, P = 0.018). Preoperative serum IL-6 and CRP levels might be markers of tumor invasion, LN metastasis, and TNM stage. Preoperative high IL-6 levels were proposed as a poor prognostic factor for disease recurrence and overall survival in patients with gastric cancers.

Journal ArticleDOI
TL;DR: The characterization of genes identified to be significant predictors of prognosis by oligonucleotide microarray and further validation by real-time RT-PCR offers a powerful strategy for identification of novel targets for prognostication and treatment of oral tongue carcinoma.
Abstract: The present study is aimed at identifying potential candidate genes as prognostic markers in human oral tongue squamous cell carcinoma (SCC) by large scale gene expression profiling. The gene expression profile of patients (n=37) with oral tongue SCC were analyzed using Affymetrix HG_U95Av2 high-density oligonucleotide arrays. Patients (n=20) from which there were available tumor and matched normal mucosa were grouped into stage (early vs. late) and nodal disease (node positive vs. node negative) subgroups and genes differentially expressed in tumor vs. normal and between the subgroups were identified. Three genes, GLUT3, HSAL2, and PACE4, were selected for their potential biological significance in a larger cohort of 49 patients via quantitative real-time RT-PCR. Hierarchical clustering analyses failed to show significant segregation of patients. In patients (n=20) with available tumor and matched normal mucosa, 77 genes were found to be differentially expressed (P< 0.05) in the tongue tumor samples compared to their matched normal controls. Among the 45 over-expressed genes, MMP-1 encoding interstitial collagenase showed the highest level of increase (average: 34.18 folds). Using the criterion of two-fold or greater as overexpression, 30.6%, 24.5% and 26.5% of patients showed high levels of GLUT3, HSAL2 and PACE4, respectively. Univariate analyses demonstrated that GLUT3 over-expression correlated with depth of invasion (P<0.0001), tumor size (P=0.024), pathological stage (P=0.009) and recurrence (P=0.038). HSAL2 was positively associated with depth of invasion (P=0.015) and advanced T stage (P=0.047). In survival studies, only GLUT3 showed a prognostic value with disease-free (P=0.049), relapse-free (P=0.002) and overall survival (P=0.003). PACE4mRNA expression failed to show correlation with any of the relevant parameters. The characterization of genes identified to be significant predictors of prognosis by oligonucleotide microarray and further validation by real-time RT-PCR offers a powerful strategy for identification of novel targets for prognostication and treatment of oral tongue carcinoma.

Journal ArticleDOI
TL;DR: It is reported here for the first time that NK cell-activating receptors NKp30 and NKp46 are significantly down-regulated in cervical cancer and high grade squamous intraepithelial lesion (HGSIL) patients.
Abstract: Persistent high risk HPV infection can lead to cervical cancer, the second most common malignant tumor in women worldwide. NK cells play a crucial role against tumors and virus-infected cells through a fine balance between activating and inhibitory receptors. Expression of triggering receptors NKp30, NKp44, NKp46 and NKG2D on NK cells correlates with cytolytic activity against tumor cells, but these receptors have not been studied in cervical cancer and precursor lesions. The aim of the present work was to study NKp30, NKp46, NKG2D, NKp80 and 2B4 expression in NK cells from patients with cervical cancer and precursor lesions, in the context of HPV infection. NKp30, NKp46, NKG2D, NKp80 and 2B4 expression was analyzed by flow cytometry on NK cells from 59 patients with cervical cancer and squamous intraepithelial lesions. NK cell cytotoxicity was evaluated in a 4 hour CFSE/7-AAD flow cytometry assay. HPV types were identified by PCR assays. We report here for the first time that NK cell-activating receptors NKp30 and NKp46 are significantly down-regulated in cervical cancer and high grade squamous intraepithelial lesion (HGSIL) patients. NCRs down-regulation correlated with low cytolytic activity, HPV-16 infection and clinical stage. NKG2D was also down-regulated in cervical cancer patients. Our results suggest that NKp30, NKp46 and NKG2D down-regulation represent an evasion mechanism associated to low NK cell activity, HPV-16 infection and cervical cancer progression.

Journal ArticleDOI
TL;DR: Although angiogenesis inhibition is of considerable value for symptom reduction in GBM patients, lack of proof of a true anti-tumour effect raises concerns about the place of this type of therapy in the treatment of GBM.
Abstract: The relevance of angiogenesis inhibition in the treatment of glioblastoma multiforme (GBM) should be considered in the unique context of malignant brain tumours. Although patients benefit greatly from reduced cerebral oedema and intracranial pressure, this important clinical improvement on its own may not be considered as an anti-tumour effect. GBM can be roughly separated into an angiogenic component, and an invasive or migratory component. Although this latter component seems inert to anti-angiogenic therapy, it is of major importance for disease progression and survival. We reviewed all relevant literature. Published data support that clinical symptoms are tempered by anti-angiogenic treatment, but that tumour invasion continues. Unfortunately, current imaging modalities are affected by anti-angiogenic treatment too, making it even harder to define tumour margins. To illustrate this we present MRI, biopsy and autopsy specimens from bevacizumab-treated patients. Moreover, while treatment of other tumour types may be improved by combining chemotherapy with anti-angiogenic drugs, inhibiting angiogenesis in GBM may antagonise the efficacy of chemotherapeutic drugs by normalising the blood-brain barrier function. Although angiogenesis inhibition is of considerable value for symptom reduction in GBM patients, lack of proof of a true anti-tumour effect raises concerns about the place of this type of therapy in the treatment of GBM.

Journal ArticleDOI
TL;DR: HER2 amplification is relatively common in ovarian mucinous carcinomas (6/33, 18.2%), although not of prognostic significance, and trastuzumab therapy is a treatment option for patients with mucinous cancer when the tumor has HER2 amplification and overexpression.
Abstract: Background The response rate of ovarian mucinous carcinomas to paclitaxel/carboplatin is low, prompting interest in targeted molecular therapies. We investigated HER2 expression and amplification, and the potential for trastuzumab therapy in this histologic subtype of ovarian cancer.

Journal ArticleDOI
TL;DR: Reduced signalling via the AMPK pathway, and the inverse relationship with histological grade and axillary node metastasis, suggests that AMPK re-activation could have therapeutic potential in breast cancer.
Abstract: AMP-activated protein kinase (AMPK) acts as a cellular fuel gauge that responds to energy stress by suppressing cell growth and biosynthetic processes, thus ensuring that energy-consuming processes proceed only if there are sufficient metabolic resources. Malfunction of the AMPK pathway may allow cancer cells to undergo uncontrolled proliferation irrespective of their molecular energy levels. The aim of this study was to examine the state of AMPK phosphorylation histologically in primary breast cancer in relation to clinical and pathological parameters.

Journal ArticleDOI
TL;DR: The revelation of lipid-rich circulating tumour cells suggests possible development of CARS intravital flow cytometry for label-free detection of early-stage cancer metastasis through FFAs-induced physical perturbations on cancer cell membrane.
Abstract: Lipid-rich tumours have been associated with increased cancer metastasis and aggressive clinical behaviours. Nonetheless, pathologists cannot classify lipid-rich tumours as a clinically distinctive form of carcinoma due to a lack of mechanistic understanding on the roles of lipids in cancer development. Coherent anti-Stokes Raman scattering (CARS) microscopy is employed to study cancer cell behaviours in excess lipid environments in vivo and in vitro. The impacts of a high fat diet on cancer development are evaluated in a Balb/c mice cancer model. Intravital flow cytometry and histology are employed to enumerate cancer cell escape to the bloodstream and metastasis to lung tissues, respectively. Cancer cell motility and tissue invasion capability are also evaluated in excess lipid environments. CARS imaging reveals intracellular lipid accumulation is induced by excess free fatty acids (FFAs). Excess FFAs incorporation onto cancer cell membrane induces membrane phase separation, reduces cell-cell contact, increases surface adhesion, and promotes tissue invasion. Increased plasma FFAs level and visceral adiposity are associated with early rise in circulating tumour cells and increased lung metastasis. Furthermore, CARS imaging reveals FFAs-induced lipid accumulation in primary, circulating, and metastasized cancer cells. Lipid-rich tumours are linked to cancer metastasis through FFAs-induced physical perturbations on cancer cell membrane. Most importantly, the revelation of lipid-rich circulating tumour cells suggests possible development of CARS intravital flow cytometry for label-free detection of early-stage cancer metastasis.

Journal ArticleDOI
TL;DR: In this article, the authors examined the local distribution of immune cells in tumour-related compartments in head and neck squamous cell carcinomas (HNSCC) and analyzed the prognostic impact of these cells on disease-free survival (DFS) was analyzed.
Abstract: Tumour infiltrating lymphocytes (TIL) are generally considered to represent a host immune response directed against tumour antigens. TIL are also increasingly recognised as possible prognostic parameters. However, the effects observed are variable indicating that results cannot be extrapolated from type of tumour to another. Moreover, it has been suggested that primary solid tumours may be ignored by the immune system and that a meaningful immune response is only mounted in regional lymph nodes. We have examined the local distribution of immune cells in tumour-related compartments in head and neck squamous cell carcinomas (HNSCC). In a second step, the prognostic impact of these cells on disease-free survival (DFS) was analysed. A total of 198 tissue cores from 33 patients were evaluated using tissue mircroarray technique and immunohistochemistry. Tumour-infiltrating immune cells were identified using antibodies specific for CD3, CD8, GranzymeB, FoxP3, CD20 and CD68 and quantified using an image analysis system. We demonstrate a relative expansion of FoxP3+ regulatory T-cells (Treg) and of cytotoxic T-cells among tumour infitrating T-cells. We also show that intratumoural CD20+ B-cells are significantly more frequent in metastatic deposits than in primary tumours. Furthermore, we observed a reduced number of peritumoural CD8+ T-cells in metastatic lymph nodes as compared to univolved regional nodes suggesting a local down-modulation of cellular immunity. All other immune cells did not show significant alterations in distribution. We did not observe an association of tumour infiltrating immune cells at the primary site with outcome. However, increased numbers of intraepithelial CD8+ TIL in metastatic tumours as well as large numbers of peritumoural B-cells in lymph node metastases were associated with favourable outcome. Unexpectedly, no effect on patient outcome was observed for Treg in any compartment. Our results suggest that alterations in lymphocyte distribution in regional lymph nodes rather than at the primary tumour site may be relevant for patient prognosis. Moreover, we demonstrate that in addition to cellular immunity humoral immune responses may be clinically relevant in anti-tumour immunity.

Journal ArticleDOI
TL;DR: BIA-derived phase angle was found to be an independent prognostic indicator in patients with stage IIIB and IV NSCLC and Nutritional interventions targeted at improving phase angle could potentially lead to an improved survival in Patients with advanced NSCLCs.
Abstract: A frequent manifestation of advanced lung cancer is malnutrition, timely identification and treatment of which can lead to improved patient outcomes. Bioelectrical impedance analysis (BIA) is an easy-to-use and non-invasive technique to evaluate changes in body composition and nutritional status. We investigated the prognostic role of BIA-derived phase angle in advanced non-small cell lung cancer (NSCLC). A case series of 165 stages IIIB and IV NSCLC patients treated at our center. The Kaplan Meier method was used to calculate survival. Cox proportional hazard models were constructed to evaluate the prognostic effect of phase angle, independent of stage at diagnosis and prior treatment history. 93 were males and 72 females. 61 had stage IIIB disease at diagnosis while 104 had stage IV. The median phase angle was 5.3 degrees (range = 2.9 – 8). Patients with phase angle 5.3 had 12.4 months (95% CI: 10.5 to 18.7; n = 84); (p = 0.02). After adjusting for age, stage at diagnosis and prior treatment history we found that every one degree increase in phase angle was associated with a relative risk of 0.79 (95% CI: 0.64 to 0.97, P = 0.02). We found BIA-derived phase angle to be an independent prognostic indicator in patients with stage IIIB and IV NSCLC. Nutritional interventions targeted at improving phase angle could potentially lead to an improved survival in patients with advanced NSCLC.

Journal ArticleDOI
TL;DR: The ongoing PLCO trial offers continued opportunities for new breast cancer investigations, but these analyses suggest that the associations between breast cancer and age atMenarche, age at menopause, and obesity might be changing as the underlying demographics of these factors change.
Abstract: Multidisciplinary attempts to understand the etiology of breast cancer are expanding to increasingly include new potential markers of disease risk. Those efforts may have maximal scientific and practical influence if new findings are placed in context of the well-understood lifestyle and reproductive risk factors or existing risk prediction models for breast cancer. We therefore evaluated known risk factors for breast cancer in a cancer screening trial that does not have breast cancer as a study endpoint but is large enough to provide numerous analytic opportunities for breast cancer. We evaluated risk factors for breast cancer (N = 2085) among 70,575 women who were randomized in the Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial. Using Poisson regression, we calculated adjusted relative risks [RRs, with 95% confidence intervals (CIs)] for lifestyle and reproductive factors during an average of 5 years of follow-up from date of randomization. As expected, increasing age, nulliparity, positive family history of breast cancer, and use of menopausal hormone therapy were positively associated with breast cancer. Later age at menarche (16 years or older vs. < 12: RR = 0.81, 95% CI, 0.65–1.02) or menopause (55 years or older vs. < 45: RR = 1.29, 95% CI, 1.03–1.62) were less strongly associated with breast cancer than was expected. There were weak positive associations between taller height and heavier weight, and only severe obesity [body mass index (BMI; kg/m2) 35 or more vs. 18.5–24.9: RR = 1.21, 95% CI, 1.02–1.43] was statistically significantly associated with breast cancer. The ongoing PLCO trial offers continued opportunities for new breast cancer investigations, but these analyses suggest that the associations between breast cancer and age at menarche, age at menopause, and obesity might be changing as the underlying demographics of these factors change. http://www.clinicaltrials.gov , NCT00002540.

Journal ArticleDOI
TL;DR: In this article, a HER2-IgY-SWNT complex was constructed by covalently conjugating carboxylated SWNTs with anti-HER2 chicken IgY antibody, which is more specific and sensitive than mammalian IgGs.
Abstract: Nanocarrier-based antibody targeting is a promising modality in therapeutic and diagnostic oncology. Single-walled carbon nanotubes (SWNTs) exhibit two unique optical properties that can be exploited for these applications, strong Raman signal for cancer cell detection and near-infrared (NIR) absorbance for selective photothermal ablation of tumors. In the present study, we constructed a HER2 IgY-SWNT complex and demonstrated its dual functionality for both detection and selective destruction of cancer cells in an in vitro model consisting of HER2-expressing SK-BR-3 cells and HER2-negative MCF-7 cells. The complex was constructed by covalently conjugating carboxylated SWNTs with anti-HER2 chicken IgY antibody, which is more specific and sensitive than mammalian IgGs. Raman signals were recorded on Raman spectrometers with a laser excitation at 785 nm. NIR irradiation was performed using a diode laser system, and cells with or without nanotube treatment were irradiated by 808 nm laser at 5 W/cm2 for 2 min. Cell viability was examined by the calcein AM/ethidium homodimer-1 (EthD-1) staining. Using a Raman optical microscope, we found the Raman signal collected at single-cell level from the complex-treated SK-BR-3 cells was significantly greater than that from various control cells. NIR irradiation selectively destroyed the complex-targeted breast cancer cells without harming receptor-free cells. The cell death was effectuated without the need of internalization of SWNTs by the cancer cells, a finding that has not been reported previously. We have demonstrated that the HER2 IgY-SWNT complex specifically targeted HER2-expressing SK-BR-3 cells but not receptor-negative MCF-7 cells. The complex can be potentially used for both detection and selective photothermal ablation of receptor-positive breast cancer cells without the need of internalization by the cells. Thus, the unique intrinsic properties of SWNTs combined with high specificity and sensitivity of IgY antibodies can lead to new strategies for cancer detection and therapy.

Journal ArticleDOI
TL;DR: This review reviews the main models used to study breast CSCs and how they challenge the CSC hypothesis, and surveys tools and markers available or promising to identify breast C SCs.
Abstract: There is increasing evidence for the "cancer stem cell (CSC) hypothesis", which holds that cancers are driven by a cellular component that has stem cell properties, including self-renewal, tumorigenicity and multi-lineage differentiation capacity. Researchers and oncologists see in this model an explanation as to why cancer may be so difficult to cure, as well as a promising ground for novel therapeutic strategies. Given the specific stem cell features of self-renewal and differentiation, which drive tumorigenesis and contribute to cellular heterogeneity, each marker and assay designed to isolate and characterize CSCs has to be functionally validated. In this review, we survey tools and markers available or promising to identify breast CSCs. We review the main models used to study breast CSCs and how they challenge the CSC hypothesis.

Journal ArticleDOI
TL;DR: Lipid-modified dextran nanoparticles loaded with doxorubicin showed pronounced anti-proliferative effects against osteosarcoma cell lines, which may lead to new treatment options for MDR osteosARcoma.
Abstract: Background Drug resistance is a primary hindrance for the efficiency of chemotherapy against osteosarcoma. Although chemotherapy has improved the prognosis of osteosarcoma patients dramatically after introduction of neo-adjuvant therapy in the early 1980's, the outcome has since reached plateau at approximately 70% for 5 year survival. The remaining 30% of the patients eventually develop resistance to multiple types of chemotherapy. In order to overcome both the dose-limiting side effects of conventional chemotherapeutic agents and the therapeutic failure incurred from multidrug resistant (MDR) tumor cells, we explored the possibility of loading doxorubicin onto biocompatible, lipid-modified dextran-based polymeric nanoparticles and evaluated the efficacy.