scispace - formally typeset
Search or ask a question

Showing papers in "Bulletin of the American Meteorological Society in 2007"


Journal ArticleDOI
TL;DR: The Coupled Model Intercomparison Project (CMIP3) dataset as discussed by the authors is the largest and most comprehensive international coupled climate model experiment and multimodel analysis effort ever attempted.
Abstract: A coordinated set of global coupled climate model [atmosphere–ocean general circulation model (AOGCM)] experiments for twentieth- and twenty-first-century climate, as well as several climate change commitment and other experiments, was run by 16 modeling groups from 11 countries with 23 models for assessment in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4). Since the assessment was completed, output from another model has been added to the dataset, so the participation is now 17 groups from 12 countries with 24 models. This effort, as well as the subsequent analysis phase, was organized by the World Climate Research Programme (WCRP) Climate Variability and Predictability (CLIVAR) Working Group on Coupled Models (WGCM) Climate Simulation Panel, and constitutes the third phase of the Coupled Model Intercomparison Project (CMIP3). The dataset is called the WCRP CMIP3 multimodel dataset, and represents the largest and most comprehensive international global coupled climate model experiment and multimodel analysis effort ever attempted. As of March 2007, the Program for Climate Model Diagnostics and Intercomparison (PCMDI) has collected, archived, and served roughly 32 TB of model data. With oversight from the panel, the multimodel data were made openly available from PCMDI for analysis and academic applications. Over 171 TB of data had been downloaded among the more than 1000 registered users to date. Over 200 journal articles, based in part on the dataset, have been published so far. Though initially aimed at the IPCC AR4, this unique and valuable resource will continue to be maintained for at least the next several years. Never before has such an extensive set of climate model simulations been made available to the international climate science community for study. The ready access to the multimodel dataset opens up these types of model analyses to researchers, including students, who previously could not obtain state-of-the-art climate model output, and thus represents a new era in climate change research. As a direct consequence, these ongoing studies are increasing the body of knowledge regarding our understanding of how the climate system currently works, and how it may change in the future.

2,759 citations


Journal ArticleDOI
TL;DR: A 25-yr (1981-2005) time series of daily latent and sensible heat fluxes over the global ice-free oceans has been produced by synthesizing surface meteorology obtained from satellite remote sensing and atmospheric model reanalyses outputs as discussed by the authors.
Abstract: A 25-yr (1981–2005) time series of daily latent and sensible heat fluxes over the global ice-free oceans has been produced by synthesizing surface meteorology obtained from satellite remote sensing and atmospheric model reanalyses outputs. The project, named Objectively Analyzed Air–Sea Fluxes (OAFlux), was developed from an initial study of the Atlantic Ocean that demonstrated that such data synthesis improves daily flux estimates over the basin scale. This paper introduces the 25-yr heat flux analysis and documents variability of the global ocean heat flux fields on seasonal, interannual, decadal, and longer time scales suggested by the new dataset. The study showed that, among all the climate signals investigated, the most striking is a long-term increase in latent heat flux that dominates the data record. The globally averaged latent heat flux increased by roughly 9 W m−2 between the low in 1981 and the peak in 2002, which amounted to about a 10% increase in the mean value over the 25-yr period. Posit...

969 citations


Journal ArticleDOI
TL;DR: In this article, the authors provide potential users of short-interval satellite rainfall estimates with information on the accuracy of such estimates, and compare the satellite-derived estimates of precip...
Abstract: An increasing number of satellite-based rainfall products are now available in near–real time over the Internet to help meet the needs of weather forecasters and climate scientists, as well as a wide range of decision makers, including hydrologists, agriculturalists, emergency managers, and industrialists. Many of these satellite products are so newly developed that a comprehensive evaluation has not yet been undertaken. This article provides potential users of short-interval satellite rainfall estimates with information on the accuracy of such estimates. Since late 2002 the authors have been performing daily validation and intercomparisons of several operational satellite rainfall retrieval algorithms over Australia, the United States, and northwestern Europe. Short-range quantitative precipitation forecasts from four numerical weather prediction (NWP) models are also included for comparison. Synthesis of four years of daily rainfall validation results shows that the satellite-derived estimates of precip...

939 citations


Journal ArticleDOI
TL;DR: The ICTP Regional Climate Model version 3 (RegCM3) as mentioned in this paper is a state-of-the-art regional climate model, which is used by a large research community for a diverse range of climate-related studies.
Abstract: Regional climate models are important research tools available to scientists around the world, including in economically developing nations (EDNs). The Earth Systems Physics (ESP) group of the Abdus Salam International Centre for Theoretical Physics (ICTP) maintains and distributes a state-of-the-science regional climate model called the ICTP Regional Climate Model version 3 (RegCM3), which is currently being used by a large research community for a diverse range of climate-related studies. The RegCM3 is the central, but not only, tool of the ICTP-maintained Regional Climate Research Network (RegCNET) aimed at creating south–south and north–south scientific interactions on the topic of climate and associated impacts research and modeling. In this paper, RegCNET, RegCM3, and illustrative results from RegCM3 benchmark simulations applied over south Asia, Africa, and South America are presented. It is shown that RegCM3 performs reasonably well over these regions and is therefore useful for climate studies in...

939 citations


Journal ArticleDOI
TL;DR: The Coupled Boundary Layer Air-Sea Transfer (CBLAST) field program, conducted from 2002 to 2004, has provided a wealth of new air-sea interaction observations in hurricanes.
Abstract: The Coupled Boundary Layer Air–Sea Transfer (CBLAST) field program, conducted from 2002 to 2004, has provided a wealth of new air–sea interaction observations in hurricanes. The wind speed range for which turbulent momentum and moisture exchange coefficients have been derived based upon direct flux measurements has been extended by 30% and 60%, respectively, from airborne observations in Hurricanes Fabian and Isabel in 2003. The drag coefficient (CD) values derived from CBLAST momentum flux measurements show CD becoming invariant with wind speed near a 23 m s−1 threshold rather than a hurricane-force threshold near 33 m s−1 . Values above 23 m s−1 are lower than previous open-ocean measurements. The Dalton number estimates (CE) derived from CBLAST moisture flux measurements are shown to be invariant with wind speeds up to 30 m s −1 which is in approximate agreement with previous measurements at lower winds. These observations imply a CE/CD ratio of approximately 0.7, suggesting that additional energy sour...

527 citations


Journal ArticleDOI
TL;DR: In this paper, cloud fraction, liquid and ice water contents derived from long-term radar, lidar and microwave radiometer data are systematically compared to models to quantify and improve their performance.
Abstract: Cloud fraction, liquid and ice water contents derived from long-term radar, lidar and microwave radiometer data are systematically compared to models to quantify and improve their performance.

477 citations


Journal ArticleDOI
TL;DR: Rain in Cumulus over the Ocean (RICO) field campaign as mentioned in this paper emphasized measurements of processes related to the formation of rain in shallow cumuli, and how rain subsequently modifies the structure and ensemble statistics of trade wind clouds.
Abstract: Shallow, maritime cumuli are ubiquitous over much of the tropical oceans, and characterizing their properties is important to understanding weather and climate. The Rain in Cumulus over the Ocean (RICO) field campaign, which took place during November 2004–January 2005 in the trades over the western Atlantic, emphasized measurements of processes related to the formation of rain in shallow cumuli, and how rain subsequently modifies the structure and ensemble statistics of trade wind clouds. Eight weeks of nearly continuous S-band polarimetric radar sampling, 57 flights from three heavily instrumented research aircraft, and a suite of ground- and ship-based instrumentation provided data on trade wind clouds with unprecedented resolution. Observational strategies employed during RICO capitalized on the advances in remote sensing and other instrumentation to provide insight into processes that span a range of scales and that lie at the heart of questions relating to the cause and effects of rain from shallow ...

418 citations


Journal ArticleDOI
TL;DR: A new generation of integrated sea surface temperature (SST) data products are being provided by the Global Ocean Data Assimilation Experiment (GODAE) High-Resolution SST Pilot Project (GHRSST-PP) as mentioned in this paper.
Abstract: A new generation of integrated sea surface temperature (SST) data products are being provided by the Global Ocean Data Assimilation Experiment (GODAE) High-Resolution SST Pilot Project (GHRSST-PP). These combine in near-real time various SST data products from several different satellite sensors and in situ observations and maintain the fine spatial and temporal resolution needed by SST inputs to operational models. The practical realization of such an approach is complicated by the characteristic differences that exist between measurements of SST obtained from subsurface in-water sensors, and satellite microwave and satellite infrared radiometer systems. Furthermore, diurnal variability of SST within a 24-h period, manifested as both warm-layer and cool-skin deviations, introduces additional uncertainty for direct intercomparison between data sources and the implementation of data-merging strategies. The GHRSST-PP has developed and now operates an internationally distributed system that provides operatio...

326 citations


Journal ArticleDOI
TL;DR: The Mixed-Phase Arctic Cloud Experiment (M-PACE) as mentioned in this paper was conducted on the North Slope of Alaska to collect a data set suitable to study interactions between microphysics, dynamics and radiative transfer in mixed-phase Arctic clouds.
Abstract: The Mixed-Phase Arctic Cloud Experiment (M-PACE) was conducted September 27 through October 22, 2004 on the North Slope of Alaska. The primary objective was to collect a data set suitable to study interactions between microphysics, dynamics and radiative transfer in mixed-phase Arctic clouds. Observations taken during the 1997/1998 Surface Heat and Energy Budget of the Arctic (SHEBA) experiment revealed that Arctic clouds frequently consist of one (or more) liquid layers precipitating ice. M-PACE sought to investigate the physical processes of these clouds utilizing two aircraft (an in situ aircraft to characterize the microphysical properties of the clouds and a remote sensing aircraft to constraint the upwelling radiation) over the Department of Energy s Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) on the North Slope of Alaska. The measurements successfully documented the microphysical structure of Arctic mixed-phase clouds, with multiple in situ profiles collected in both single-layer and multi-layer clouds over two ground-based remote sensing sites. Liquid was found in clouds with temperatures down to -30 C, the coldest cloud top temperature below -40 C sampled by the aircraft. Remote sensing instruments suggest that ice was present in low concentrations, mostly concentrated in precipitation shafts, although there are indications of light ice precipitation present below the optically thick single-layer clouds. The prevalence of liquid down to these low temperatures could potentially be explained by the relatively low measured ice nuclei concentrations.

323 citations


Journal ArticleDOI
TL;DR: In this article, the eye and eyewall resolution was improved to 1-km grid resolution, which is consistent with a key recommendation for the next-generation hurricane-prediction models by the NOAA Science Advisor Board Hurricane Intensity Research Working Group.
Abstract: sphere–wave–ocean modeling system that is capable of resolving the eye and eyewall at ~1-km grid resolution, which is consistent with a key recommendation for the next-generation hurricane-prediction models by the NOAA Science Advisor Board Hurricane Intensity Research Working Group It is also the National Centers for Environmental Prediction (NCEP) plan for the new Hurricane Weather Research and Forecasting (HWRF) model to be implemented operationally in 2007–08

316 citations


Journal ArticleDOI
TL;DR: The NASA Glory mission as discussed by the authors is intended to facilitate and improve upon long-term monitoring of two key forcings influencing global climate by flying two state-of-the-art science instruments on an Earth-orbiting platform.
Abstract: The NASA Glory mission is intended to facilitate and improve upon long-term monitoring of two key forcings influencing global climate. One of the mission's principal objectives is to determine the global distribution of detailed aerosol and cloud properties with unprecedented accuracy, thereby facilitating the quantification of the aerosol direct and indirect radiative forcings. The other is to continue the 28-yr record of satellite-based measurements of total solar irradiance from which the effect of solar variability on the Earth's climate is quantified. These objectives will be met by flying two state-of-the-art science instruments on an Earth-orbiting platform. Based on a proven technique demonstrated with an aircraft-based prototype, the Aerosol Polarimetry Sensor (APS) will collect accurate multiangle photopolarimetric measurements of the Earth along the satellite ground track within a wide spectral range extending from the visible to the shortwave infrared. The Total Irradiance Monitor (TIM) is an ...

Journal ArticleDOI
TL;DR: In this article, the Atlantic hurricane variability on decadal and interannual time scales is reconsidered in a framework based on a leading mode of coupled ocean-atmosphere variability known as the Atlantic meridional mode (AMM), and it is suggested that the AMM serves to unify a number of previously documented relationships between hurricanes and Atlantic regional climate variability.
Abstract: Atlantic hurricane variability on decadal and interannual time scales is reconsidered in a framework based on a leading mode of coupled ocean-atmosphere variability known as the Atlantic meridional mode (AMM). It is shown that a large part of the variability of overall “hurricane activity,” which depends on the number of storms in a season, their duration, and their intensity, can be explained by systematic shifts in the cyclogenesis regions. These shifts are strongly correlated with the AMM on interannual as well as multidecadal time scales. It is suggested that the AMM serves to unify a number of previously documented relationships between hurricanes and Atlantic regional climate variability.

Journal ArticleDOI
TL;DR: In this article, the spatial and temporal variability of the frequency of rain-on-snow events for 4318 sites in the western United States during water years (October through September) 1949-2003 was analyzed.
Abstract: Rain-on-snow events pose a significant flood hazard in the western United States. This study provides a description of the spatial and temporal variability of the frequency of rain-on-snow events for 4318 sites in the western United States during water years (October through September) 1949–2003. Rain-on-snow events are found to be most common during the months of October through May; however, at sites in the interior western United States, rain-on-snow events can occur in substantial numbers as late as June and as early as September. An examination of the temporal variability of October through May rain-on-snow events indicates a mixture of increasing and decreasing trends in rain-on-snow events across the western United States. Decreasing trends in rain-on-snow events are most pronounced at lower elevations and are associated with trends toward fewer snowfall days and fewer precipitation days with snow on the ground. Rain-on-snow events are more (less) frequent in the northwestern (southwestern) United ...

Journal ArticleDOI
TL;DR: In this paper, the agile-beam multimission phased array radar (MPAR) discussed in this paper is one potential candidate that can provide faster scanning and offers a unique potential for multipurpose use to not only sample weather, but support air traffic needs and track noncooperative airplanes.
Abstract: Weather radars with conventional antenna cannot provide desired volume scan updates at intervals of one minute or less, which is essential for significant improvement in warning lead time of impending storm hazards. The agile-beam multimission phased array radar (MPAR) discussed herein is one potential candidate that can provide faster scanning. It also offers a unique potential for multipurpose use to not only sample weather, but support air traffic needs and track noncooperative airplanes, thus making it an affordable option. After introducing the basic idea behind electronic beam steering, the needs for frequent observations of convective weather are explained. Then, advantages of the phased array radar (PAR) for weather monitoring and improving data quality are examined. To explore and develop weather-related applications of the PAR, a National Weather Radar Testbed (NWRT) has been established in Norman, Oklahoma. The NWRT's main purpose is to address the advanced capabilities anticipated within the n...

Journal ArticleDOI
TL;DR: In this paper, a wind destructive potential rating was constructed by weighting wind speed threshold contributions to the integrated kinetic energy, based on observed damage in Hurricanes Andrew, Hugo, and Opal.
Abstract: Tropical cyclone damage potential, as currently defined by the Saffir-Simpson scale and the maximum sustained surface wind speed in the storm, fails to consider the area impact of winds likely to force surge and waves or cause particular levels of damage. Integrated kinetic energy represents a framework that captures the physical process of ocean surface stress forcing waves and surge while also taking into account structural wind loading and the spatial coverage of the wind. Integrated kinetic energy was computed from gridded, objectively analyzed surface wind fields of 23 hurricanes representing large and small storms. A wind destructive potential rating was constructed by weighting wind speed threshold contributions to the integrated kinetic energy, based on observed damage in Hurricanes Andrew, Hugo, and Opal. A combined storm surge and wave destructive potential rating was assigned according to the integrated kinetic energy contributed by winds greater than tropical storm force. The ratings are based...

Journal ArticleDOI
TL;DR: In this article, a new modeling framework for simulating Atlantic hurricane activity is introduced, which is an 18-km-grid non-hydrostatic regional model, run over observed specified SSTs and nudged toward observed time-varying large-scale atmospheric conditions derived from the National Centers for Environmental Prediction (NCEP) reanalyses.
Abstract: In this study, a new modeling framework for simulating Atlantic hurricane activity is introduced. The model is an 18-km-grid nonhydrostatic regional model, run over observed specified SSTs and nudged toward observed time-varying large-scale atmospheric conditions (Atlantic domain wavenumbers 0–2) derived from the National Centers for Environmental Prediction (NCEP) reanalyses. Using this “perfect large-scale model” approach for 27 recent August–October seasons (1980–2006), it is found that the model successfully reproduces the observed multidecadal increase in numbers of Atlantic hurricanes and several other tropical cyclone (TC) indices over this period. The correlation of simulated versus observed hurricane activity by year varies from 0.87 for basinwide hurricane counts to 0.41 for U.S. landfalling hurricanes. For tropical storm count, accumulated cyclone energy, and TC power dissipation indices the correlation is ~0.75, for major hurricanes the correlation is 0.69, and for U.S. landfalling tropical st...

Journal ArticleDOI
TL;DR: In the past 20 years, there has been substantial progress on the development and application of millimeter-wavelength (3.2 and 8.6 mm) radars in atmospheric cloud research as mentioned in this paper.
Abstract: During the past 20 yr there has been substantial progress on the development and application of millimeter-wavelength (3.2 and 8.6 mm, corresponding to frequencies of 94 and 35 GHz) radars in atmospheric cloud research, boosted by continuous advancements in radar technology and the need to better understand clouds and their role in the Earth's climate. Applications of millimeter-wavelength radars range from detailed cloud and precipitation process studies to long-term monitoring activities that strive to improve our understanding of cloud processes over a wide range of spatial and temporal scales. These activities are the result of a long period of successful research, starting from the 1980s, in which research tools and sophisticated retrieval techniques were developed, tested, and evaluated in field experiments. This paper presents a cohesive, chronological overview of millimeter-wavelength radar advancements during this period and describes the potential of new applications of millimeter-wavelength rad...

Journal ArticleDOI
TL;DR: The Mixed-Phase Arctic Cloud Experiments (M-PACE), conducted from late September through October 2004 in the vicinity of the Department of Energy's Atmospheric Radiation Measurement (ARM) North Slope of Alaska field site, focused on characterizing low-level Arctic stratus clouds as discussed by the authors.
Abstract: Mixed-phase stratus clouds are ubiquitous in the Arctic and play an important role in climate in this region. However, climate and regional models have generally proven unsuccessful at simulating Arctic cloudiness, particularly during the colder months. Specifically, models tend to underpredict the amount of liquid water in mixed-phase clouds. The Mixed-Phase Arctic Cloud Experiments (M-PACE), conducted from late September through October 2004 in the vicinity of the Department of Energy's Atmospheric Radiation Measurement (ARM) North Slope of Alaska field site, focused on characterizing low-level Arctic stratus clouds. Ice nuclei (IN) measurements were made using a continuous-flow ice thermal diffusion chamber aboard the University of North Dakota's Citation II aircraft. These measurements indicated IN concentrations that were significantly lower than those used in many models. Using the Regional Atmospheric Modeling System (RAMS), we show that these low IN concentrations, as well as inadequate parameteri...

Journal ArticleDOI
TL;DR: In this article, the importance of thin liquid water clouds to the Earth's energy balance is discussed, and a retrieval algorithm intercomparison is conducted to evaluate the issues involved.
Abstract: Many of the clouds important to the Earth's energy balance, from the Tropics to the Arctic, contain small amounts of liquid water. Longwave and shortwave radiative fluxes are very sensitive to small perturbations of the cloud liquid water path (LWP), when the LWP is small (i.e., < 100 g m−2; clouds with LWP less than this threshold will be referred to as “thin”). Thus, the radiative properties of these thin liquid water clouds must be well understood to capture them correctly in climate models. We review the importance of these thin clouds to the Earth's energy balance, and explain the difficulties in observing them. In particular, because these clouds are thin, potentially mixed phase, and often broken (i.e., have large 3D variability), it is challenging to retrieve their microphysical properties accurately. We describe a retrieval algorithm intercomparison that was conducted to evaluate the issues involved. The intercomparison used data collected at the Atmospheric Radiation Measurement (ARM) Southern G...

Journal ArticleDOI
TL;DR: In this paper, the authors describe the U.S. Department of Energy's strategy for improving representation of the properties, processes, and effects of tropospheric aerosols in global climate models.
Abstract: Aerosol particles in the lower atmosphere exert a substantial influence on climate and climate change through a variety of complex mechanisms. Consequently, there is a need to represent these influences in global climate models, and models have begun to include representations of these influences. However, the present treatment of aerosols in global climate models is highly simplified, omitting many processes and feedbacks that are thought to be climatically important. Thus, there is need for substantial improvement. Here we describe the strategy of the U.S. Department of Energy for improving representation of the properties, processes, and effects of tropospheric aerosols in global climate models. The strategy begins with a foundation of field and laboratory measurements that provide the basis for modules describing specific aerosol properties and processes. These modules are then integrated into regional aerosol models, which are evaluated by comparison with field measurements. Issues of scale are then ...

Journal ArticleDOI
TL;DR: This article reviewed the evolution, communication, and differing interpretations of the National Hurricane Center's "cone of uncertainty" hurricane forecast graphic and concluded with a discussion of this graphic from the perspective of risk communication theory.
Abstract: This article reviews the evolution, communication, and differing interpretations of the National Hurricane Center's “cone of uncertainty” hurricane forecast graphic. It concludes with a discussion of this graphic from the perspective of risk communication theory. The 2004 hurricane season, in which five named storms struck Florida, demonstrated that hurricane forecast graphics, despite admirable attempts by the forecast community to make user-friendly products, are still subject to misinterpretation by many members of the public. This exploratory analysis draws upon interviews with key government officials and media figures, archival research of Florida newspapers, analysis of 962 public comments on the National Hurricane Center's cone of uncertainty graphic, a separate multiagency study of2004 hurricane behavior, and relevant risk communication literature, to identify several characteristics of this graphic that likely contribute to public misinterpretation. Forecast providers should consider more formal...

Journal ArticleDOI
TL;DR: The Coupled Boundary Layers and Air-Sea Transfer (CBLAST) program is being conducted to investigate the processes that couple the marine boundary layers and govern the exchange of heat, mass, and momentum across the air-sea interface.
Abstract: The Office of Naval Research's Coupled Boundary Layers and Air–Sea Transfer (CBLAST) program is being conducted to investigate the processes that couple the marine boundary layers and govern the exchange of heat, mass, and momentum across the air–sea interface. CBLAST-LOW was designed to investigate these processes at the low-wind extreme where the processes are often driven or strongly modulated by buoyant forcing. The focus was on conditions ranging from negligible wind stress, where buoyant forcing dominates, up to wind speeds where wave breaking and Langmuir circulations play a significant role in the exchange processes. The field program provided observations from a suite of platforms deployed in the coastal ocean south of Martha's Vineyard. Highlights from the measurement campaigns include direct measurement of the momentum and heat fluxes on both sides of the air–sea interface using a specially constructed Air–Sea Interaction Tower (ASIT), and quantification of regional oceanic variability over sca...

Journal ArticleDOI
TL;DR: A series of coordinated test-bed demonstration projects was set up as a method for answering scientific questions that, once addressed, should help produce valuable hydrological ensemble prediction to serve users' needs.
Abstract: The Hydrological Ensemble Prediction Experiment (HEPEX) is an international project to advance technologies for hydrological forecasting. Its goal is “to bring the international hydrological and meteorological communities together to demonstrate how to produce and utilize reliable hydrological ensemble forecasts to make decisions for the benefit of public health and safety, the economy, and the environment.” HEPEX is an open group composed primarily of researchers, forecasters, water managers, and users. HEPEX welcomes new members. In the first workshop, held in the spring of2004, HEPEX participants formulated scientific questions that, once addressed, should help produce valuable hydrological ensemble prediction to serve users' needs. During the second HEPEX workshop, held in the summer of 2005, a series of coordinated test-bed demonstration projects was set up as a method for answering these questions. The test beds are collections of data and models for specific hydrological basins or subbasins, where ...

Journal ArticleDOI
TL;DR: QuickBeam is a user-friendly radar simulation package that converts modeled clouds to radar returns that might be viewed by a radar system on a satellite passing over the model domain.
Abstract: The launch of the CloudSat cloud radar has provided some of the first near-global views of the threedimensional structure of clouds from space. To evaluate clouds in numerical models and compare them to the observations made by CloudSat, it is useful to have a tool that converts modeled clouds to radar returns that might be viewed by a radar system on a satellite passing over the model domain. QuickBeam is a user-friendly radar simulation package that performs this function and is freely available to the meteorological community. The workings of the simulator are briefly described and several applications of the simulator to numerical models are demonstrated.

Journal ArticleDOI
TL;DR: In this paper, the first comprehensive set of in situ measurements of turbulence and dynamics in an experimental wildland grass fire should help improve fire models, which can be used to improve fire modeling.
Abstract: The first comprehensive set of in situ measurements of turbulence and dynamics in an experimental wildland grass fire should help improve fire models.

Journal ArticleDOI
TL;DR: In this paper, a comparison between perturbed medium-range synoptic-scale integrations (taken from the operational ECMWF EPS with a horizontal resolution of about 80 km) and short-range (1 day) high-resolution simulations (based on the Lokal Modell of the Consortium for Small-Scale Modeling with a grid spacing of 2.2 km) is conducted.
Abstract: The limited atmospheric predictability has been addressed by the development of ensemble prediction systems (EPS) that are now routinely applied for medium-range synoptic-scale numerical weather prediction (NWP). With the increase of computational power, interest is growing in the design of high-resolution (cloud resolving) NWP models and their associated short-range EPS. This development raises a series of fundamental questions, especially concerning the type of error growth and the validity of the tangent-linear approximation. To address these issues, a comparison between perturbed medium-range (10 day) synoptic-scale integrations (taken from the operational ECMWF EPS with a horizontal resolution of about 80 km) and short-range (1 day) high-resolution simulations (based on the Lokal Modell of the Consortium for Small-Scale Modeling with a grid spacing of 2.2 km) is conducted. The differences between the two systems are interpreted in a nondimensional sense and illustrated with the help of the Lorenz att...

Journal ArticleDOI
TL;DR: The European Organisation for Exploitation of Meteorological Satellites (EUMETSAT) Polar System is the European contribution to the European-U.S. operational polar meteorological satellite system (Initial Joint Polar System) as mentioned in this paper.
Abstract: The European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) Polar System is the European contribution to the European–U.S. operational polar meteorological satellite system (Initial Joint Polar System). It serves the midmorning (a.m.) orbit 0930 Local Solar Time (LST) descending node. The EUMETSAT satellites of this new polar system are the Meteorological Operational Satellite (Metop) satellites, jointly developed with ESA. Three Metop satellites are foreseen for at least 14 years of operation from 2006 onward and will support operational meteorology and climate monitoring. The Metop Programme includes the development of some instruments, such as the Global Ozone Monitoring Experiment, Advanced Scatterometer, and the Global Navigation Satellite System (GNSS) Receiver for Atmospheric Sounding, which are advanced instruments of recent successful research missions. Core components of the Metop payload, common with the payload on the U.S. satellites, are the Advanced Very High Resol...

Journal ArticleDOI
TL;DR: The Convective Storm Initiation Project (CSIP) is an international project to understand precisely where, when, and how convective clouds form and develop into showers in the mainly maritime environment of southern England.
Abstract: The Convective Storm Initiation Project (CSIP) is an international project to understand precisely where, when, and how convective clouds form and develop into showers in the mainly maritime environment of southern England. A major aim of CSIP is to compare the results of the very high resolution Met Office weather forecasting model with detailed observations of the early stages of convective clouds and to use the newly gained understanding to improve the predictions of the model. A large array of ground-based instruments plus two instrumented aircraft, from the U.K. National Centre for Atmospheric Science (NCAS) and the German Institute for Meteorology and Climate Research (IMK), Karlsruhe, were deployed in southern England, over an area centered on the meteorological radars at Chilbolton, during the summers of 2004 and 2005. In addition to a variety ofground-based remote-sensing instruments, numerous rawinsondes were released at one- to two-hourly intervals from six closely spaced sites. The Met Office weather radar network and Meteosat satellite imagery were used to provide context for the observations made by the instruments deployed during CSIP. This article presents an overview of the CSIP field campaign and examples from CSIP of the types of convective initiation phenomena that are typical in the United Kingdom. It shows the way in which certain kinds of observational data are able to reveal these phenomena and gives an explanation of how the analyses of data from the field campaign will be used in the development of an improved very high resolution NWP model for operational use.

Journal ArticleDOI
TL;DR: In this article, the authors proposed a community-wide intension for quantitative precipitation and very short-term quantitative precipitation forecasts (VSTQPF) to meet the nation's needs for the precipitation information effectively and developed a list of science focus areas.
Abstract: Accurate quantitative precipitation estimates (QPE) and very short term quantitative precipitation forecasts (VSTQPF) are critical to accurate monitoring and prediction of water-related hazards and water resources. While tremendous progress has been made in the last quarter-century in many areas of QPE and VSTQPF, significant gaps continue to exist in both knowledge and capabilities that are necessary to produce accurate high-resolution precipitation estimates at the national scale for a wide spectrum of users. Toward this goal, a national next-generation QPE and VSTQPF (Q2) workshop was held in Norman, Oklahoma, on 28–30 June 2005. Scientists, operational forecasters, water managers, and stakeholders from public and private sectors, including academia, presented and discussed a broad range of precipitation and forecasting topics and issues, and developed a list of science focus areas. To meet the nation's needs for the precipitation information effectively, the authors herein propose a community-wide int...

Journal ArticleDOI
TL;DR: In this article, seven years of Quick Scatterometer (QuikSCAT) data gathered since July 1999 show that high-wind events, defined as wind speeds greater than 20 m s−1 (“strong gale” and higher on the Beaufort scale), mostly happen in winter.
Abstract: High winds at sea are feared by sailors, but their distribution is poorly known because ships have avoided them as much as possible. The accumulation of spaceborne scatterometer measurements now allows a global mapping of high winds over the ocean. Seven years of Quick Scatterometer (QuikSCAT) data gathered since July 1999 show that high-wind events, defined as wind speeds greater than 20 m s−1 (“strong gale” and higher on the Beaufort scale), mostly happen in winter. Over coastal regions, land orography is the major cause of high winds, forcing wind jets of various types. Over the open ocean, high winds tend to be collocated with the extratropical storm tracks, along which migratory low and high pressure systems travel eastward. In comparison, tropical cyclones do not leave a strong signature in the climatology of high-wind occurrence except in the western Pacific east of Taiwan. In the extratropics, sea surface temperature (SST) fronts and their meanders significantly change the frequency of high-wind e...