scispace - formally typeset
Search or ask a question

Showing papers in "Frontiers in Plant Science in 2014"


Journal ArticleDOI
TL;DR: In this paper, the impact of plant morphology, hydration rate and chemical composition in the solubility of phytoliths and the kinetic release of Si in soil solution is investigated.
Abstract: The continental bio-cycling of silicon (Si) plays a key role in global Si cycle and as such partly controls global carbon (C) budget through nutrition of marine and terrestrial biota, accumulation of phytolith-occluded organic carbon (PhytOC) and weathering of silicate minerals. Despite the key role of elemental composition of phytoliths on their solubility in soils, the impact of plant cultivar and organ on the elemental composition of phytoliths in Si high-accumulator plants, such as rice (Oryza sativa) is not yet fully understood. Here we show that rice cultivar significantly impacts the elemental composition of phytoliths (Si, Al, Fe and C) in different organs of the shoot system (grains, sheath, leaf and stem). The amount of occluded OC within phytoliths is affected by contents of Si, Al and Fe in plants, while independent of the element composition of phytoliths. Our data document, for different cultivars, higher bio-available Si release from phytoliths of leaves and sheaths, which are characterized by higher enrichment with Al and Fe (i.e., lower Si/Al and Si/Fe ratios), compared to grains and stems. We indicate that phytolith solubility in soils may be controlled by rice cultivar and type of organs. Our results highlight that the role of the morphology, the hydration rate and the chemical composition in the solubility of phytoliths and the kinetic release of Si in soil solution needs to be studied further. This is central to a better understanding of the impact of soil amendment with different plant organs and cultivars on soil OC stock and on the delivery of dissolved Si as we show that sheath and leaf rice organs are both characterized by higher content of OC occluded in phytolith and higher phytolith solubility compared to grains and stems. Our study shows the importance of studying the impact of the agro-management on the evolution of sinks and sources of Si and C in soils used for Si-high accumulator plants.

1,902 citations


Journal ArticleDOI
TL;DR: The systems that regulate plant adaptation to water stress through a sophisticated regulatory network are the subject of the current review and molecular mechanisms that plants use to increase stress tolerance, maintain appropriate hormone homeostasis and responses and prevent excess light damage are discussed.
Abstract: Water stress adversely impacts many aspects of the physiology of plants, especially photosynthetic capacity. If the stress is prolonged, plant growth and productivity are severely diminished. Plants have evolved complex physiological and biochemical adaptations to adjust and adapt to a variety of environmental stresses. The molecular and physiological mechanisms associated with water-stress tolerance and water-use efficiency have been extensively studied. The systems that regulate plant adaptation to water stress through a sophisticated regulatory network are the subject of the current review. Molecular mechanisms that plants use to increase stress tolerance, maintain appropriate hormone homeostasis and responses and prevent excess light damage, are also discussed. An understanding of how these systems are regulated and ameliorate the impact of water stress on plant productivity will provide the information needed to improve plant stress tolerance using biotechnology, while maintaining the yield and quality of crops.

1,083 citations


Journal ArticleDOI
TL;DR: In this article, a range of physiological (stomata assay, gas exchange, phylogenetic analysis, QTL analysis), and molecular techniques (RT-PCR and qPCR) were employed to investigate stomatal behavior and genotypic variation in barley cultivars and a genetic population in four experimental trials.
Abstract: Soil salinity is an environmental and agricultural problem in many parts of the world. One of the keys to breeding barley for adaptation to salinity lies in a better understanding of the genetic control of stomatal regulation. We have employed a range of physiological (stomata assay, gas exchange, phylogenetic analysis, QTL analysis), and molecular techniques (RT-PCR and qPCR) to investigate stomatal behavior and genotypic variation in barley cultivars and a genetic population in four experimental trials. A set of relatively efficient and reliable methods were developed for the characterization of stomatal behavior of a large number of varieties and genetic lines. Furthermore, we found a large genetic variation of gas exchange and stomatal traits in barley in response to salinity stress. Salt-tolerant cultivar CM72 showed significantly larger stomatal aperture under 200 mM NaCl treatment than that of salt-sensitive cultivar Gairdner. Stomatal traits such as aperture width/length were found to significantly correlate with grain yield under salt treatment. Phenotypic characterization and QTL analysis of a segregating double haploid population of the CM72/Gairdner resulted in the identification of significant stomatal traits-related QTLs for salt tolerance. Moreover, expression analysis of the slow anion channel genes HvSLAH1 and HvSLAC1 demonstrated that their up-regulation is linked to higher barley grain yield in the field.

1,031 citations


Journal ArticleDOI
TL;DR: The versatile molecular convergence in the abiotic stress responsive signaling networks in the context of ROS and lipid-derived signals and the specific role of stomatal signaling is discussed and reviewed.
Abstract: Tolerance of plants to abiotic stressors such as drought and salinity is triggered by complex multicomponent signaling pathways to restore cellular homeostasis and promote survival. Major plant transcription factor families such as bZIP, NAC, AP2/ERF, and MYB orchestrate regulatory networks underlying abiotic stress tolerance. Sucrose non-fermenting 1-related protein kinase 2 and mitogen-activated protein kinase pathways contribute to initiation of stress adaptive downstream responses and promote plant growth and development. As a convergent point of multiple abiotic cues, cellular effects of environmental stresses are not only imbalances of ionic and osmotic homeostasis but also impaired photosynthesis, cellular energy depletion, and redox imbalances. Recent evidence of regulatory systems that link sensing and signaling of environmental conditions and the intracellular redox status have shed light on interfaces of stress and energy signaling. ROS (reactive oxygen species) cause severe cellular damage by peroxidation and de-esterification of membrane-lipids, however, current models also define a pivotal signaling function of ROS in triggering tolerance against stress. Recent research advances suggest and support a regulatory role of ROS in the cross talks of stress triggered hormonal signaling such as the abscisic acid pathway and endogenously induced redox and metabolite signals. Here, we discuss and review the versatile molecular convergence in the abiotic stress responsive signaling networks in the context of ROS and lipid-derived signals and the specific role of stomatal signaling.

861 citations


Journal ArticleDOI
TL;DR: Control of ABA or stress signaling factor expression can improve tolerance to environmental stresses and the important roles of these TFs in crosstalk among abiotic stress responses will be discussed.
Abstract: Drought negatively impacts plant growth and the productivity of crops around the world. Understanding the molecular mechanisms in the drought response is important for improvement of drought tolerance using molecular techniques. In plants, abscisic acid (ABA) is accumulated under osmotic stress conditions caused by drought, and has a key role in stress responses and tolerance. Comprehensive molecular analyses have shown that ABA regulates the expression of many genes under osmotic stress conditions, and the ABA-responsive element (ABRE) is the major cis-element for ABA-responsive gene expression. Transcription factors (TFs) are master regulators of gene expression. ABRE-binding protein and ABRE-binding factor TFs control gene expression in an ABA-dependent manner. SNF1-related protein kinases 2, group A 2C-type protein phosphatases, and ABA receptors were shown to control the ABA signaling pathway. ABA-independent signaling pathways such as dehydration-responsive element-binding protein TFs and NAC TFs are also involved in stress responses including drought, heat, and cold. Recent studies have suggested that there are interactions between the major ABA signaling pathway and other signaling factors in stress responses. The important roles of these TFs in crosstalk among abiotic stress responses will be discussed. Control of ABA or stress signaling factor expression can improve tolerance to environmental stresses. Recent studies using crops have shown that stress-specific overexpression of TFs improves drought tolerance and grain yield compared with controls in the field.

664 citations


Journal ArticleDOI
TL;DR: The effects of SA on the water stress responses and regulation of stomatal closure are reviewed.
Abstract: Salicylic acid (SA) is a naturally occurring phenolic compound. SA plays an important role in the regulation of plant growth, development, ripening, and defense responses. The role of SA in the plant-pathogen relationship has been extensively investigated. In addition to defense responses, SA plays an important role in the response to abiotic stresses, including drought, low temperature, and salinity stresses. It has been suggested that SA has great agronomic potential to improve the stress tolerance of agriculturally important crops. However, the utility of SA is dependent on the concentration of the applied SA, the mode of application, and the state of the plants (e.g., developmental stage and acclimation). Generally, low concentrations of applied SA alleviate the sensitivity to abiotic stresses, and high concentrations of applied induce high levels of oxidative stress, leading to a decreased tolerance to abiotic stresses. In this chapter, the effects of SA on the water stress responses and regulation of stomatal closure are reviewed.

611 citations


Journal ArticleDOI
TL;DR: Genotyping-by-sequencing (GBS) has been developed and applied in sequencing multiplexed samples that combine molecular marker discovery and genotyping and has been successfully used in implementing genome-wide association study (GWAS), genomic diversity study, genetic linkage analysis, molecular markers discovery and genomic selection under a large scale of plant breeding programs.
Abstract: Marker-assisted selection (MAS) refers to the use of molecular markers to assist phenotypic selections in crop improvement. Several types of molecular markers, such as single nucleotide polymorphism (SNP), have been identified and effectively used in plant breeding. The application of next-generation sequencing (NGS) technologies has led to remarkable advances in whole genome sequencing, which provides ultra-throughput sequences to revolutionize plant genotyping and breeding. To further broaden NGS usages to large crop genomes such as maize and wheat, genotyping-by-sequencing (GBS) has been developed and applied in sequencing multiplexed samples that combine molecular marker discovery and genotyping. GBS is a novel application of NGS protocols for discovering and genotyping SNPs in crop genomes and populations. The GBS approach includes the digestion of genomic DNA with restriction enzymes followed by the ligation of barcode adapter, PCR amplification and sequencing of the amplified DNA pool on a single lane of flow cells. Bioinformatic pipelines are needed to analyze and interpret GBS datasets. As an ultimate MAS tool and a cost-effective technique, GBS has been successfully used in implementing genome-wide association study (GWAS), genomic diversity study, genetic linkage analysis, molecular marker discovery and genomic selection under a large scale of plant breeding programs.

500 citations


Journal ArticleDOI
TL;DR: This review gathers evidence to show that upon exposure to pathogens or elicitors, plants induce several genes associated with primary metabolic pathways, such as those involved in the synthesis or degradation of carbohydrates, amino acids and lipids, in plant defense responses.
Abstract: Plants are constantly exposed to microorganisms in the environment and, as a result, have evolved intricate mechanisms to recognize and defend themselves against potential pathogens. One of these responses is the downregulation of photosynthesis and other processes associated with primary metabolism that are essential for plant growth. It has been suggested that the energy saved by downregulation of primary metabolism is diverted and used for defense responses. However, several studies have shown that upregulation of primary metabolism also occurs during plant-pathogen interactions. We propose that upregulation of primary metabolism modulates signal transduction cascades that lead to plant defense responses. In support of this thought, we here compile evidence from the literature to show that upon exposure to pathogens or elicitors, plants induce several genes associated with primary metabolic pathways, such as those involved in the synthesis or degradation of carbohydrates, amino acids and lipids. In addition, genetic studies have confirmed the involvement of these metabolic pathways in plant defense responses. This review provides a new perspective highlighting the relevance of primary metabolism in regulating plant defense against pathogens with the hope to stimulate further research in this area.

455 citations


Journal ArticleDOI
TL;DR: This review describes the analytical strategies and specific tools that can be applied to metagenomic data and the considerations and caveats associated with their use and documents how metagenomes can be analyzed to quantify community structure and diversity.
Abstract: Environmental DNA sequencing has revealed the expansive biodiversity of microorganisms and clarified the relationship between host-associated microbial communities and host phenotype. Shotgun metagenomic DNA sequencing is a relatively new and powerful environmental sequencing approach that provides insight into community biodiversity and function. But, the analysis of metagenomic sequences is complicated due to the complex structure of the data. Fortunately, new tools and data resources have been developed to circumvent these complexities and allow researchers to determine which microbes are present in the community and what they might be doing. This review describes the analytical strategies and specific tools that can be applied to metagenomic data and the considerations and caveats associated with their use. Specifically, it documents how metagenomes can be analyzed to quantify community structure and diversity, assemble novel genomes, identify new taxa and genes, and determine which metabolic pathways are encoded in the community. It also discusses several methods that can be used compare metagenomes to identify taxa and functions that differentiate communities.

445 citations


Journal ArticleDOI
TL;DR: This review summarizes the understanding of the role of the plant cell wall in pathogen resistance with a focus on the contribution of lignin to this biological process.
Abstract: Plant resistance to pathogens relies on a complex network of constitutive and inducible defensive barriers. The plant cell wall is one of the barriers that pathogens need to overcome to successfully colonize plant tissues. The traditional view of the plant cell wall as a passive barrier has evolved to a concept that considers the wall as a dynamic structure that regulates both constitutive and inducible defense mechanisms, and as a source of signaling molecules that trigger immune responses. The secondary cell walls of plants also represent a carbon-neutral feedstock (lignocellulosic biomass) for the production of biofuels and biomaterials. Therefore, engineering plants with improved secondary cell wall characteristics is an interesting strategy to ease the processing of lignocellulosic biomass in the biorefinery. However, modification of the integrity of the cell wall by impairment of proteins required for its biosynthesis or remodeling may impact the plants resistance to pathogens. This review summarizes our understanding of the role of the plant cell wall in pathogen resistance with a focus on the contribution of lignin to this biological process.

386 citations


Journal ArticleDOI
TL;DR: This review describes the major molecular and cellular mechanisms that underlie the roles of cell walls in plant defense against pathogen attack, and briefly describes the analytical potential of molecular probes used in conjunction with carbohydrate microarray technology.
Abstract: The battle between plants and microbes is evolutionarily ancient, highly complex and often co-dependent. A primary challenge for microbes is to breach the physical barrier of host cell walls whilst avoiding detection by the plant’s immune receptors. While some receptors sense conserved microbial features, others monitor physical changes caused by an infection attempt. Detection of microbes leads to activation of appropriate defense responses that then challenge the attack. Plant cell walls are formidable and dynamic barriers. They are constructed primarily of complex carbohydrates joined by numerous distinct connection types, and are subject to extensive post-synthetic modification to suit prevailing local requirements. Multiple changes can be triggered in cell walls in response to microbial attack. Some of these are well described, but many remain obscure. The study of the myriad of subtle processes underlying cell wall modification poses special challenges for plant glycobiology. In this review we describe the major molecular and cellular mechanisms that underlie the roles of cell walls in plant defense against pathogen attack. In so doing, we also highlight some of the challenges inherent in studying these interactions, and briefly describe the analytical potential of molecular probes used in conjunction with carbohydrate microarray technology.

Journal ArticleDOI
TL;DR: Initial indications are that APR genes encode a more heterogeneous range of proteins than R proteins, and a research priority to better inform rust resistance breeding is to characterize further APR genes in wheat.
Abstract: Two classes of genes are used for breeding rust resistant wheat. The first class, called R (for resistance) genes, are pathogen race-specific in their action, effective at all plant growth stages and probably mostly encode immune receptors of the nucleotide binding leucine rich repeat (NB-LRR) class. The second class called Adult Plant Resistance genes (APR) because resistance is usually functional only in adult plants, and, in contrast to most R genes, the levels of resistance conferred by single APR genes are only partial and allow considerable disease development. Some but not all APR genes provide resistance to all isolates of a rust pathogen species and a subclass of these provides resistance to several fungal pathogen species. Initial indications are that APR genes encode a more heterogeneous range of proteins than R proteins. Two APR genes, Lr34 and Yr36, have been cloned from wheat and their products are an ABC transporter and a protein kinase, respectively. Lr34 and Sr2 have provided long lasting and widely used (durable) partial resistance and are mainly used in conjunction with other R and APR genes to obtain adequate rust resistance. We caution that some APR genes indeed include race-specific, weak R genes which may be of the NB-LRR class. A research priority to better inform rust resistance breeding is to characterize further APR genes in wheat and to understand how they function and how they interact when multiple APR and R genes are stacked in a single genotype by conventional and GM breeding. An important message is do not be complacent about the general durability of all APR genes.

Journal ArticleDOI
TL;DR: This review provides a comprehensive and critical evaluation of the published literature on interactions between abiotic stress and polyamines in plants, and examines the experimental strategies used to understand the functional significance of this relationship with the aim of improving plant productivity, especially under conditions of abiotics stress.
Abstract: The physiological relationship between abiotic stress in plants and polyamines was reported more than 40 years ago. Ever since there has been a debate as to whether increased polyamines protect plants against abiotic stress (e.g., due to their ability to deal with oxidative radicals) or cause damage to them (perhaps due to hydrogen peroxide produced by their catabolism). The observation that cellular polyamines are typically elevated in plants under both short-term as well as long-term abiotic stress conditions is consistent with the possibility of their dual effects, i.e., being protectors from as well as perpetrators of stress damage to the cells. The observed increase in tolerance of plants to abiotic stress when their cellular contents are elevated by either exogenous treatment with polyamines or through genetic engineering with genes encoding polyamine biosynthetic enzymes is indicative of a protective role for them. However, through their catabolic production of hydrogen peroxide and acrolein, both strong oxidizers, they can potentially be the cause of cellular harm during stress. In fact, somewhat enigmatic but strong positive relationship between abiotic stress and foliar polyamines has been proposed as a potential biochemical marker of persistent environmental stress in forest trees in which phenotypic symptoms of stress are not yet visible. Such markers may help forewarn forest managers to undertake amelioration strategies before the appearance of visual symptoms of stress and damage at which stage it is often too late for implementing strategies for stress remediation and reversal of damage. This review provides a comprehensive and critical evaluation of the published literature on interactions between abiotic stress and polyamines in plants, and examines the experimental strategies used to understand the functional significance of this relationship with the aim of improving plant productivity, especially under conditions of abiotic stress.

Journal ArticleDOI
TL;DR: The current research topic on “Sugar Signaling and Sensing in Plants” is a combination of primary research articles and review work, and provide novel insights and detailed overviews on the current knowledge of sugars as metabolites and signal molecules.
Abstract: Sugars are ubiquitous and critical components for general metabolism. These primary products from photosynthesis affect most, if not all, processes in plant cells by providing skeletons for organic compounds and storing energy for chemical reactions. Sugars also serve as critical signaling molecules in relation to both cellular metabolic status and biotic and abiotic stress response (Rolland et al., 2006; Lastdrager et al., 2014). The diverse and complex networks sugars are involved in warrant a detailed comprehension of their impact on regulatory and metabolic processes at the cellular and the whole plant level. The current research topic on “Sugar Signaling and Sensing in Plants” is a combination of primary research articles and review work, and provide novel insights and detailed overviews on the current knowledge of sugars as metabolites and signal molecules. The review article from Simone Ferrari and co-workers on oligogalacturonides (OGs) (Ferrari et al., 2013), illustrates an excellent example for a sugar being both a metabolite and a signaling molecule. OGs consist of α-1,4-linked galacturonosyl residues and are integral components of the cell wall. However upon biotic stresses, they can be released from the cell wall by hydrolytic enzymes activated by fungal growth or by mechanical damage inflicted through herbivores. Released OGs can then function as signaling molecules to elicit a defense response in the respective plant cell and surrounding tissues (Ferrari et al., 2013). Another aspect about sugars as signaling molecules is discussed in the article by Mohammad Bolouri Moghaddam and Wim Van den Ende that reports on the integration of sucrose-mediated signaling pathways in cellular networks. The paper discusses the interplay of sugar signals with other crucial cellular signaling systems, including the circadian clock and phytohormones, in controlling defense responses and developmental programs such as flowering (Bolouri Moghaddam and Van den Ende, 2013). Similarly, the regulatory steps that integrate diurnal signals with downstream cellular responses may occur at the sugar uptake step, which is indicated by the work from Chincinska and co-workers on the sucrose transporter 4 (SUT4) from potato (Chincinska et al., 2013). Another example of sugars functioning as regulatory molecules comes from the perspective article published by Dobrenel and co-workers on RAPAMYCIN (TOR) kinase complexes (Dobrenel et al., 2013). These complexes associate with additional partner proteins to affect and integrate a wide range of cellular responses, including metabolism, mRNA processing and autophagy, often in concert with nutrient signaling. Glucose has been reported as a positive regulator of TOR kinase activity and is discussed to affect diverse processes including biosynthesis of the stress-related sugar raffinose, glycolysis, and biosynthesis of sucrose and starch (Dobrenel et al., 2013). Two facets of sugar biology that have been intensively investigated and that are characteristic for many sugars, especially sucrose, are their controlled subcellular distribution and long-distance transport from sinks to sources. Cellular sucrose metabolism depends on, and is limited by, the activities of sucrose synthase and sucrose-phosphate synthase (SPS). The work from Madoka Yonekura and co-workers provides new insights on two rice SPS paralogs, OsSPS1 and OsSPS11, and their specific expressions in response to diurnal factors and carbohydrate availability (Yonekura et al., 2013). Sucrose long-distance transport is facilitated through the activities of specialized transport proteins. The work from Chincinska and co-workers investigates how these transporters may function as checkpoints to forward information on metabolic fluxes to initiate cellular responses (Chincinska et al., 2013). Another centrally important question in sugar research is related to how sugars are perceived by the cell. The best evidence on cellular sugar sensing systems currently comes from hexose kinases, which phosphorylate glucose (hexokinase) and fructose (fructokinase). Hexokinase I from Arabidopsis has been implicated in these early steps (Jang et al., 1997; Moore et al., 2003), and two complementary overview articles in this research topic provide detailed updates on hexokinases and fructokinases in plants (Granot et al., 2013; Tiessen and Padilla-Chacon, 2013), as well as on other sugar metabolizing enzymes such as invertases, sucrose synthases, and SPS (Tiessen and Padilla-Chacon, 2013). These articles discuss knowledge that has been generated on the different proteins in context with their gene families, and on what is known about their subcellular localization and specific metabolic activities, as well as impacts on developmental programs and involvement in signal transduction events. Additional regulatory steps in sugar and stress-related signal transduction depend mainly on the activity of SnRK1-protein kinases. These kinases are multi-subunit enzymes, to which cystathionine-β-synthase (CBS) domain-containing proteins belong. Interesting work from Timothy Heisel and co-workers shows that two of these subunits, AtPV42a and AtPV42b, are misregulated in histone acetyltransferase 1 (hac1) mutants (Heisel et al., 2013). hac1 mutants show aberrant sugar-responses and fertility defects, which may in part be explained by the changed levels of AtPV42a and AtPV42b expression. In this context, the work from Ana Confraria and co-workers strongly implicate the participation of microRNAs in SnRK1-protein kinase-dependent processes (Confraria et al., 2013). Sugar response regulation also requires mRNA processing steps, as shown by Funck et al. (2012). Through map-based cloning of a sugar response mutation the authors identified ESP1, a CstF64-like putative RNA processing factor. ESP1 functions in mRNA 3′-end formation, and the work implicates RNA maturation as a critical factor for normal sugar response (Funck et al., 2012). In summary the articles presented here emphasize the diversity of the processes that sugars are required for in the cell, and the regulatory networks in which they are involved. The articles also highlight the interplay between sugars and the circadian rhythm, and specific developmental programs, such as flowering. The broad-range of studies presented significantly deepen our knowledge about these important compounds, and demonstrate that, despite the already long-standing research on this topic, there remain many major issues that must be addressed if we are to understand the regulatory complexity and the components involved in sugar homeostasis, (sub)cellular allocation, and long-distance transport. Sugar signaling research will remain an exciting area of investigations for many years to come.

Journal ArticleDOI
TL;DR: An overview of the currently known mechanisms of the light-controlled flavonoid accumulation is provided and R2R3 MYB transcription factors are known to regulate by differential expression the biosynthesis of distinct flavonoids in response to specific light wavelengths.
Abstract: Light is one of the most important environmental factors affecting flavonoid biosynthesis in plants. The absolute dependency of light to the plant development has driven evolvement of sophisticated mechanisms to sense and transduce multiple aspects of the light signal. Light effects can be categorized in photoperiod (duration), intensity (quantity), direction and quality (wavelength) including UV-light. Recently, new information has been achieved on the regulation of light-controlled flavonoid biosynthesis in fruits, in which flavonoids have a major contribution on quality. This review focuses on the effects of the different light conditions on the control of flavonoid biosynthesis in fruit producing plants. An overview of the currently known mechanisms of the light-controlled flavonoid accumulation is provided. R2R3 MYB transcription factors are known to regulate by differential expression the biosynthesis of distinct flavonoids in response to specific light wavelengths. Despite recent advances, many gaps remain to be understood in the mechanisms of the transduction pathway of light-controlled flavonoid biosynthesis. A better knowledge on these regulatory mechanisms is likely to be useful for breeding programs aiming to modify fruit flavonoid pattern.

Journal ArticleDOI
TL;DR: The strategies utilized by both plants and pathogens to prevail in the cell wall battleground are reviewed.
Abstract: The cell wall is a dynamic structure that often determines the outcome of the interactions between plants and pathogens. It is a barrier that pathogens need to breach to colonize the plant tissue. While fungal necrotrophs extensively destroy the integrity of the cell wall through the combined action of degrading enzymes, biotrophic fungi require a more localized and controlled degradation of the cell wall in order to keep the host cells alive and utilize their feeding structures. Also bacteria and nematodes need to degrade the plant cell wall at a certain stage of their infection process, to obtain nutrients for their growth. Plants have developed a system for sensing pathogens and monitoring the cell wall integrity, upon which they activate defense responses that lead to a dynamic cell wall remodeling required to prevent the disease. Pathogens, on the other hand, may exploit the host cell wall metabolism to support the infection. We review here the strategies utilized by both plants and pathogens to prevail in the cell wall battleground.

Journal ArticleDOI
TL;DR: An “integrated decoy” model for the function of these receptor complexes is described, in which a plant protein targeted by an effector has been duplicated and fused to one member of the NLR pair, where it acts as a bait to trigger defense signaling by the second NLR upon effector binding.
Abstract: Plant immunity is often triggered by the specific recognition of pathogen effectors by intracellular nucleotide-binding, leucine-rich repeat (NLR) receptors. Plant NLRs contain an N-terminal signaling domain that is mostly represented by either a Toll-interleukin1 receptor (TIR) domain or a coiled coil (CC) domain. In many cases, single NLR proteins are sufficient for both effector recognition and signaling activation. However, many paired NLRs have now been identified where both proteins are required to confer resistance to pathogens. Recent detailed studies on the Arabidopsis thaliana TIR-NLR pair RRS1 and RPS4 and on the rice CC-NLR pair RGA4 and RGA5 have revealed for the first time how such protein pairs function together. In both cases, the paired partners interact physically to form a hetero-complex receptor in which each partner plays distinct roles in effector recognition or signaling activation, highlighting a conserved mode of action of NLR pairs across both monocotyledonous and dicotyledonous plants. We also discuss a new ‘integrated decoy’ effector recognition model to describe these receptor complexes that may be common to many other plant NLR pairs.

Journal ArticleDOI
TL;DR: The importance of understanding nitrogen dynamics in ancient contexts is discussed, and several key areas of archaeology where a more detailed understanding of these processes may enable us to answer some fundamental questions are highlighted.
Abstract: Nitrogen isotopic studies have potential to shed light on the structure of ancient ecosystems, agropastoral regimes, and human-environment interactions. Until relatively recently, however, little attention was paid to the complexities of nitrogen transformations in ancient plant-soil systems and their potential impact on plant and animal tissue nitrogen isotopic compositions. This paper discusses the importance of understanding nitrogen dynamics in ancient contexts, and highlights several key areas of archaeology where a more detailed understanding of these processes may enable us to answer some fundamental questions. This paper explores two larger themes that are prominent in archaeological studies using stable nitrogen isotope analysis: (1) agricultural practices (use of animal fertilizers, burning of vegetation or shifting cultivation, and tillage) and (2) animal domestication and husbandry (grazing intensity/stocking rate and the foddering of domestic animals with cultigens). The paucity of plant material in ancient deposits necessitates that these issues are addressed primarily through the isotopic analysis of skeletal material rather than the plants themselves, but the interpretation of these data hinges on a thorough understanding of the underlying biogeochemical processes in plant-soil systems. Building on studies conducted in modern ecosystems and under controlled conditions, these processes are reviewed, and their relevance discussed for ancient contexts.

Journal ArticleDOI
TL;DR: It is proposed that dissection of broad spectrum stress tolerance conferred by priming chemicals may provide an insight on stress cross regulation and additional candidate genes for improving crop performance under combined stress.
Abstract: Plants growing in their natural habitats are often challenged simultaneously by multiple stress factors, both abiotic and biotic. Research has so far been limited to responses to individual stresses, and understanding of adaptation to combinatorial stress is limited, but indicative of non-additive interactions. Omics data analysis and functional characterization of individual genes has revealed a convergence of signaling pathways for abiotic and biotic stress adaptation. Taking into account that most data originate from imposition of individual stress factors, this review summarizes these findings in a physiological context, following the pathogenesis timeline and highlighting potential differential interactions occurring between abiotic and biotic stress signaling across the different cellular compartments and at the whole plant level. Potential effects of abiotic stress on resistance components such as extracellular receptor proteins, R-genes and systemic acquired resistance will be elaborated, as well as crosstalk at the levels of hormone, reactive oxygen species, and redox signaling. Breeding targets and strategies are proposed focusing on either manipulation and deployment of individual common regulators such as transcription factors or pyramiding of non- (negatively) interacting components such as R-genes with abiotic stress resistance genes. We propose that dissection of broad spectrum stress tolerance conferred by priming chemicals may provide an insight on stress cross regulation and additional candidate genes for improving crop performance under combined stress. Validation of the proposed strategies in lab and field experiments is a first step toward the goal of achieving tolerance to combinatorial stress in crops.

Journal ArticleDOI
TL;DR: Evidence is reviewed comparing the competitive ability of invasive species vs. that of co-occurring native plants, along a range of environmental gradients, showing that many invasive species have a superior competitive ability over native species, although invasive congeners are not necessarily competitively superior over native congeners, nor are alien dominants are better competitors than native dominants.
Abstract: Invasions by alien plants provide a unique opportunity to examine competitive interactions among plants. While resource competition has long been regarded as a major mechanism responsible for successful invasions, given a well-known capacity for many invaders to become dominant and reduce plant diversity in the invaded communities, few studies have measured resource competition directly or have assessed its importance relatively to that of other mechanisms, at different stages of an invasion process. Here, we review evidence comparing the competitive ability of invasive species vs. that of co-occurring native plants, along a range of environmental gradients, showing that many invasive species have a superior competitive ability over native species, while invasive congeners are not necessarily competitively superior over native congeners, nor alien dominants are better competitors than native dominants. We discuss how the outcomes of competition depend on a number of factors, such as the heterogeneous distribution of resources, the stage of the invasion process, as well as phenotypic plasticity and evolutionary adaptation, which may result in increased or decreased competitive ability in both invasive and native species. Competitive advantages of invasive species over natives are often transient and only important at the early stages of an invasion process. It remains unclear how important resource competition is relative to other mechanisms (competition avoidance via phenological differences, niche differentiation in space associated with phylogenetic distance, recruitment and dispersal limitation, indirect competition, and allelopathy). We then identify the conceptual and methodological issues characterizing competition studies in plant invasions, and we discuss future research needs, including examinations of resource competition dynamics and of the impact of global environmental changes on competitive interactions between invasive and native species.

Journal ArticleDOI
TL;DR: Responses to wounding take place both at the site of damage and systemically (systemic response) and are mediated by hormones such as jasmonic acid, ethylene, salicylic acid, and abscisic acid.
Abstract: Plants are continuously exposed to agents such as herbivores and environmental mechanical stresses that cause wounding and open the way to the invasion by microbial pathogens. Wounding provides nutrients to pathogens and facilitates their entry into the tissue and subsequent infection. Plants have evolved constitutive and induced defense mechanisms to properly respond to wounding and prevent infection. The constitutive defenses are represented by physical barriers, i.e. the presence of cuticle or lignin, or by metabolites that act as toxins or deterrents for herbivores. Plants are also able to sense the injured tissue as an altered self and induce responses similar to those activated by pathogen infection. Endogenous molecules released from wounded tissue may act as Damage-Associated Molecular Patterns (DAMPs) that activate the plant innate immunity. Wound-induced responses are both rapid, such as the oxidative burst and the expression of defense-related genes, and late, such as the callose deposition, the accumulation of proteinase inhibitors and of hydrolytic enzymes (i.e. chitinases and gluganases). Typical examples of DAMPs involved in the response to wounding are the peptide systemin and the oligogalacturonides, which are oligosaccharides released from the pectic component of the cell wall. Responses to wounding take place both at the site of damage (local response) and systemically (systemic response) and are mediated by hormones such as jasmonic acid, ethylene, salicylic acid and abscisic acid.

Journal ArticleDOI
TL;DR: Root grafts have an evolutionary role in the survival of storm-hit forest stands as well as in the spread of devastating diseases, and a more fundamental evolutionary role is hinted by recent findings that demonstrate plastid and nuclear genome transfer between distinct Nicotiana species in the graft union zone, within a tissue culture system.
Abstract: Grafting, an old plant propagation practice, is still widely used with fruit trees and in recent decades also with vegetables. Taxonomic proximity is a general prerequisite for successful graft-take and long-term survival of the grafted, composite plant. However, the mechanisms underlying interspecific graft incompatibility are as yet insufficiently understood. Hormonal signals, auxin in particular, are believed to play an important role in the wound healing and vascular regeneration within the graft union zone. Long-distance protein, mRNA and small RNA graft-transmissible signals currently emerge as novel mechanisms which regulate nutritional and developmental root/top relations and may play a pivotal role in grafting physiology. Grafting also has significant pathogenic projections. On one hand, stock to scion mechanical contact enables the spread of diseases, even without a complete graft union. But, on the other hand, grafting onto resistant rootstocks serves as a principal tool in the management of fruit tree plagues and vegetable soil-borne diseases. The ‘graft hybrid’ historic controversy has not yet been resolved. Recent evidence suggests that epigenetic modification of DNA-methylation patterns may account for certain graft-transformation phenomena. Root grafting is a wide spread natural phenomenon; both intraspecific and interspecific root grafts have been recorded. Root grafts have an evolutionary role in the survival of storm-hit forest stands as well as in the spread of devastating diseases. A more fundamental evolutionary role is hinted by recent findings that demonstrate plastid and nuclear genome transfer between distinct Nicotiana species in the graft union zone, within a tissue culture system. This has led to the formation of alloploid cells that, under laboratory conditions, gave rise to a novel, alloploid Nicotiana species, indicating that natural grafts may play a role in plant speciation. under certain circumstances.

Journal ArticleDOI
TL;DR: The spectroscopic characterization of the plant cuticle and its components by infrared and Raman spectroscopies has provided significant advances in the knowledge of the functional groups present in the cuticular matrix and on their structural role, interaction and macromolecular arrangement.
Abstract: The cuticle is one of the most important plant barriers. It is an external and continuous lipid membrane that covers the surface of epidermal cells and whose main function is to prevent the massive loss of water. The spectroscopic characterization of the plant cuticle and its components (cutin, cutan, waxes, polysaccharides and phenolics) by infrared and Raman spectroscopies has provided significant advances in the knowledge of the functional groups present in the cuticular matrix and on their structural role, interaction and macromolecular arrangement. Additionally, these spectroscopies have been used in the study of cuticle interaction with exogenous molecules, degradation, distribution of components within the cuticle matrix, changes during growth and development and characterization of fossil plants.

Journal ArticleDOI
TL;DR: This review aims at describing some of the most devastating diseases caused by viruses on crops and summarizes current knowledge about plant–virus interactions, focusing on resistance mechanisms that prevent or limit viral infection in plants.
Abstract: Viruses cause epidemics on all major cultures of agronomic importance, representing a serious threat to global food security. As strict intracellular pathogens, they cannot be controlled chemically and prophylactic measures consist mainly in the destruction of infected plants and excessive pesticide applications to limit the population of vector organisms. A powerful alternative frequently employed in agriculture relies on the use of crop genetic resistances, approach that depends on mechanisms governing plant-virus interactions. Hence, knowledge related to the molecular bases of viral infections and crop resistances is key to face viral attacks in fields. Over the past 80 years, great advances have been made on our understanding of plant immunity against viruses. Although most of the known natural resistance genes have long been dominant R genes (encoding NBS-LRR proteins), a vast number of crop recessive resistance genes were cloned in the last decade, emphasizing another evolutive strategy to block viruses. In addition, the discovery of RNA interference pathways highlighted a very efficient antiviral system targeting the infectious agent at the nucleic acid level. Insidiously, plant viruses evolve and often acquire the ability to overcome the resistances employed by breeders. The development of efficient and durable resistances able to withstand the extreme genetic plasticity of viruses therefore represents a major challenge for the coming years. This review aims at describing some of the most devastating diseases caused by viruses on crops and summarizes current knowledge about plant-virus interactions, focusing on resistance mechanisms that prevent or limit viral infection in plants. In addition, I will discuss the current outcomes of the actions employed to control viral diseases in fields and the future investigations that need to be undertaken to develop sustainable broad-spectrum crop resistances against viruses.

Journal ArticleDOI
TL;DR: The application of plant-derived protein hydrolysate containing amino acids and small peptides elicited a hormone-like activity, enhanced nitrogen uptake and consequently crop performances.
Abstract: The aim of this study was to evaluate the biostimulant action (hormone like activity, nitrogen uptake, and growth stimulation) of a plant-derived protein hydrolysate by means of two laboratory bioassays: a corn (Zea mays L.) coleoptile elongation rate test (experiment 1), a rooting test on tomato cuttings (experiment 2); and two greenhouse experiments: a dwarf pea (Pisum sativum L.) growth test (experiment 3), and a tomato (Solanum lycopersicum L.) nitrogen uptake trial (experiment 4). Protein hydrolysate treatments of corn caused an increase in coleoptile elongation rate when compared to the control, in a dose-dependent fashion, with no significant differences between the four concentrations tested (0.375, 0.75, 1.5, and 3.0 ml/L), and inodole-3-acetic acid (IAA) treatment. The auxin-like effect of the protein hydrolysate on corn has been also observed in the rooting experiment of tomato cuttings. The shoot, root dry weight, root length, and root area were significantly higher by 21%, 35%, 24%, and 26%, respectively in tomato treated plants with the protein hydrolysate at 6 ml/L than untreated plants. In experiment 3, the application of the protein hydrolysate at all doses (0.375, 0.75, 1.5, and 3.0 ml/L) significantly increased the shoot length of the giberellin (GA)-deficient dwarf pea plants by an average value of 33% in comparison with the control treatment. Increasing the concentration of the protein hydrolysate from 0 to 10 ml/L increased the total dry biomass, SPAD index, and leaf nitrogen content by 20.5%, 15% and 21.5%, respectively. Thus the application of plant-derived protein hydrolysate containing amino acids and small peptides elicited a hormone-like activity, enhanced nitrogen uptake and consequently crop performances.

Journal ArticleDOI
TL;DR: The cuticle provides a physical barrier against water loss and protects against irradiation, xenobiotics, and pathogens and activation of defenses.
Abstract: The cuticle provides a physical barrier against water loss and protects against irradiation, xenobiotics, and pathogens. Components of the cuticle are perceived by invading fungi and activate developmental processes during pathogenesis. In addition, cuticle alterations of various types induce a syndrome of reactions that often results in resistance to necrotrophs. This article reviews the current knowledge on the role of the cuticle in relation to the perception of pathogens and activation of defenses.

Journal ArticleDOI
TL;DR: The state of the art about perception of “PAMP, MAMP, and DAMP (Pathogen-, Microbe, Damage-Associated Molecular Patterns) type” oligosaccharides is presented and examples of induced defense events are provided.
Abstract: Increasing interest is devoted to carbohydrates for their roles in plant immunity. Some of them are elicitors of plant defenses whereas other ones act as signaling molecules in a manner similar to phytohormones. This review first describes the main classes of carbohydrates associated to plant immunity, their role and mode of action. More precisely, the state of the art about perception of “PAMP, MAMP and DAMP type” oligosaccharides is presented and examples of induced defense events are provided. A particular attention is paid to the structure / activity relationships of these compounds. The role of sugars as signaling molecules, especially in plant microbe interactions, is also presented. Secondly, the potentialities and limits of foliar sprays of carbohydrates to stimulate plant immunity for crop protection against diseases are discussed, with focus on the roles of the leaf cuticle and phyllosphere microflora.

Journal ArticleDOI
TL;DR: Role of the UPS in modulating protein stability during abiotic stress signaling is provided and E3 ubiquitin ligases for which stress-related substrate proteins have been identified are discussed.
Abstract: Ubiquitin is a small, highly conserved, ubiquitously expressed eukaryotic protein with immensely important and diverse regulatory functions. A well-studied function of ubiquitin is its role in selective proteolysis by the ubiquitin-proteasome system (UPS). The UPS has emerged as an integral player in plant response and adaptation to environmental stresses such as drought, salinity, cold and nutrient deprivation. The UPS has also been shown to influence the production and signal transduction of stress-related hormones such as abscisic acid. Understanding UPS function has centered mainly on defining the role of E3 ubiquitin ligases, which are the substrate-recruiting component of the ubiquitination pathway. The recent identification of stress signaling/regulatory proteins that are the subject of ubiquitin-dependent degradation has increased our knowledge of how the UPS facilitates responses to adverse environmental conditions. A brief overview is provided on role of the UPS in modulating protein stability during abiotic stress signaling. E3 ubiquitin ligases for which stress-related substrate proteins have been identified are discussed.

Journal ArticleDOI
TL;DR: The effects of altering magnetic field (MF) conditions on plants are described by considering plant responses to MF values either lower or higher than those of the GMF.
Abstract: The geomagnetic field (GMF) is a natural component of our environment. Plants, which are known to sense different wavelengths of light, respond to gravity, react to touch and electrical signaling, cannot escape the effect of GMF. While phototropism, gravitropism, and tigmotropism have been thoroughly studied, the impact of GMF on plant growth and development is not well-understood. This review describes the effects of altering magnetic field (MF) conditions on plants by considering plant responses to MF values either lower or higher than those of the GMF. The possible role of GMF on plant evolution and the nature of the magnetoreceptor is also discussed.

Journal ArticleDOI
TL;DR: These studies suggest that chromatin remodeling through histone ubiquitination, methylation and acetylation, which could lead to transcription elongation or gene silencing, may play a significant role in seed dormancy regulation.
Abstract: Seed dormancy has played a significant role in adaptation and evolution of seed plants. While its biological significance is clear, molecular mechanisms underlying seed dormancy induction, maintenance and alleviation still remain elusive. Intensive efforts have been made to investigate gibberellin and abscisic acid metabolism in seeds, which greatly contributed to the current understanding of seed dormancy mechanisms. Other mechanisms, which might be independent of hormones, or specific to the seed dormancy pathway, are also emerging from genetic analysis of “seed dormancy mutants”. These studies suggest that chromatin remodeling through histone ubiquitination, methylation and acetylation, which could lead to transcription elongation or gene silencing, may play a significant role in seed dormancy regulation. Small interfering RNA and/or long non-coding RNA might be a trigger of epigenetic changes at the seed dormancy or germination loci, such as DELAY OF GERMINATION1. While new mechanisms are emerging from genetic studies of seed dormancy, novel hypotheses are also generated from seed germination study with high throughput gene expression analysis. Recent studies on tissue-specific gene expression in tomato and Arabidopsis seeds, which suggested possible “mechanosensing” in the regulatory mechanisms, advanced our understanding of embryo-endosperm interaction and have potential to re-draw the traditional hypotheses or integrate them into a comprehensive scheme. The progress in basic seed science will enable knowledge translation, another frontier of research to be expanded for food and fuel production.