scispace - formally typeset
Search or ask a question

Showing papers in "Gcb Bioenergy in 2016"


Journal ArticleDOI
TL;DR: In this article, a meta-analysis of the biochar decomposition in soil was performed and the authors concluded that only a small part of biochar is bioavailable and that the remaining 97% contribute directly to long-term carbon sequestration in soil.
Abstract: The stability and decomposition of biochar are fundamental to understand its persistence in soil, its contribution to carbon (C) sequestration, and thus its role in the global C cycle. Our current knowledge about the degradability of biochar, however, is limited. Using 128 observations of biochar-derived CO2 from 24 studies with stable (13C) and radioactive (14C) carbon isotopes, we meta-analyzed the biochar decomposition in soil and estimated its mean residence time (MRT). The decomposed amount of biochar increased logarithmically with experimental duration, and the decomposition rate decreased with time. The biochar decomposition rate varied significantly with experimental duration, feedstock, pyrolysis temperature, and soil clay content. The MRTs of labile and recalcitrant biochar C pools were estimated to be about 108 days and 556 years with pool sizes of 3% and 97%, respectively. These results show that only a small part of biochar is bioavailable and that the remaining 97% contribute directly to long-term C sequestration in soil. The second database (116 observations from 21 studies) was used to evaluate the priming effects after biochar addition. Biochar slightly retarded the mineralization of soil organic matter (SOM; overall mean: −3.8%, 95% CI = −8.1–0.8%) compared to the soil without biochar addition. Significant negative priming was common for studies with a duration shorter than half a year (−8.6%), crop-derived biochar (−20.3%), fast pyrolysis (−18.9%), the lowest pyrolysis temperature (−18.5%), and small application amounts (−11.9%). In contrast, biochar addition to sandy soils strongly stimulated SOM mineralization by 20.8%. This indicates that biochar stimulates microbial activities especially in soils with low fertility. Furthermore, abiotic and biotic processes, as well as the characteristics of biochar and soils, affecting biochar decomposition are discussed. We conclude that biochar can persist in soils on a centennial scale and that it has a positive effect on SOM dynamics and thus on C sequestration.

654 citations


Journal ArticleDOI
TL;DR: In this paper, a review of 50 papers with 395 paired observations were reviewed using meta-analysis procedures to examine responses of soil carbon dioxide (CO2) fluxes, soil organic C (SOC), and soil microbial biomass C (MBC) contents to biochar amendment.
Abstract: Biochar as a carbon-rich coproduct of pyrolyzing biomass, its amendment has been advocated as a potential strategy to soil carbon (C) sequestration. Updated data derived from 50 papers with 395 paired observations were reviewed using meta-analysis procedures to examine responses of soil carbon dioxide (CO2) fluxes, soil organic C (SOC), and soil microbial biomass C (MBC) contents to biochar amendment. When averaged across all studies, biochar amendment had no significant effect on soil CO2 fluxes, but it significantly enhanced SOC content by 40% and MBC content by 18%. A positive response of soil CO2 fluxes to biochar amendment was found in rice paddies, laboratory incubation studies, soils without vegetation, and unfertilized soils. Biochar amendment significantly increased soil MBC content in field studies, N-fertilized soils, and soils with vegetation. Enhancement of SOC content following biochar amendment was the greatest in rice paddies among different land-use types. Responses of soil CO2 fluxes and MBC to biochar amendment varied with soil texture and pH. The use of biochar in combination with synthetic N fertilizer and waste compost fertilizer led to the greatest increases in soil CO2 fluxes and MBC content, respectively. Both soil CO2 fluxes and MBC responses to biochar amendment decreased with biochar application rate, pyrolysis temperature, or C/N ratio of biochar, while each increased SOC content enhancement. Among different biochar feedstock sources, positive responses of soil CO2 fluxes and MBC were the highest for manure and crop residue feedstock sources, respectively. Soil CO2 flux responses to biochar amendment decreased with pH of biochar, while biochars with pH of 8.1–9.0 had the greatest enhancement of SOC and MBC contents. Therefore, soil properties, land-use type, agricultural practice, and biochar characteristics should be taken into account to assess the practical potential of biochar for mitigating climate change.

266 citations


Journal ArticleDOI
TL;DR: In this article, the authors collected and analyzed data from worldwide field observations of major LUCs from cropland, grassland, and forest to lands producing biofuel crops (i.e. corn, switchgrass, Miscanthus, poplar, and willow).
Abstract: Soil organic carbon (SOC) change can be a major impact of land use change (LUC) associated with biofuel feedstock production. By collecting and analyzing data from worldwide field observations of major LUCs from cropland, grassland, and forest to lands producing biofuel crops (i.e. corn, switchgrass, Miscanthus, poplar, and willow), we were able to estimate SOC response ratios and sequestration rates and evaluate the effects of soil depth and time scale on SOC change. Both the amount and rate of SOC change were highly dependent on the specific land transition. Irrespective of soil depth or time horizon, cropland conversions resulted in an overall SOC gain of 6–14% relative to initial SOC level, while conversion from grassland or forest to corn (without residue removal) or poplar caused significant carbon loss (9–35%). No significant SOC changes were observed in land converted from grasslands or forests to switchgrass, Miscanthus, or willow. The SOC response ratios were similar in both 0–30 and 0–100 cm soil depths in most cases, suggesting SOC changes in deep soil and that use of top soil only for SOC accounting in biofuel life cycle analysis (LCA) might underestimate total SOC changes. Soil carbon sequestration rates varied greatly among studies and land transition types. Generally, the rates of SOC change tended to be the greatest during the 10 years following land conversion and had declined to approach 0 within about 20 years for most LUCs. Observed trends in SOC change were generally consistent with previous reports. Soil depth and duration of study significantly influence SOC change rates and so should be considered in carbon emission accounting in biofuel LCA. High uncertainty remains for many perennial systems and forest transitions, additional field trials, and modeling efforts are needed to draw conclusions about the site- and system-specific rates and direction of change.

157 citations


Journal ArticleDOI
TL;DR: In this article, a spatially explicit integrated assessment model is used to estimate the available potential of residues for renewable energy, with a focus on the drivers and constraints of the available capacity, associated costs and how the availability may vary across scenarios.
Abstract: By-products of agricultural and forestry processes, known as residues, may act as a primary source of renewable energy. Studies assessing the availability of this resource so far offer few insights on the drivers and constraints of the available potential, the associated costs and how the availability may vary across scenarios. This study projects long-term global supply curves of the available potential by using consistent scenarios of agriculture and forestry production, livestock production and fuel use from a spatially explicit integrated assessment model. Particular attention is paid to the drivers and constraints. In the projections residue production is related to agricultural and forestry production and intensification, and the limiting effect of ecological and alternative uses of residues are accounted for. Depending on the scenario, theoretical potential is projected to increase from approximately 120 EJ/yr today to 140-170 EJ/yr by 2100, coming mostly from agricultural production. In order to maintain ecological functions approximately 40% is required to remain in the field, and a further 20-30% is diverted towards alternative uses. Of the remaining potential (approximately 50 EJ/yr in 2100), more than 90%, is available at less than 10$2005/GJ. Crop yield improvements increase residue productivity, albeit at a lower rate. The consequent decrease in agricultural land results in a lower requirement of residues for erosion control. The theoretical potential is most sensitive to baseline projections of agriculture and forestry demand; however this does not necessarily affect the available potential which is relatively constant across scenarios. The most important limiting factors are the alternative uses. Asia and North America account for two thirds of the available potential due to the production of crops with high residue yields and socioeconomic conditions which limit alternative uses.

128 citations


Journal ArticleDOI
TL;DR: In this article, the United Nations 2030 Sustainable Development Goals place a high priority on food and energy security; bioenergy plays an important role in achieving both goals, and food security programs begin by clearly defining the problem and asking, what can be done to assist people at high risk?
Abstract: Understanding the complex interactions among food security, bioenergy sustainability, and resource management requires a focus on specific contextual problems and opportunities. The United Nations’ 2030 Sustainable Development Goals place a high priority on food and energy security; bioenergy plays an important role in achieving both goals. Effective food security programs begin by clearly defining the problem and asking, ‘What can be done to assist people at high risk?’ Simplistic global analyses, headlines, and cartoons that blame biofuels for food insecurity may reflect good intentions but mislead the public and policymakers because they obscure the main drivers of local food insecurity and ignore opportunities for bioenergy to contribute to solutions. Applying sustainability guidelines to bioenergy will help achieve near- and long-term goals to eradicate hunger. Priorities for achieving successful synergies between bioenergy and food security include the following: (1) clarifying communications with clear and consistent terms, (2) recognizing that food and bioenergy need not compete for land and, instead, should be integrated to improve resource management, (3) investing in technology, rural extension, and innovations to build capacity and infrastructure, (4) promoting stable prices that incentivize local production, (5) adopting flex crops that can provide food along with other products and services to society, and (6) engaging stakeholders to identify and assess specific opportunities for biofuels to improve food security. Systematic monitoring and analysis to support adaptive management and continual improvement are essential elements to build synergies and help society equitably meet growing demands for both food and energy.

128 citations


Journal ArticleDOI
TL;DR: In this paper, the authors investigate the trade-offs between land and water requirements of large-scale bioenergy production and find that producing 300 EJ yr 1 of bioenergy in 2095 from dedicated bioenergy crops is likely to double agricultural water withdrawals if no explicit water protection policies are implemented.
Abstract: Bioenergy is expected to play an important role in the future energy mix as it can substitute fossil fuels and contribute to climate change mitigation. However, large-scale bioenergy cultivation may put substantial pressure on land and water resources. While irrigated bioenergy production can reduce the pressure on land due to higher yields, associated irrigation water requirements may lead to degradation of freshwater ecosystems and to conflicts with other potential users. In this article, we investigate the trade-offs between land and water requirements of large-scale bioenergy production. To this end, we adopt an exogenous demand trajectory for bioenergy from dedicated energy crops, targeted at limiting greenhouse gas emissions in the energy sector to 1100 Gt carbon dioxide equivalent until 2095. We then use the spatially explicit global land- and water-use allocation model MAgPIE to project the implications of this bioenergy target for global land and water resources. We find that producing 300 EJ yr 1 of bioenergy in 2095 from dedicated bioenergy crops is likely to double agricultural water withdrawals if no explicit water protection policies are implemented. Since current human water withdrawals are dominated by agriculture and already lead to ecosystem degradation and biodiversity loss, such a doubling will pose a severe threat to freshwater ecosystems. If irrigated bioenergy production is prohibited to prevent negative impacts of bioenergy cultivation on water resources, bioenergy land requirements for meeting a 300 EJ yr 1 bioenergy target increase substantially (+ 41%) – mainly at the expense of pasture areas and tropical forests. Thus, avoiding negative environmental impacts of large-scale bioenergy production will require policies that balance associated water and land requirements.

119 citations


Journal ArticleDOI
TL;DR: In this paper, a consequential life cycle assessment (LCA) of 32 energy-focused biorefinery scenarios was performed based on eight selected agro-industrial residues and four conversion pathways (two involving bioethanol and two biogas).
Abstract: Biorefining agro-industrial biomass residues for bioenergy production represents an opportunity for both sustainable energy supply and greenhouse gas (GHG) emissions mitigation. Yet, is bioenergy the most sustainable use for these residues? To assess the importance of the alternative use of these residues, a consequential life cycle assessment (LCA) of 32 energy-focused biorefinery scenarios was performed based on eight selected agro-industrial residues and four conversion pathways (two involving bioethanol and two biogas). To specifically address indirect land-use changes (iLUC) induced by the competing feed/food sector, a deterministic iLUC model, addressing global impacts, was developed. A dedicated biochemical model was developed to establish detailed mass, energy, and substance balances for each biomass conversion pathway, as input to the LCA. The results demonstrated that, even for residual biomass, environmental savings from fossil fuel displacement can be completely outbalanced by iLUC, depending on the feed value of the biomass residue. This was the case of industrial residues (e.g. whey and beet molasses) in most of the scenarios assessed. Overall, the GHGs from iLUC impacts were quantified to 4.1 t CO2-eq.ha−1demanded yr−1 corresponding to 1.2–1.4 t CO2-eq. t−1 dry biomass diverted from feed to energy market. Only, bioenergy from straw and wild grass was shown to perform better than the alternative use, as no competition with the feed sector was involved. Biogas for heat and power production was the best performing pathway, in a short-term context. Focusing on transport fuels, bioethanol was generally preferable to biomethane considering conventional biogas upgrading technologies. Based on the results, agro-industrial residues cannot be considered burden-free simply because they are a residual biomass and careful accounting of alternative utilization is a prerequisite to assess the sustainability of a given use. In this endeavor, the iLUC factors and biochemical model proposed herein can be used as templates and directly applied to any bioenergy consequential study involving demand for arable land.

112 citations


Journal ArticleDOI
TL;DR: In this article, the authors compared the soil organic carbon (SOC) sequestration potential between perennial woody and herbaceous crops and their stabilization level after 6 years from plantations on an arable field.
Abstract: To date, only few studies have compared the soil organic carbon (SOC) sequestration potential between perennial woody and herbaceous crops. The main objective of this study was to assess the effect of perennial woody (poplar, black locust, willow) and herbaceous (giant reed, miscanthus, switchgrass) crops on SOC stock and its stabilization level after 6 years from plantation on an arable field. Seven SOC fractions related to different soil stabilization mechanisms were isolated by a combination of physical and chemical fractionation methods: unprotected (cPOM and fPOM), physically protected (iPOM), physically and chemically protected (HC-μs + c), chemically protected (HC-ds + c), and biochemically protected (NHC-ds + c and NHC-μs + c). The continuous C input to the soil and the minimal soil disturbance increased SOC stocks in the top 10 cm of soil, but not in deeper soil layers (10–30; 30–60; and 60–100 cm). In the top soil layer, greater SOC accumulation rates were observed under woody species (105 g m−2 yr-1) than under herbaceous ones (71 g m−2 yr-1) presumably due to a higher C input from leaf-litter. The conversion from an arable maize monoculture to perennial bioenergy crops increased the organic C associated to the most labile organic matter (POM) fractions, which accounted for 38% of the total SOC stock across bioenergy crops, while no significant increments were observed in more recalcitrant (silt- and clay-sized) fractions, highlighting that the POM fractions were the most prone to land-use change. The iPOM fraction increased under all perennial bioenergy species compared to the arable field. In addition, the iPOM was higher under woody crops than under herbaceous ones because of the additional C inputs from leaf-litter that occurred in the former. Conversion from arable cropping systems to perennial bioenergy crops can effectively increase the SOC stock and enlarge the SOC fraction that is physically protected within soil microaggregates.

85 citations


Journal ArticleDOI
TL;DR: In this paper, the authors used an improved version of the SWAT tool to forecast impacts on watershed hydrology and water quality by implementing an array of plausible land-use changes associated with commercial bioenergy crop production for two watersheds in the Midwest USA.
Abstract: Cellulosic bioenergy feedstock such as perennial grasses and crop residues are expected to play a significant role in meeting US biofuel production targets. We used an improved version of the Soil and Water Assessment Tool (SWAT) to forecast impacts on watershed hydrology and water quality by implementing an array of plausible land-use changes associated with commercial bioenergy crop production for two watersheds in the Midwest USA. Watershed-scale impacts were estimated for 13 bioenergy crop production scenarios, including: production of Miscanthus × giganteus and upland Shawnee switchgrass on highly erodible landscape positions, agricultural marginal land areas and pastures, removal of corn stover and combinations of these options. Water quality, measured as erosion and sediment loading, was forecasted to improve compared to baseline when perennial grasses were used for bioenergy production, but not with stover removal scenarios. Erosion reduction with perennial energy crop production scenarios ranged between 0.2% and 59%. Stream flow at the watershed outlet was reduced between 0 and 8% across these bioenergy crop production scenarios compared to baseline across the study watersheds. Results indicate that bioenergy production scenarios that incorporate perennial grasses reduced the nonpoint source pollutant load at the watershed outlet compared to the baseline conditions (0–20% for nitrate-nitrogen and 3–56% for mineral phosphorus); however, the reduction rates were specific to site characteristics and management practices.

83 citations


Journal ArticleDOI
TL;DR: In this article, the authors identify and prioritize those attributes of bioenergy greenhouse gas (GHG) emissions analysis that are most influential on the length of carbon payback period and demonstrate that evaluation criteria consistency is required to facilitate equitable comparison between projects.
Abstract: The potential greenhouse gas benefits of displacing fossil energy with biofuels are driving policy development in the absence of complete information. The potential carbon neutrality of forest biomass is a source of considerable scientific debate because of the complexity of dynamic forest ecosystems, varied feedstock types, and multiple energy production pathways. The lack of scientific consensus leaves decision makers struggling with contradicting technical advice. Analyzing previously published studies, our goal was to identify and prioritize those attributes of bioenergy greenhouse gas (GHG) emissions analysis that are most influential on length of carbon payback period. We investigated outcomes of 59 previously published forest biomass greenhouse gas emissions research studies published between 1991 and 2014. We identified attributes for each study and classified study cases by attributes. Using classification and regression tree analysis, we identified those attributes that are strong predictors of carbon payback period (e.g. the time required by the forest to recover through sequestration the carbon dioxide from biomass combusted for energy). The inclusion of wildfire dynamics proved to be the most influential in determining carbon payback period length compared to other factors such as feedstock type, baseline choice, and the incorporation of leakage calculations. Additionally, we demonstrate that evaluation criteria consistency is required to facilitate equitable comparison between projects. For carbon payback period calculations to provide operational insights to decision makers, future research should focus on creating common accounting principles for the most influential factors including temporal scale, natural disturbances, system boundaries, GHG emission metrics, and baselines.

80 citations


Journal ArticleDOI
TL;DR: In this paper, the long-term effect of biochar on soil carbon sequestration of recent carbon inputs was investigated in arable fields in Belgium with charcoal enriched black spots dating > 150 years ago from historical charcoal production mound kilns.
Abstract: This study was set-up to identify the long-term effect of biochar on soil C sequestration of recent carbon inputs. Arable fields (n=5) were found in Belgium with charcoal enriched black spots (>50 m2; n=14) dating > 150 years ago from historical charcoal production mound kilns. Topsoils from these “black spots” had a higher organic C concentration (3.6±0.9% OC) than adjacent soils outside these black spots (2.1±0.2 % OC). The soils had been cropped with maize for at least 12 years which provided a continuous input of C with a C isotope signature (δ13C) -13.1, distinct from the δ13C of soil organic carbon (-27.4 ‰) and charcoal (-25.7 ‰) collected in the surrounding area. The isotope signatures in the soil revealed that maize derived C concentration was significantly higher in charcoal amended samples (“black spots”) than in adjacent unamended ones (0.44% versus 0.31%; P=0.02). Topsoils were subsequently collected as a gradient across two “black spots” along with corresponding adjacent soils outside these black spots and soil respiration and physical soil fractionation was conducted. Total soil respiration (130 days) was unaffected by charcoal but the maize derived C respiration per unit maize derived OC in soil significantly decreased about half (P<0.02) with increasing charcoal derived C in soil. Maize derived C was proportionally more present in protected soil aggregates in the presence of charcoal. The lower specific mineralisation and increased C sequestration of recent C with charcoal is attributed to a combination of physical protection, C-saturation of microbial communities and, potentially, slightly higher annual primary production. Overall, this study provides evidence of the capacity of biochar to enhance C sequestration in soils through reduced C turnover on the long-term.

Journal ArticleDOI
TL;DR: The results provide an insight into the interplay between land availability, original land uses, bioenergy crop type and yield in determining overall positive or negative impacts of bioenergy cropping on ecosystems services and go some way towards developing a framework for quantifying wider ES impacts of this important LUC.
Abstract: We present the first assessment of the impact of land use change (LUC) to second-generation (2G) bioenergy crops on ecosystem services (ES) resolved spatially for Great Britain (GB). A systematic approach was used to assess available evidence on the impacts of LUC from arable, semi-improved grassland or woodland/forest, to 2G bioenergy crops, for which a quantitative ‘threat matrix’ was developed. The threat matrix was used to estimate potential impacts of transitions to either Miscanthus, short-rotation coppice (SRC, willow and poplar) or short-rotation forestry (SRF). The ES effects were found to be largely dependent on previous land uses rather than the choice of 2G crop when assessing the technical potential of available biomass with a transition from arable crops resulting in the most positive effect on ES. Combining these data with constraint masks and available land for SRC and Miscanthus (SRF omitted from this stage due to lack of data), south-west and north-west England were identified as areas where Miscanthus and SRC could be grown, respectively, with favourable combinations of economic viability, carbon sequestration, high yield and positive ES benefits. This study also suggests that not all prospective planting of Miscanthus and SRC can be allocated to agricultural land class (ALC) ALC 3 and ALC 4 and suitable areas of ALC 5 are only minimally available. Beneficial impacts were found on 146 583 and 71 890 ha when planting Miscanthus or SRC, respectively, under baseline planting conditions rising to 293 247 and 91 318 ha, respectively, under 2020 planting scenarios. The results provide an insight into the interplay between land availability, original land uses, bioenergy crop type and yield in determining overall positive or negative impacts of bioenergy cropping on ecosystems services and go some way towards developing a framework for quantifying wider ES impacts of this important LUC.

Journal ArticleDOI
TL;DR: In this paper, the authors measured changes in soil organic carbon (SOC) stocks in bioenergy cropping systems comparing perennial (Miscanthus 9 giganteus and switchgrass), semi-perennial (fescue and alfalfa), and annual (sorghum and triticale) crops, all established after arable crops.
Abstract: Bioenergy crops are expected to provide biomass to replace fossil resources and reduce greenhouse gas emissions. In this context, changes in soil organic carbon (SOC) stocks are of primary importance. The aim of this study was to measure changes in SOC stocks in bioenergy cropping systems comparing perennial (Miscanthus 9 giganteus and switchgrass), semi-perennial (fescue and alfalfa), and annual (sorghum and triticale) crops, all established after arable crops. The soil was sampled at the start of the experiment and 5 or 6 years later. SOC stocks were calculated at equivalent soil mass, and d 13 C measurements were used to calculate changes in new and old SOC stocks. Crop residues found in soil at the time of SOC measurements represented 3.5–7.2 t C ha � 1 under perennial crops vs. 0.1–0.6 t C ha � 1 for the other crops. During the 5-year period, SOC concentrations under perennial crops increased in the surface layer (0–5 cm) and slightly declined in the lower layers. Changes in d 13 C showed that C inputs were mainly located in the 0–18 cm layer. In contrast, SOC concentrations increased over time under semi-perennial crops throughout the old ploughed layer (ca. 0–33 cm). SOC stocks in the old ploughed layer increased significantly over time under semi-perennials with a mean increase of 0.93 � 0.28 t C ha � 1 yr � 1 , whereas no change occurred under perennial or annual crops. New SOC accumulation was higher for semi-perennial than for perennial crops (1.50 vs. 0.58 t C ha � 1 yr � 1 , respectively), indicating that the SOC change was due to a variation in C input rather than a change in mineralization rate. Nitrogen fertilization rate had no significant effect on SOC stocks. This study highlights the interest of comparing SOC changes over time for various cropping systems.

Journal ArticleDOI
TL;DR: In this article, the identification of taxa related with Nitrous oxide fluxes by combining functional responses (N2O release) and the abundance of these microorganisms in soil was proposed.
Abstract: Crop residues returned to the soil are important for the preservation of soil quality, health, and biodiversity, and they increase agriculture sustainability by recycling nutrients. Sugarcane is a bioenergy crop that produces huge amounts of straw (also known as trash) every year. In addition to straw, the ethanol industry also generates large volumes of vinasse, a liquid residue of ethanol production, which is recycled in sugarcane fields as fertilizer. However, both straw and vinasse have an impact on N2O fluxes from the soil. Nitrous oxide is a greenhouse gas that is a primary concern in biofuel sustainability. Because bacteria and archaea are the main drivers of N redox processes in soil, in this study we propose the identification of taxa related with N2O fluxes by combining functional responses (N2O release) and the abundance of these microorganisms in soil. Using a large-scale in situ experiment with ten treatments, an intensive gas monitoring approach, high-throughput sequencing of soil microbial 16S rRNA gene and powerful statistical methods, we identified microbes related to N2O fluxes in soil with sugarcane crops. In addition to the classical denitrifiers, we identified taxa within the phylum Firmicutes and mostly uncharacterized taxa recently described as important drivers of N2O consumption. Treatments with straw and vinasse also allowed the identification of taxa with potential biotechnological properties that might improve the sustainability of bioethanol by increasing C yields and improving N efficiency in sugarcane fields.

Journal ArticleDOI
TL;DR: In this article, the authors investigate the effect of sustainability guidelines on the evolution of forest markets in the southeast United States, paying particular attention to changes in land use and forest carbon, and find increased removals, an increase in forest area, and little change in forest inventory.
Abstract: Woody biomass from the southeast United States is expected to play an important role in meeting European Union renewable energy targets. In crafting policies to guide bioenergy development and in guiding investment decisions to meet established policy goals, a firm understanding of the interaction between policy targets and forest biomass markets is necessary, as is the effect that this interaction will have on environmental and economic objectives. This analysis increases our understanding of these interactions by modeling the response of southern US forest markets to new pellet demand in the presence of sustainability sourcing or harvest criteria. We first assess the influence of EU recommended sustainability guidelines on the forest inventory available to supply EU markets, and then model changes in forest composition and extent in response to expected increases in pellet demand. Next, we assess how sustainability guidelines can influence the evolution of forest markets in the region, paying particular attention to changes in land use and forest carbon. Regardless of whether sustainability guidelines are applied, we find increased removals, an increase in forest area, and little change in forest inventory. We also find annual gains in forest carbon in most years of the analysis. The incremental effect of sustainability guideline application on forest carbon and pellet greenhouse gas (GHG) balance is difficult to discern, but results suggest that guidelines could be steering production away from sensitive forest types inherently less responsive to changing market conditions. Pellet GHG balance shows significant annual change and is attributable to the complexity of the underlying forest landscape. The manner by which GHG balance is tracked is thus a critical policy decision, reinforcing the importance and relevance of current efforts to develop approaches to accurately account for the GHG implications of biomass use both in the United States and European Union.

Journal ArticleDOI
TL;DR: Bacterial and fungal biomasses were higher under perennial grasses and restored prairie, suggesting a more active carbon pool and greater microbial processing potential, which should be beneficial for plant acquisition and ecosystem retention of carbon, water, and nutrients.
Abstract: Because soil microbes drive many of the processes underpinning ecosystem services provided by soils, understanding how cropping systems affect soil microbial communities is important for productive and sustainable management. We characterized and compared soil microbial communities under restored prairie and three potential cellulosic biomass crops (corn, switchgrass, and mixed prairie grasses) in two spatial experimental designs – side-by-side plots where plant communities were in their second year since establishment (i.e., intensive sites) and regionally distributed fields where plant communities had been in place for at least 10 years (i.e., extensive sites). We assessed microbial community structure and composition using lipid analysis, pyrosequencing of rRNA genes (targeting fungi, bacteria, archaea, and lower eukaryotes), and targeted metagenomics of nifH genes. For the more recently established intensive sites, soil type was more important than plant community in determining microbial community structure, while plant community was the more important driver of soil microbial communities for the older extensive sites where microbial communities under corn were clearly differentiated from those under switchgrass and restored prairie. Bacterial and fungal biomasses, especially biomass of arbuscular mycorrhizal fungi, were higher under perennial grasses and restored prairie, suggesting a more active carbon pool and greater microbial processing potential, which should be beneficial for plant acquisition and ecosystem retention of carbon, water, and nutrients.

Journal ArticleDOI
TL;DR: In this article, the authors compared the effects of land application of biochar vs. agricultural residues on the recycling of P accumulated in agricultural residues and found that biochar provides lower amounts of labile P and releases its P more slowly while providing a long-lasting P source, and the loss potential of P from biochar is reduced by low mobility of its P.
Abstract: Phosphorus (P) is a finite and dwindling resource, while an enormous amount of P flows to agricultural residues with increasing agricultural production. Therefore, the recycling of P in agricultural residues is critical for P sustainability in agricultural systems, which is dominated by the route of direct land application. Biochar production from agricultural residues and its subsequent land application have been suggested as solutions for waste biomass disposal, carbon sequestration, soil amendment/remediation, and crop production promotion. However, little attention has been paid to the contrasting effects of the land application of biochar vs. agricultural residues on the recycling of P accumulated in agricultural residues. Phosphorus in agricultural residues can be retained and transformed into stable forms of P in the resulting biochar. Thus, compared to agricultural residues, biochar provides lower amounts of labile P and releases its P more slowly while providing a long-lasting P source, and the loss potential of P from biochar is reduced by low mobility of its P, indicating that biochar-based P recycling route could substantially promote P recycling by acting as sustainable P source and diminishing the loss of P applied to soil.

Journal ArticleDOI
TL;DR: In this paper, Zea mays et al. measured potential N-acetyl-glucosaminidase (NAG), BG, and BX enzyme activity spatially across soil aggregates and temporally across two growing seasons in three ecosystems managed for bioenergy feedstock production: corn monocultures, fertilized and unfertilized reconstructed tallgrass prairie.
Abstract: A primary goal of many next-generation bioenergy systems is to increase ecosystem services such as soil carbon (C) storage and nutrient retention. Evaluating whether bioenergy management systems are achieving these goals is challenging in part because these processes occur over long periods of time at varying spatial scales. Investigation of microbially mediated soil processes at the microbe scale may provide early insights into the mechanisms driving these long-term ecosystem services. Furthermore, seasonal fluctuations in microbial activity are rarely considered when estimating whole ecosystem functioning, but are central to decomposition, soil structure, and realized C storage. Some studies have characterized extracellular enzyme activity within soil structures (aggregates); however, seasonal variation in decomposition at the microscale remains virtually unknown, particularly in managed ecosystems. As such, we hypothesize that temporal variation in aggregate turnover is a strong regulator of microbial activity, with important implications for decomposition and C and nitrogen (N) storage in bioenergy systems. We address variation in soil microbial extracellular enzyme activity spatially across soil aggregates and temporally across two growing seasons in three ecosystems managed for bioenergy feedstock production: Zea mays L. (corn) agroecosystem, fertilized and unfertilized reconstructed tallgrass prairie. We measured potential N-acetyl-glucosaminidase (NAG), β-glucosidase (BG), β-xylosidase (BX), and cellobiohydrolase (CB) enzyme activity. Aggregate turnover in prairie systems was driven by precipitation events and seasonal spikes in enzyme activity corresponded with aggregate turnover events. In corn monocultures, soil aggregates turned over early in the growing season, followed by increasing, albeit low, enzyme activity throughout the growing season. Independent of management system or sampling date, NAG activity was greatest in large macroaggregates (>2000 μm) and CB activity was greatest in microaggregates (<250 μm). High microbial activity coupled with greater aggregation in prairie bioenergy systems may reduce loss of soil organic matter through decomposition and increase soil C storage.

Journal ArticleDOI
TL;DR: In this article, the authors compared the potential impacts of renewable energy development on biodiversity and found that bioenergy production is a major potential threat to biodiversity, while the potential impact of wind and solar appears smaller than that of bioenergy.
Abstract: Reliance on fossil fuels is causing unprecedented climate change and is accelerating environmental degradation and global biodiversity loss. Together, climate change and biodiversity loss, if not averted urgently, may inflict severe damage on ecosystem processes, functions and services that support the welfare of modern societies. Increasing renewable energy deployment and expanding the current protected area network represent key solutions to these challenges, but conflicts may arise over the use of limited land for energy production as opposed to biodiversity conservation. Here, we compare recently identified core areas for the expansion of the global protected area network with the renewable energy potential available from land-based solar photovoltaic, wind energy and bioenergy (in the form of Miscanthus 9 giganteus). We show that these energy sources have very different biodiversity impacts and net energy contributions. The extent of risks and opportunities deriving from renewable energy development is highly dependent on the type of renewable source harvested, the restrictions imposed on energy harvest and the region considered, with Central America appearing at particularly high potential risk from renewable energy expansion. Without restrictions on power generation due to factors such as production and transport costs, we show that bioenergy production is a major potential threat to biodiversity, while the potential impact of wind and solar appears smaller than that of bioenergy. However, these differences become reduced when energy potential is restricted by external factors including local energy demand. Overall, we found that areas of opportunity for developing solar and wind energy with little harm to biodiversity could exist in several regions of the world, with the magnitude of potential impact being particularly dependent on restrictions imposed by local energy demand. The evidence provided here helps guide sustainable development of renewable energy and contributes to the targeting of global efforts in climate mitigation and biodiversity conservation.

Journal ArticleDOI
TL;DR: In this paper, the authors demonstrate a general methodology to stochastically calculate direct and indirect land use change (dLUC and iLUC) caused by an increasing demand for biofuels, with an integrated economic - land-use change model.
Abstract: It is commonly recognized that large uncertainties exist in modelled biofuel-induced indirect land-use change, but until now, spatially explicit quantification of such uncertainties by means of error propagation modelling has never been performed. In this study, we demonstrate a general methodology to stochastically calculate direct and indirect land-use change (dLUC and iLUC) caused by an increasing demand for biofuels, with an integrated economic - land-use change model. We use the global Computable General Equilibrium model MAGNET, connected to the spatially explicit land-use change model PLUC. We quantify important uncertainties in the modelling chain. Next, dLUC and iLUC projections for Brazil up to 2030 at different spatial scales and the uncertainty herein are assessed. Our results show that cell-based (5 × 5 km2) probabilities of dLUC range from 0 to 0.77, and of iLUC from 0 to 0.43, indicating that it is difficult to project exactly where dLUC and iLUC will occur, with more difficulties for iLUC than for dLUC. At country level, dLUC area can be projected with high certainty, having a coefficient of variation (cv) of only 0.02, while iLUC area is still uncertain, having a cv of 0.72. The latter means that, considering the 95% confidence interval, the iLUC area in Brazil might be 2.4 times as high or as low as the projected mean. Because this confidence interval is so wide that it is likely to straddle any legislation threshold, our opinion is that threshold evaluation for iLUC indicators should not be implemented in legislation. For future studies, we emphasize the need for provision of quantitative uncertainty estimates together with the calculated LUC indicators, to allow users to evaluate the reliability of these indicators and the effects of their uncertainty on the impacts of land-use change, such as greenhouse gas emissions.

Journal ArticleDOI
TL;DR: In this article, the authors measured soil N2O emissions and potential environmental drivers of these fluxes from a three-year establishment-phase bioenergy cropping systems experiment replicated in southcentral Wisconsin (ARL) and southwestern Michigan (KBS).
Abstract: Greenhouse gas (GHG) emissions from soils are a key sustainability metric of cropping systems. During crop establishment, disruptive land-use change is known to be a critical, but under reported period, for determining GHG emissions. We measured soil N2O emissions and potential environmental drivers of these fluxes from a three-year establishment-phase bioenergy cropping systems experiment replicated in southcentral Wisconsin (ARL) and southwestern Michigan (KBS). Cropping systems treatments were annual monocultures (continuous corn, corn–soybean–canola rotation), perennial monocultures (switchgrass, miscanthus, and poplar), and perennial polycultures (native grass mixture, early successional community, and restored prairie) all grown using best management practices specific to the system. Cumulative three-year N2O emissions from annuals were 142% higher than from perennials, with fertilized perennials 190% higher than unfertilized perennials. Emissions ranged from 3.1 to 19.1 kg N2O-N ha � 1 yr � 1 for the annuals with continuous corn > corn–soybean–canola rotation and 1.1 to 6.3 kg N2O-N ha � 1 yr � 1 for perennials. Nitrous oxide peak fluxes typically were associated with precipitation events that closely followed fertilization. Bayesian modeling of N2O fluxes based on measured environmental factors explained 33% of variability across all systems. Models trained on single systems performed well in most monocultures (e.g., R 2 = 0.52 for poplar) but notably worse in polycultures (e.g., R 2 = 0.17 for early successional, R 2 = 0.06 for restored prairie), indicating that simulation models that include N2O emissions should be parameterized specific to particular plant communities. Our results indicate that perennial bioenergy crops in their establishment phase emit less N2O than annual crops, especially when not fertilized. These findings should be considered further alongside yield and other metrics contributing to important ecosystem services.

Journal ArticleDOI
TL;DR: In this article, the authors compared the costs of supplying biomass using three alternative biomass preprocessing and densification technologies (pelletizing, briquetting, and grinding) and two alternative transportation modes (trucking and rail) for the design of a four-stage biomass-biofuel supply chain in which biomass produced in Illinois is used to meet biofuel demands in either California or Illinois.
Abstract: Biomass-based biofuels have gained attention because they are renewable energy sources that could facilitate energy independence and improve rural economic development. As biomass supply and biofuel demand areas are generally not geographically contiguous, the design of an efficient and effective biomass supply chain from biomass provision to biofuel distribution is critical to facilitate large-scale biofuel development. This study compared the costs of supplying biomass using three alternative biomass preprocessing and densification technologies (pelletizing, briquetting, and grinding) and two alternative transportation modes (trucking and rail) for the design of a four-stage biomass-biofuel supply chain in which biomass produced in Illinois is used to meet biofuel demands in either California or Illinois. The BioScope optimization model was applied to evaluate a four-stage biomass-biofuel supply chain that includes biomass supply, centralized storage and preprocessing (CSP), biorefinery, and ethanol distribution. We examined the cost of 15 scenarios that included a combination of three biomass preprocessing technologies and five supply chain configurations. The findings suggested that the transportation costs for biomass would generally follow the pattern of coal transportation. Converting biomass to ethanol locally and shipping ethanol over long distances is most economical, similar to the existing grain-based biofuel system. For the Illinois-California supply chain, moving ethanol is $0.24 gal-1 less costly than moving biomass even in densified form over long distances. The use of biomass pellets leads to lower overall costs of biofuel production for long-distance transportation but to higher costs if used for short-distance movement due to its high capital and processing costs. Supported by the supply chain optimization modeling, the cellulosic-ethanol production and distribution costs of using Illinois feedstock to meet California demand are $0.08 gal-1 higher than that for meeting local Illinois demand. © 2016 John Wiley & Sons Ltd.

Journal ArticleDOI
TL;DR: In this article, the authors evaluated N recovery from trash (trash-N) by sugarcane during three ratoon crop seasons: 2007, 2008 and 2009, and found that the average trash-N recovery across the two sites after three crop cycles was 7.6 kg−1 (or 16.2% of the initial N content in trash), with the remaining trash−N being incorporated into soil organic matter reserves.
Abstract: Brazil is recognized as a prominent renewable energy producer due to the production of ethanol from sugarcane. However, in order for this source of energy to be considered truly sustainable, conservation management practices, such as harvesting the cane green (without burning) and retaining the trash in the field, need to be adopted. This management practice affects mostly the nitrogen (N) cycle through the effect of trash on immobilization–mineralization of N by soil microorganisms. The aim of the experiments reported here was to evaluate N recovery from trash (trash-N) by sugarcane during three ratoon crop seasons: 2007, 2008 and 2009. Two field experiments were carried out, one in Jaboticabal and the other in Pradopolis, in the state of Sao Paulo, Brazil. The experiments were set up in a randomized block design with four replications. Within each plot, microplots were installed where the original trash was replaced by trash labelled with 15N, and maintained up to the fourth crop cycle. Trash-N recovery was higher in the Jaboticabal site, the most productive one, than in the Pradopolis site. The average trash-N recovery across the two sites after three crop cycles was 7.6 kg ha−1 (or 16.2% of the initial N content in trash), with the remaining trash-N being incorporated into soil organic matter reserves. While these results indicate that the value of trash for sugarcane nutrition is limited in the short term, maintaining trash on the field will serve as a long-term source of N and C for the soil.

Journal ArticleDOI
TL;DR: In this paper, the authors discuss key assumptions that differ between economic and ecological perspectives, and conclude that land-based mitigation strategies remain highly speculative; a constant iteration between synoptic integrated assessment models and more particularistic and fine-grained approaches is a crucial precondition for capturing complex dynamics and biophysical constraints that are essential for comprehensive assessments.
Abstract: Climate stabilization scenarios emphasize the importance of land-based mitigation to achieve ambitious mitigation goals. The stabilization scenarios informing the recent IPCC's Fifth Assessment Report suggest that bioenergy could contribute anywhere between 10 and 245 EJ to climate change mitigation in 2100. High deployment of bioenergy with low life cycle GHG emissions would enable ambitious climate stabilization futures and reduce demands on other sectors and options. Bioenergy with carbon capture and storage (BECCS) would even enable so-called negative emissions, possibly in the order of magnitude of 50% of today's annual gross emissions. Here, I discuss key assumptions that differ between economic and ecological perspectives. I find that high future yield assumptions, plausible in stabilization scenarios, look less realistic when evaluated in biophysical metrics. Yield assumptions also determine the magnitude of counterfactual land carbon stock development and partially determine the potential of BECCS. High fertilizer input required for high yields would likely hasten ecosystem degradation. I conclude that land-based mitigation strategies remain highly speculative; a constant iteration between synoptic integrated assessment models and more particularistic and fine-grained approaches is a crucial precondition for capturing complex dynamics and biophysical constraints that are essential for comprehensive assessments.

Journal ArticleDOI
TL;DR: In this paper, the effect of biochar on carbon footprint of rice production was investigated in a field experiment with three treatments: no residue amendment (Control), 6 th a � 1 � 1 yr � 1 corn straw (CS) amendment, and 2.4 t ha � 1 ¾ ¾¾ ¼ ¼ corn straw-derived biochar amendment (CBC).
Abstract: As a controversial strategy to mitigate global warming, biochar application into soil highlights the need for life cycle assessment before large-scale practice. This study focused on the effect of biochar on carbon footprint of rice production. A field experiment was performed with three treatments: no residue amendment (Control), 6 th a � 1 yr � 1 corn straw (CS) amendment, and 2.4 t ha � 1 yr � 1 corn straw-derived biochar amendment (CBC). Carbon footprint was calculated by considering carbon source processes (pyrolysis energy cost, fertilizer and pesticide input, farmwork, and soil greenhouse gas emissions) and carbon sink processes (soil carbon increment and energy offset from pyrolytic gas). On average over three consecutive rice-growing cycles from year 2011 to 2013, the CS treatment had a much higher carbon intensity of rice (0.68 kg CO2-C equivalent (CO2-Ce )k g � 1 grain) than that of Control (0.24 kg CO2-Ce kg � 1 grain), resulting from large soil CH4 emissions. Biochar amendment significantly increased soil carbon pool and showed no significant effect on soil total N2O and CH4 emissions relative to Control; however, due to a variation in net electric energy input of biochar production based on different pyrolysis settings, carbon intensity of rice under CBC treatment ranged from 0.04 to 0.44 kg CO2-Ce kg � 1 grain. The results indicated that biochar strategy had the potential to significantly reduce the carbon footprint of crop production, but the energy-efficient pyrolysis technique does matter.

Journal ArticleDOI
TL;DR: In this article, the authors quantified N2O emissions from soil covered with different amounts of sugarcane straw and determined the direct emissions of nitrogen fertilizers (applied at the planting furrows and in the topdressing) and the by-products of sugar-cane processing (filter cake and vinasse) applied to fields.
Abstract: The production and use of biofuels have increased rapidly in recent decades. Bioethanol derived from sugarcane has become a promising alternative to fossil fuel for use in automotive vehicles. The ‘savings’ calculated from the carbon footprint of this energy source still generates many questions related to nitrous oxide (N2O) emissions from sugarcane cultivation. We quantified N2O emissions from soil covered with different amounts of sugarcane straw and determined the direct N2O emission factors of nitrogen fertilizers (applied at the planting furrows and in the topdressing) and the by-products of sugarcane processing (filter cake and vinasse) applied to sugarcane fields. The results showed that the presence of different amounts of sugarcane straw did not change N2O emissions relative to bare soil (control). N-fertilizer increased N2O emissions from the soil, especially when urea was used, both at the planting furrow (plant cane) and during the regrowth process (ratoon cane) in relation to ammonium nitrate. The emission factor for N-fertilizer was 0.46 ± 0.33%. The field application of filter cake and vinasse favored N2O emissions from the soil, the emission factor for vinasse was 0.65 ± 0.29%, while filter cake had a lower emission factor of 0.13 ± 0.04%. The experimentally obtained N2O emission factors associated with sugarcane cultivation, specific to the major sugarcane production region of the Brazil, were lower than those considered by the IPCC. Thus, the results of this study should contribute to bioethanol carbon footprint calculations.

Journal ArticleDOI
TL;DR: In this paper, the spatial resolution and depth extent of domestic estimates of soil organic carbon (SOC) change for land (cropland, cropland pasture, grassland, and forest) conversion scenarios to biofuel crops (corn, corn stover, switchgrass, Miscanthus, poplar, and willow) at the county level in the USA.
Abstract: Converting land to biofuel feedstock production incurs changes in soil organic carbon (SOC) that can influence biofuel life-cycle greenhouse gas (GHG) emissions. Estimates of these land use change (LUC) and life-cycle GHG emissions affect biofuels' attractiveness and eligibility under a number of renewable fuel policies in the USA and abroad. Modeling was used to refine the spatial resolution and depth extent of domestic estimates of SOC change for land (cropland, cropland pasture, grassland, and forest) conversion scenarios to biofuel crops (corn, corn stover, switchgrass, Miscanthus, poplar, and willow) at the county level in the USA. Results show that in most regions, conversions from cropland and cropland pasture to biofuel crops led to neutral or small levels of SOC sequestration, while conversion of grassland and forest generally caused net SOC loss. SOC change results were incorporated into the Greenhouse Gases, Regulated Emissions, and Energy use in Transportation (GREET) model to assess their influence on life-cycle GHG emissions of corn and cellulosic ethanol. Total LUC GHG emissions (g CO2eq MJ−1) were 2.1–9.3 for corn-, −0.7 for corn stover-, −3.4 to 12.9 for switchgrass-, and −20.1 to −6.2 for Miscanthus ethanol; these varied with SOC modeling assumptions applied. Extending the soil depth from 30 to 100 cm affected spatially explicit SOC change and overall LUC GHG emissions; however, the influence on LUC GHG emission estimates was less significant in corn and corn stover than cellulosic feedstocks. Total life-cycle GHG emissions (g CO2eq MJ−1, 100 cm) were estimated to be 59–66 for corn ethanol, 14 for stover ethanol, 18–26 for switchgrass ethanol, and −7 to −0.6 for Miscanthus ethanol. The LUC GHG emissions associated with poplar- and willow-derived ethanol may be higher than that for switchgrass ethanol due to lower biomass yield.

Journal ArticleDOI
TL;DR: In this paper, the authors carried out a hybrid lifecycle assessment (LCA) of a future cellulose-refining industry located in the Green Triangle region of South Australia, and evaluated the social, economic and environmental impacts of lignocellulosic biofuel production.
Abstract: Growing concerns about energy security and climate change have prompted interest in Australia and worldwide to look for alternatives of fossil fuels. Among the renewable fuel sources, biofuels are one such alternative that have received unprecedented attention in the past decade. Cellulosic biofuels, derived from agricultural and wood biomass, could potentially increase Australia’s oil self-sufficiency. In this study, we carry out a hybrid lifecycle assessment (LCA) of a future cellulose-refining industry located in the Green Triangle region of South Australia. We assess both the upstream and downstream refining stages, and consider as well the life-cycle effects occurring in conventional industries displaced by the proposed biofuel supply chains. We improve on conventional LCA method by utilising multi-region input–output (IO) analysis that allows a comprehensive appraisal of the industry’s supply chains. Using IO-based hybrid LCA, we evaluate the social, economic and environmental impacts of lignocellulosic biofuel production. In particular, we evaluate the employment, economic stimulus, energy consumption and greenhouse gas impacts of the biofuel supply chain and also quantify the loss in economic activity and employment in the paper, pulp and paperboard industry resulting from the diversion of forestry biomass to biofuel production. Our results reveal that the loss in economic activity and employment will only account for 10% of the new jobs and additional stimulus generated in the economy. Lignocellulosic biofuel production will create significant new jobs and enhance productivity and economic growth by initiating the growth of new industries in the economy. The energy return on investment for cellulosic biofuel production lies between 2.7 and 5.2, depending on the type of forestry feedstock and the travel distance between the feedstock industry and the cellulose refinery. Furthermore, the biofuel industry will be a net carbon sequester.

Journal ArticleDOI
TL;DR: This study suggests that miscanthus and SRC willows, and the management associated with perennial cropping, would support significant amounts of biodiversity when compared with annual arable crops, and recommends the strategic planting of these perennial, dedicated biomass crops in arable farmland to increase landscape heterogeneity and enhance ecosystem function.
Abstract: Suggestions that novel, non-food, dedicated biomass crops used to produce bioenergy may provide opportunities to diversify and reinstate biodiversity in intensively managed farmland have not yet been fully tested at the landscape scale. Using two of the largest, currently available landscape-scale biodiversity data sets from arable and biomass bioenergy crops, we take a taxonomic and functional trait approach to quantify and contrast the consequences for biodiversity indicators of adopting dedicated biomass crops on land previously cultivated under annual, rotational arable cropping. The abundance and community compositions of biodiversity indicators in fields of break and cereal crops changed when planted with the dedicated biomass crops, miscanthus and short rotation coppiced (SRC) willow. Weed biomass was consistently greater in the two dedicated biomass crops than in cereals, and invertebrate abundance was similarly consistently higher than in break crops. Using canonical variates analysis, we identified distinct plant and invertebrate taxa and trait-based communities in miscanthus and SRC willows, whereas break and cereal crops tended to form a single, composite community. Seedbanks were shown to reflect the longer term effects of crop management. Our study suggests that miscanthus and SRC willows, and the management associated with perennial cropping, would support significant amounts of biodiversity when compared with annual arable crops. We recommend the strategic planting of these perennial, dedicated biomass crops in arable farmland to increase landscape heterogeneity and enhance ecosystem function, and simultaneously work towards striking a balance between energy and food security.

Journal ArticleDOI
TL;DR: In this paper, the authors employ the Global Change Assessment Model (GCAM) to estimate the potential of agricultural and forestry residue biomass for energy production in China, and show that residue biomass has the potential to be an important component in China's sustainable energy production portfolio.
Abstract: Biomass has been widely recognized as an important energy source with high potential to reduce greenhouse gas emissions while minimizing environmental pollution. In this study, we employ the Global Change Assessment Model to estimate the potential of agricultural and forestry residue biomass for energy production in China. Potential availability of residue biomass as an energy source was analyzed for the 21st century under different climate policy scenarios. Currently, the amount of total annual residue biomass, averaged over 2003–2007, is around 15 519 PJ in China, consisting of 10 818 PJ from agriculture residues (70%) and 4701 PJ forestry residues (30%). We estimate that 12 693 PJ of the total biomass is available for energy production, with 66% derived from agricultural residue and 34% from forestry residue. Most of the available residue is from south central China (3347 PJ), east China (2862 PJ) and south-west China (2229 PJ), which combined exceeds 66% of the total national biomass. Under the reference scenario without carbon tax, the potential availability of residue biomass for energy production is projected to be 3380 PJ by 2050 and 4108 PJ by 2095, respectively. When carbon tax is imposed, biomass availability increases substantially. For the CCS 450 ppm scenario, availability of biomass increases to 9002 PJ (2050) and 11 524 PJ (2095), respectively. For the 450 ppm scenario without CCS, 9183 (2050) and 11 150 PJ (2095) residue biomass, respectively, is projected to be available. Moreover, the implementation of CCS will have a little impact on the supply of residue biomass after 2035. Our results suggest that residue biomass has the potential to be an important component in China’s sustainable energy production portfolio. As a low carbon emission energy source, climate change policies that involve carbon tariff and CCS technology promote the use of residue biomass for energy production in a low carbon-constrained world.