scispace - formally typeset
Search or ask a question

Showing papers in "Human Brain Mapping in 2018"


Journal ArticleDOI
TL;DR: An Activation Likelihood Estimation meta‐analysis of 50 fMRI studies, which used the Monetary Incentive Delay Task (MIDT), to identify which brain regions are implicated in the anticipation of rewards, anticipation of losses, and the receipt of reward, helped clarify the neural substrates of the different phases of reward and loss processing.
Abstract: The processing of rewards and losses are crucial to everyday functioning. Considerable interest has been attached to investigating the anticipation and outcome phases of reward and loss processing, but results to date have been inconsistent. It is unclear if anticipation and outcome of a reward or loss recruit similar or distinct brain regions. In particular, while the striatum has widely been found to be active when anticipating a reward, whether it activates in response to the anticipation of losses as well remains ambiguous. Furthermore, concerning the orbitofrontal/ventromedial prefrontal regions, activation is often observed during reward receipt. However, it is unclear if this area is active during reward anticipation as well. We ran an Activation Likelihood Estimation meta-analysis of 50 fMRI studies, which used the Monetary Incentive Delay Task (MIDT), to identify which brain regions are implicated in the anticipation of rewards, anticipation of losses, and the receipt of reward. Anticipating rewards and losses recruits overlapping areas including the striatum, insula, amygdala and thalamus, suggesting that a generalised neural system initiates motivational processes independent of valence. The orbitofrontal/ventromedial prefrontal regions were recruited only during the reward outcome, likely representing the value of the reward received. Our findings help to clarify the neural substrates of the different phases of reward and loss processing, and advance neurobiological models of these processes.

272 citations


Journal ArticleDOI
TL;DR: The proposed ComBat harmonization approach for fMRI‐derived connectivity measures facilitates reliable and efficient analysis of retrospective and prospective multi‐site fMRI neuroimaging studies and increased the power to detect age associations when using optimal combinations of connectivity metrics and brain atlases.
Abstract: Acquiring resting-state functional magnetic resonance imaging (fMRI) datasets at multiple MRI scanners and clinical sites can improve statistical power and generalizability of results. However, multi-site neuroimaging studies have reported considerable nonbiological variability in fMRI measurements due to different scanner manufacturers and acquisition protocols. These undesirable sources of variability may limit power to detect effects of interest and may even result in erroneous findings. Until now, there has not been an approach that removes unwanted site effects. In this study, using a relatively large multi-site (4 sites) fMRI dataset, we investigated the impact of site effects on functional connectivity and network measures estimated by widely used connectivity metrics and brain parcellations. The protocols and image acquisition of the dataset used in this study had been homogenized using identical MRI phantom acquisitions from each of the neuroimaging sites; however, intersite acquisition effects were not completely eliminated. Indeed, in this study, we found that the magnitude of site effects depended on the choice of connectivity metric and brain atlas. Therefore, to further remove site effects, we applied ComBat, a harmonization technique previously shown to eliminate site effects in multi-site diffusion tensor imaging (DTI) and cortical thickness studies. In the current work, ComBat successfully removed site effects identified in connectivity and network measures and increased the power to detect age associations when using optimal combinations of connectivity metrics and brain atlases. Our proposed ComBat harmonization approach for fMRI-derived connectivity measures facilitates reliable and efficient analysis of retrospective and prospective multi-site fMRI neuroimaging studies.

260 citations


Journal ArticleDOI
TL;DR: This comprehensively assessed two aspects of reproducibility, test–retest reliability and replicability, on widely used R‐fMRI metrics in both between‐subject contrasts of sex differences and within‐subject comparisons of eyes‐open and eyes‐closed conditions, finding reliability, sensitivity and positive predictive value (PPV) rose as sample size increased.
Abstract: Concerns regarding reproducibility of resting-state functional magnetic resonance imaging (R-fMRI) findings have been raised. Little is known about how to operationally define R-fMRI reproducibility and to what extent it is affected by multiple comparison correction strategies and sample size. We comprehensively assessed two aspects of reproducibility, test-retest reliability and replicability, on widely used R-fMRI metrics in both between-subject contrasts of sex differences and within-subject comparisons of eyes-open and eyes-closed (EOEC) conditions. We noted permutation test with Threshold-Free Cluster Enhancement (TFCE), a strict multiple comparison correction strategy, reached the best balance between family-wise error rate (under 5%) and test-retest reliability/replicability (e.g., 0.68 for test-retest reliability and 0.25 for replicability of amplitude of low-frequency fluctuations (ALFF) for between-subject sex differences, 0.49 for replicability of ALFF for within-subject EOEC differences). Although R-fMRI indices attained moderate reliabilities, they replicated poorly in distinct datasets (replicability < 0.3 for between-subject sex differences, < 0.5 for within-subject EOEC differences). By randomly drawing different sample sizes from a single site, we found reliability, sensitivity and positive predictive value (PPV) rose as sample size increased. Small sample sizes (e.g., < 80 [40 per group]) not only minimized power (sensitivity < 2%), but also decreased the likelihood that significant results reflect "true" effects (PPV < 0.26) in sex differences. Our findings have implications for how to select multiple comparison correction strategies and highlight the importance of sufficiently large sample sizes in R-fMRI studies to enhance reproducibility. Hum Brain Mapp 39:300-318, 2018. © 2017 Wiley Periodicals, Inc.

230 citations


Journal ArticleDOI
TL;DR: TFUS targeted at unilateral sensory thalamus inhibited the amplitude of the P14 SEP as compared to sham, and there is evidence of translation of this effect to time windows of the EEG commensurate with SI and SII activities.
Abstract: Transcranial focused ultrasound (tFUS) has proven capable of stimulating cortical tissue in humans. tFUS confers high spatial resolutions with deep focal lengths and as such, has the potential to noninvasively modulate neural targets deep to the cortex in humans. We test the ability of single-element tFUS to noninvasively modulate unilateral thalamus in humans. Participants (N = 40) underwent either tFUS or sham neuromodulation targeted at the unilateral sensory thalamus that contains the ventro-posterior lateral (VPL) nucleus of thalamus. Somatosensory evoked potentials (SEPs) were recorded from scalp electrodes contralateral to median nerve stimulation. Activity of the unilateral sensory thalamus was indexed by the P14 SEP generated in the VPL nucleus and cortical somatosensory activity by subsequent inflexions of the SEP and through time/frequency analysis. Participants also under went tactile behavioral assessment during either the tFUS or sham condition in a separate experiment. A detailed acoustic model using computed tomography (CT) and magnetic resonance imaging (MRI) is also presented to assess the effect of individual skull morphology for single-element deep brain neuromodulation in humans. tFUS targeted at unilateral sensory thalamus inhibited the amplitude of the P14 SEP as compared to sham. There is evidence of translation of this effect to time windows of the EEG commensurate with SI and SII activities. These results were accompanied by alpha and beta power attenuation as well as time-locked gamma power inhibition. Furthermore, participants performed significantly worse than chance on a discrimination task during tFUS stimulation.

187 citations


Journal ArticleDOI
TL;DR: It is demonstrated that gender can be reliably predicted using rfMRI data and the importance of controlling for gender in brain imaging studies is highlighted.
Abstract: Prevalence of certain forms of psychopathology, such as autism and depression, differs between genders and understanding gender differences of the neurotypical brain may provide insights into risk and protective factors. In recent research, resting state functional magnetic resonance imaging (rfMRI) is widely used to map the inherent functional networks of the brain. Although previous studies have reported gender differences in rfMRI, the robustness of gender differences is not well characterized. In this study, we use a large data set to test whether rfMRI functional connectivity (FC) can be used to predict gender and identify FC features that are most predictive of gender. We utilized rfMRI data from 820 healthy controls from the Human Connectome Project. By applying a predefined functional template and partial least squares regression modeling, we achieved a gender prediction accuracy of 87% when multi-run rfMRI was used. Permutation tests confirmed that gender prediction was reliable ( p<.001). Effects of motion, age, handedness, blood pressure, weight, and brain volume on gender prediction are discussed. Further, we found that FC features within the default mode (DMN), fronto-parietal and sensorimotor networks contributed most to gender prediction. In the DMN, right fusiform gyrus and right ventromedial prefrontal cortex were important contributors. The above regions have been previously implicated in aspects of social functioning and this suggests potential gender differences in social cognition mediated by the DMN. Our findings demonstrate that gender can be reliably predicted using rfMRI data and highlight the importance of controlling for gender in brain imaging studies.

165 citations


Journal ArticleDOI
TL;DR: It is highlighted that the chronnectome captures inherent functional dynamics of individual brain networks and provides implications for individualized characterization of health and disease.
Abstract: The human brain is a large, interacting dynamic network, and its architecture of coupling among brain regions varies across time (termed the “chronnectome”). However, very little is known about whether and how the dynamic properties of the chronnectome can characterize individual uniqueness, such as identifying individuals as a “fingerprint” of the brain. Here, we employed multiband resting-state functional magnetic resonance imaging data from the Human Connectome Project (N = 105) and a sliding time-window dynamic network analysis approach to systematically examine individual time-varying properties of the chronnectome. We revealed stable and remarkable individual variability in three dynamic characteristics of brain connectivity (i.e., strength, stability, and variability), which was mainly distributed in three higher order cognitive systems (i.e., default mode, dorsal attention, and fronto-parietal) and in two primary systems (i.e., visual and sensorimotor). Intriguingly, the spatial patterns of these dynamic characteristics of brain connectivity could successfully identify individuals with high accuracy and could further significantly predict individual higher cognitive performance (e.g., fluid intelligence and executive function), which was primarily contributed by the higher order cognitive systems. Together, our findings highlight that the chronnectome captures inherent functional dynamics of individual brain networks and provides implications for individualized characterization of health and disease.

161 citations


Journal ArticleDOI
TL;DR: A new toolbox for support vector regression lesion‐symptom mapping (SVR‐LSM) is provided that provides a graphical interface and enhances the flexibility and rigor of analyses that can be conducted using this method.
Abstract: Lesion-symptom mapping has become a cornerstone of neuroscience research seeking to localize cognitive function in the brain by examining the sequelae of brain lesions. Recently, multivariate lesion-symptom mapping methods have emerged, such as support vector regression, which simultaneously consider many voxels at once when determining whether damaged regions contribute to behavioral deficits (Zhang, Kimberg, Coslett, Schwartz, & Wang, ). Such multivariate approaches are capable of identifying complex dependences that traditional mass-univariate approach cannot. Here, we provide a new toolbox for support vector regression lesion-symptom mapping (SVR-LSM) that provides a graphical interface and enhances the flexibility and rigor of analyses that can be conducted using this method. Specifically, the toolbox provides cluster-level family-wise error correction via permutation testing, the capacity to incorporate arbitrary nuisance models for behavioral data and lesion data and makes available a range of lesion volume correction methods including a new approach that regresses lesion volume out of each voxel in the lesion maps. We demonstrate these new tools in a cohort of chronic left-hemisphere stroke survivors and examine the difference between results achieved with various lesion volume control methods. A strong bias was found toward brain wide lesion-deficit associations in both SVR-LSM and traditional mass-univariate voxel-based lesion symptom mapping when lesion volume was not adequately controlled. This bias was corrected using three different regression approaches; among these, regressing lesion volume out of both the behavioral score and the lesion maps provided the greatest sensitivity in analyses.

121 citations


Journal ArticleDOI
TL;DR: An empirically derived dimensional model of inhibition characterizing neural systems underlying different aspects of inhibitory mechanisms is provided, offering a fundamental framework to advance current understanding of inhibition and provides new insights for future clinical research into disorders with different types of inhibition‐related dysfunctions.
Abstract: Inhibitory control is the stopping of a mental process with or without intention, conceptualized as mental suppression of competing information because of limited cognitive capacity. Inhibitory control dysfunction is a core characteristic of many major psychiatric disorders. Inhibition is generally thought to involve the prefrontal cortex; however, a single inhibitory mechanism is insufficient for interpreting the heterogeneous nature of human cognition. It remains unclear whether different dimensions of inhibitory processes-specifically cognitive inhibition, response inhibition, and emotional interference-rely on dissociated neural systems. We conducted systematic meta-analyses of fMRI studies in the BrainMap database supplemented by PubMed using whole-brain activation likelihood estimation. A total of 66 study experiments including 1,447 participants and 987 foci revealed that while the left anterior insula was concordant in all inhibitory dimensions, cognitive inhibition reliably activated specific dorsal frontal inhibitory system, engaging dorsal anterior cingulate, dorsolateral prefrontal cortex, and parietal areas, whereas emotional interference reliably implicated a ventral inhibitory system, involving the ventral surface of the inferior frontal gyrus and the amygdala. Response inhibition showed concordant clusters in the fronto-striatal system, including the dorsal anterior cingulate region and extended supplementary motor areas, the dorsal and ventral lateral prefrontal cortex, basal ganglia, midbrain regions, and parietal regions. We provide an empirically derived dimensional model of inhibition characterizing neural systems underlying different aspects of inhibitory mechanisms. This study offers a fundamental framework to advance current understanding of inhibition and provides new insights for future clinical research into disorders with different types of inhibition-related dysfunctions.

109 citations


Journal ArticleDOI
TL;DR: The findings suggest that Openness to Experience is associated with increased functional connectivity between default and cognitive control systems, a connectivity profile that may account for the enhanced imaginative and creative abilities of people high in Opennessto Experience.
Abstract: Imagination and creative cognition are often associated with the brain's default network (DN). Recent evidence has also linked cognitive control systems to performance on tasks involving imagination and creativity, with a growing number of studies reporting functional interactions between cognitive control and DN regions. We sought to extend the emerging literature on brain dynamics supporting imagination by examining individual differences in large-scale network connectivity in relation to Openness to Experience, a personality trait typified by imagination and creativity. To this end, we obtained personality and resting-state fMRI data from two large samples of participants recruited from the United States and China, and we examined contributions of Openness to temporal shifts in default and cognitive control network interactions using multivariate structural equation modeling and dynamic functional network connectivity analysis. In Study 1, we found that Openness was related to the proportion of scan time (i.e., “dwell time”) that participants spent in a brain state characterized by positive correlations among the default, executive, salience, and dorsal attention networks. Study 2 replicated and extended the effect of Openness on dwell time in a correlated brain state comparable to the state found in Study 1, and further demonstrated the robustness of this effect in latent variable models including fluid intelligence and other major personality factors. The findings suggest that Openness to Experience is associated with increased functional connectivity between default and cognitive control systems, a connectivity profile that may account for the enhanced imaginative and creative abilities of people high in Openness to Experience.

107 citations


Journal ArticleDOI
TL;DR: A meta‐analysis of fMRI studies investigating the neural basis of RPE points to a sequential and distributed encoding of different components of the RPE signal, with potentially distinct functional roles.
Abstract: Learning occurs when an outcome differs from expectations, generating a reward prediction error signal (RPE). The RPE signal has been hypothesized to simultaneously embody the valence of an outcome (better or worse than expected) and its surprise (how far from expectations). Nonetheless, growing evidence suggests that separate representations of the two RPE components exist in the human brain. Meta-analyses provide an opportunity to test this hypothesis and directly probe the extent to which the valence and surprise of the error signal are encoded in separate or overlapping networks. We carried out several meta-analyses on a large set of fMRI studies investigating the neural basis of RPE, locked at decision outcome. We identified two valence learning systems by pooling studies searching for differential neural activity in response to categorical positive-versus-negative outcomes. The first valence network (negative > positive) involved areas regulating alertness and switching behaviours such as the midcingulate cortex, the thalamus and the dorsolateral prefrontal cortex whereas the second valence network (positive > negative) encompassed regions of the human reward circuitry such as the ventral striatum and the ventromedial prefrontal cortex. We also found evidence of a largely distinct surprise-encoding network including the anterior cingulate cortex, anterior insula and dorsal striatum. Together with recent animal and electrophysiological evidence this meta-analysis points to a sequential and distributed encoding of different components of the RPE signal, with potentially distinct functional roles.

102 citations


Journal ArticleDOI
TL;DR: It is revealed that combining static and dynamic connectomics could differentiate between SI and NSI, offering new insight into the physiopathological mechanisms underlying SI.
Abstract: Neural circuit dysfunction underlies the biological mechanisms of suicidal ideation (SI). However, little is known about how the brain's "dynome" differentiate between depressed patients with and without SI. This study included depressed patients (n = 48) with SI, without SI (NSI), and healthy controls (HC, n = 30). All participants underwent resting-state functional magnetic resonance imaging. We constructed dynamic and static connectomics on 200 nodes using a sliding window and full-length time-series correlations, respectively. Specifically, the temporal variability of dynamic connectomic was quantified using the variance of topological properties across sliding window. The overall topological properties of both static and dynamic connectomics further differentiated between SI and NSI, and also predicted the severity of SI. The SI showed decreased overall topological properties of static connectomic relative to the HC. The SI exhibited increases in overall topological properties with regard to the dynamic connectomic when compared with the HC and the NSI. Importantly, combining the overall topological properties of dynamic and static connectomics yielded mean 75% accuracy (all p < .001) with mean 71% sensitivity and mean 75% specificity in differentiating between SI and NSI. Moreover, these features may predict the severity of SI (mean r = .55, all p < .05). The findings revealed that combining static and dynamic connectomics could differentiate between SI and NSI, offering new insight into the physiopathological mechanisms underlying SI. Furthermore, combining the brain's connectome and dynome may be considered a neuromarker for diagnostic and predictive models in the study of SI.

Journal ArticleDOI
TL;DR: It is demonstrated that there is a bias for fiber tracking algorithms to terminate preferentially on gyral crowns, rather than the banks of sulci, which could significantly affect connectivity results using the current generation of tracking algorithms.
Abstract: Diffusion MRI fiber tractography has been increasingly used to map the structural connectivity of the human brain. However, this technique is not without limitations; for example, there is a growing concern over anatomically correlated bias in tractography findings. In this study, we demonstrate that there is a bias for fiber tracking algorithms to terminate preferentially on gyral crowns, rather than the banks of sulci. We investigate this issue by comparing diffusion MRI (dMRI) tractography with equivalent measures made on myelin-stained histological sections. We begin by investigating the orientation and trajectories of axons near the white matter/gray matter boundary, and the density of axons entering the cortex at different locations along gyral blades. These results are compared with dMRI orientations and tract densities at the same locations, where we find a significant gyral bias in many gyral blades across the brain. This effect is shown for a range of tracking algorithms, both deterministic and probabilistic, and multiple diffusion models, including the diffusion tensor and a high angular resolution diffusion imaging technique. Additionally, the gyral bias occurs for a range of diffusion weightings, and even for very high-resolution datasets. The bias could significantly affect connectivity results using the current generation of tracking algorithms.

Journal ArticleDOI
TL;DR: A comprehensive overview of ICC analysis in its prior usage in neuroimaging is provided, and it is shown that the standard ANOVA framework is often limited, rigid, and inflexible in modeling capabilities.
Abstract: Intraclass correlation (ICC) is a reliability metric that gauges similarity when, for example, entities are measured under similar, or even the same, well-controlled conditions, which in MRI applications include runs/sessions, twins, parent/child, scanners, sites, and so on. The popular definitions and interpretations of ICC are usually framed statistically under the conventional ANOVA platform. Here, we provide a comprehensive overview of ICC analysis in its prior usage in neuroimaging, and we show that the standard ANOVA framework is often limited, rigid, and inflexible in modeling capabilities. These intrinsic limitations motivate several improvements. Specifically, we start with the conventional ICC model under the ANOVA platform, and extend it along two dimensions: first, fixing the failure in ICC estimation when negative values occur under degenerative circumstance, and second, incorporating precision information of effect estimates into the ICC model. These endeavors lead to four modeling strategies: linear mixed-effects (LME), regularized mixed-effects (RME), multilevel mixed-effects (MME), and regularized multilevel mixed-effects (RMME). Compared to ANOVA, each of these four models directly provides estimates for fixed effects and their statistical significances, in addition to the ICC estimate. These new modeling approaches can also accommodate missing data and fixed effects for confounding variables. More importantly, we show that the MME and RMME approaches offer more accurate characterization and decomposition among the variance components, leading to more robust ICC computation. Based on these theoretical considerations and model performance comparisons with a real experimental dataset, we offer the following general-purpose recommendations. First, ICC estimation through MME or RMME is preferable when precision information (i.e., weights that more accurately allocate the variances in the data) is available for the effect estimate; when precision information is unavailable, ICC estimation through LME or the RME is the preferred option. Second, even though the absolute agreement version, ICC(2,1), is presently more popular in the field, the consistency version, ICC(3,1), is a practical and informative choice for whole-brain ICC analysis that achieves a well-balanced compromise when all potential fixed effects are accounted for. Third, approaches for clear, meaningful, and useful result reporting in ICC analysis are discussed. All models, ICC formulations, and related statistical testing methods have been implemented in an open source program 3dICC, which is publicly available as part of the AFNI suite. Even though our work here focuses on the whole-brain level, the modeling strategy and recommendations can be equivalently applied to other situations such as voxel, region, and network levels.

Journal ArticleDOI
TL;DR: In this article, the authors employed ultra-high field 7-Tesla fMRI during a German version of the Remote Associates Task (RAT) to investigate those subcortical contributions to insight.
Abstract: Finding creative solutions to difficult problems is a fundamental aspect of human culture and a skill highly needed. However, the exact neural processes underlying creative problem solving remain unclear. Insightful problem solving tasks were shown to be a valid method for investigating one subcomponent of creativity: the Aha!-Moment. Finding insightful solutions during a remote associates task (RAT) was found to elicit specific cortical activity changes. Considering the strong affective components of Aha!-Moments, as manifested in the subjectively experienced feeling of relief following the sudden emergence of the solution of the problem without any conscious forewarning, we hypothesized the subcortical dopaminergic reward network to be critically engaged during Aha. To investigate those subcortical contributions to insight, we employed ultra-high field 7-Tesla fMRI during a German Version of the RAT. During this task subjects were exposed to word triplets and instructed to find a solution word being associated with all of the three given words. They were supposed to press a button as soon as they felt confident about their solution without further revision, allowing us to capture the exact event of Aha!-Moment. Besides the finding on cortical involvement of the left anterior middle temporal gyrus (aMTG), here we showed for the first time robust subcortical activity changes related to insightful problem solving in the bilateral thalamus, hippocampus and the dopaminergic midbrain comprising ventral tegmental area (VTA), nucleus accumbens (NAcc) and caudate nucleus. These results shed new light on the affective neural mechanisms underlying insightful problem solving.

Journal ArticleDOI
TL;DR: Findings indicate that enhanced interactions in intra‐ and internetworks may contribute to the ECT response in MDD patients, and provide novel and important insights into the neurobiological mechanisms underlying ECT.
Abstract: Electroconvulsive therapy (ECT) is an effective and rapid treatment for major depressive disorder (MDD). However, the neurobiological underpinnings of ECT are still largely unknown. Recent studies have identified dysregulated brain networks in MDD. Therefore, we hypothesized that ECT may improve MDD symptoms through reorganizing these networks. To test this hypothesis, we used resting-state functional connectivity to investigate changes to the intra- and internetwork architecture of five reproducible resting-state networks: the default mode network (DMN), dorsal attention network (DAN), executive control network (CON), salience network (SAL), and sensory-motor network. Twenty-three MDD patients were assessed before and after ECT, along with 25 sex-, age-, and education-matched healthy controls. At the network level, enhanced intranetwork connectivities were found in the CON in MDD patients after ECT. Furthermore, enhanced internetwork connectivities between the DMN and SAL, and between the CON and DMN, DAN, and SAL were also identified. At the nodal level, the posterior cingulate cortex had increased connections with the left posterior cerebellum, right posterior intraparietal sulcus (rpIPS), and right anterior prefrontal cortex. The rpIPS had increased connections with the medial PFC (mPFC) and left anterior cingulate cortex. The left lateral parietal had increased connections with the dorsal mPFC (dmPFC), left anterior prefrontal cortex, and right anterior cingulate cortex. The dmPFC had increased connection with the left anterolateral prefrontal cortex. Our findings indicate that enhanced interactions in intra- and internetworks may contribute to the ECT response in MDD patients. These findings provide novel and important insights into the neurobiological mechanisms underlying ECT.

Journal ArticleDOI
TL;DR: A “chronnectomic” approach was employed to evaluate transient states of connectivity using resting‐state functional MRI in a population‐based sample of 774 6‐ to 10‐year‐old children, and it was demonstrated that higher levels of autistic traits and ASD diagnosis were associated with longer dwell times in a globally disconnected state.
Abstract: Recent advances in neuroimaging techniques have provided significant insights into developmental trajectories of human brain function. Characterizations of typical neurodevelopment provide a framework for understanding altered neurodevelopment, including differences in brain function related to developmental disorders and psychopathology. Historically, most functional connectivity studies of typical and atypical development operate under the assumption that connectivity remains static over time. We hypothesized that relaxing stationarity assumptions would reveal novel features of both typical brain development related to children on the autism spectrum. We employed a "chronnectomic" (recurring, time-varying patterns of connectivity) approach to evaluate transient states of connectivity using resting-state functional MRI in a population-based sample of 774 6- to 10-year-old children. Dynamic connectivity was evaluated using a sliding-window approach, and revealed four transient states. Internetwork connectivity increased with age in modularized dynamic states, illustrating an important pattern of connectivity in the developing brain. Furthermore, we demonstrated that higher levels of autistic traits and ASD diagnosis were associated with longer dwell times in a globally disconnected state. These results provide a roadmap to the chronnectomic organization of the developing brain and suggest that characteristics of functional brain connectivity are related to children on the autism spectrum.

Journal ArticleDOI
TL;DR: Data suggest distinct differences in cortical NDI and ODI occur in AD and these metrics provide pathologically relevant information beyond that of cortical thinning.
Abstract: Alzheimer's disease (AD) is associated with extensive alterations in grey matter microstructure, but our ability to quantify this in vivo is limited. Neurite orientation dispersion and density imaging (NODDI) is a multi-shell diffusion MRI technique that estimates neuritic microstructure in the form of orientation dispersion and neurite density indices (ODI/NDI). Mean values for cortical thickness, ODI, and NDI were extracted from predefined regions of interest in the cortical grey matter of 38 patients with young onset AD and 22 healthy controls. Five cortical regions associated with early atrophy in AD (entorhinal cortex, inferior temporal gyrus, middle temporal gyrus, fusiform gyrus, and precuneus) and one region relatively spared from atrophy in AD (precentral gyrus) were investigated. ODI, NDI, and cortical thickness values were compared between controls and patients for each region, and their associations with MMSE score were assessed. NDI values of all regions were significantly lower in patients. Cortical thickness measurements were significantly lower in patients in regions associated with early atrophy in AD, but not in the precentral gyrus. Decreased ODI was evident in patients in the inferior and middle temporal gyri, fusiform gyrus, and precuneus. The majority of AD-related decreases in cortical ODI and NDI persisted following adjustment for cortical thickness, as well as each other. There was evidence in the patient group that cortical NDI was associated with MMSE performance. These data suggest distinct differences in cortical NDI and ODI occur in AD and these metrics provide pathologically relevant information beyond that of cortical thinning.

Journal ArticleDOI
TL;DR: Findings provide evidence that there is regional specialization within the left IFG and differential executive networks underlie effortful listening under different speech manipulations.
Abstract: The brain networks supporting speech identification and comprehension under difficult listening conditions are not well specified. The networks hypothesized to underlie effortful listening include regions responsible for executive control. We conducted meta-analyses of auditory neuroimaging studies to determine whether a common activation pattern of the frontal lobe supports effortful listening under different speech manipulations. Fifty-three functional neuroimaging studies investigating speech perception were divided into three independent Activation Likelihood Estimate analyses based on the type of speech manipulation paradigm used: Speech-in-noise (SIN, 16 studies, involving 224 participants); spectrally degraded speech using filtering techniques (15 studies involving 270 participants); and linguistic complexity (i.e., levels of syntactic, lexical and semantic intricacy/density, 22 studies, involving 348 participants). Meta-analysis of the SIN studies revealed higher effort was associated with activation in left inferior frontal gyrus (IFG), left inferior parietal lobule, and right insula. Studies using spectrally degraded speech demonstrated increased activation of the insula bilaterally and the left superior temporal gyrus (STG). Studies manipulating linguistic complexity showed activation in the left IFG, right middle frontal gyrus, left middle temporal gyrus and bilateral STG. Planned contrasts revealed left IFG activation in linguistic complexity studies, which differed from activation patterns observed in SIN or spectral degradation studies. Although there were no significant overlap in prefrontal activation across these three speech manipulation paradigms, SIN and spectral degradation showed overlapping regions in left and right insula. These findings provide evidence that there is regional specialization within the left IFG and differential executive networks underlie effortful listening.

Journal ArticleDOI
TL;DR: The degree of RSC mediation was associated with EM performance, suggesting that individuals with greater mediation have an EM advantage, and suggest that RSC forms a critical gateway between MTL and cortical DMN to support EM in older adults.
Abstract: The default mode network (DMN) involves interacting cortical areas, including the posterior cingulate cortex (PCC) and the retrosplenial cortex (RSC), and subcortical areas, including the medial te ...

Journal ArticleDOI
TL;DR: Results showed that better teaching outcome was associated with higher time‐lagged interpersonal neural synchronization (INS) between right temporal‐parietal junction of the teacher and anterior superior temporal cortex of the student, and suggested that the INS plays an important role in the successful teaching.
Abstract: The neural mechanism for the dyadic process of teaching is poorly understood. Although theories about teaching have proposed that before any teaching takes place, the teacher will predict the knowledge state of the student(s) to enhance the teaching outcome, this theoretical Prediction-Transmission hypothesis has not been tested with any neuroimaging studies. Using functional near-infrared spectroscopy-based hyperscanning, this study measured brain activities of the teacher-student pairs simultaneously. Results showed that better teaching outcome was associated with higher time-lagged interpersonal neural synchronization (INS) between right temporal-parietal junction (TPJ) of the teacher and anterior superior temporal cortex (aSTC) of the student, when the teacher's brain activity preceded that of the student. Moreover, time course analyses suggested that such INS could mark the quality of the teaching outcome at an early stage of the teaching process. These results provided key neural evidence for the Prediction-Transmission hypothesis about teaching, and suggested that the INS plays an important role in the successful teaching.

Journal ArticleDOI
TL;DR: In this paper, the authors compared seed-based resting-state functional connectivity of the anterior cerebellum and anterior vermis with brain regions involved in somatosensory processing, multisensory integration, and bodily self-consciousness.
Abstract: The cerebellum plays a key role not only in motor function but also in affect and cognition. Although several psychopathological disorders have been associated with overall cerebellar dysfunction, it remains unclear whether different regions of the cerebellum contribute uniquely to psychopathology. Accordingly, we compared seed-based resting-state functional connectivity of the anterior cerebellum (lobule IV-V), of the posterior cerebellum (Crus I), and of the anterior vermis across posttraumatic stress disorder (PTSD; n = 65), its dissociative subtype (PTSD + DS; n = 37), and non-trauma-exposed healthy controls (HC; n = 47). Here, we observed decreased functional connectivity of the anterior cerebellum and anterior vermis with brain regions involved in somatosensory processing, multisensory integration, and bodily self-consciousness (temporo-parietal junction, postcentral gyrus, and superior parietal lobule) in PTSD + DS as compared to PTSD and HC. Moreover, the PTSD + DS group showed increased functional connectivity of the posterior cerebellum with cortical areas related to emotion regulation (ventromedial prefrontal and orbito-frontal cortex, subgenual anterior cingulum) as compared to PTSD. By contrast, PTSD showed increased functional connectivity of the anterior cerebellum with cortical areas associated with visual processing (fusiform gyrus), interoceptive awareness (posterior insula), memory retrieval, and contextual processing (hippocampus) as compared to HC. Finally, we observed decreased functional connectivity between the posterior cerebellum and prefrontal regions involved in emotion regulation, in PTSD as compared to HC. These findings not only highlight the crucial role of each cerebellar region examined in the psychopathology of PTSD but also reveal unique alterations in functional connectivity distinguishing the dissociative subtype of PTSD versus PTSD.

Journal ArticleDOI
TL;DR: It is shown that when the “FAST” model implemented in SPM is used with a well‐controlled number of parameters, it can successfully prewhiten 80% of grey matter voxels even with volume repetition times as short as 0.35 s.
Abstract: Rapid imaging techniques are increasingly used in functional MRI studies because they allow a greater number of samples to be acquired per unit time, thereby increasing statistical power. However, temporal correlations limit the increase in functional sensitivity and must be accurately accounted for to control the false-positive rate. A common approach to accounting for temporal correlations is to whiten the data prior to estimating fMRI model parameters. Models of white noise plus a first-order autoregressive process have proven sufficient for conventional imaging studies, but more elaborate models are required for rapidly sampled data. Here we show that when the "FAST" model implemented in SPM is used with a well-controlled number of parameters, it can successfully prewhiten 80% of grey matter voxels even with volume repetition times as short as 0.35 s. We further show that the temporal signal-to-noise ratio (tSNR), which has conventionally been used to assess the relative functional sensitivity of competing imaging approaches, can be augmented to account for the temporal correlations in the time series. This amounts to computing the t-score testing for the mean signal. We show in a visual perception task that unlike the tSNR weighted by the number of samples, the t-score measure is directly related to the t-score testing for activation when the temporal correlations are correctly modeled. This score affords a more accurate means of evaluating the functional sensitivity of different data acquisition options.

Journal ArticleDOI
TL;DR: An association is demonstrated between brainstem volume loss and impaired autonomic control (reduced heart rate variability [HRV] and between brain stem damage and time to SUDEP in patients who later died of SUDEP.
Abstract: Observations in witnessed Sudden Unexpected Death in Epilepsy (SUDEP) suggest that a fatal breakdown of the central autonomic control could play a major role in SUDEP. A previous MR study found volume losses in the mesencephalon in focal epilepsy that were more severe and extended into the lower brainstem in two patients who later died of SUDEP. The aims of this study were to demonstrate an association (1) between brainstem volume loss and impaired autonomic control (reduced heart rate variability [HRV]); (2) between brainstem damage and time to SUDEP in patients who later died of SUDEP. Two populations were studied: (1) Autonomic system function population (ASF, 18 patients with focal epilepsy, 11 controls) with HRV measurements and standardized 3 T MR exams. (2) SUDEP population (26 SUDEP epilepsy patients) with clinical MRI 1-10 years before SUDEP. Deformation-based morphometry of the brainstem was used to generate profile similarity maps from the resulting Jacobian determinant maps that were further characterized by graph analysis to identify regions with excessive expansion indicating significant volume loss or atrophy. The total number of regions with excessive expansion in ASF was negatively correlated with HRV (r = -.37, p = .03), excessive volume loss in periaqueductal gray/medulla oblongata autonomic nuclei explained most of the HRV associated variation (r/r2 = -.82/.67, p < .001). The total number of regions with excessive expansion in SUDEP was negatively correlated with time to SUDEP (r = -.39, p = .03), excessive volume loss in the raphe/medulla oblongata at the obex level explained most of the variation of the time between MRI to SUDEP (r/r2 = -.60/.35,p = .001). Epilepsy is associated with brainstem atrophy that impairs autonomic control and can increase the risk for SUDEP if it expands into the mesencephalon.

Journal ArticleDOI
TL;DR: A fast, open‐source processing algorithm is developed using advanced vessel segmentation schemes and iterative nonlinear registration to isolate, extract, and quantify cerebral vessels in susceptibility weighting imaging (SWI) and time‐of‐flight angiography (TOF‐MRA) datasets acquired in a large cohort of healthy individuals.
Abstract: While several methodologies exist for quantifying gray and white matter properties in humans, relatively little is known regarding the spatial organization and the intersubject variability of cerebral vessels. To resolve this, we developed a fast, open-source processing algorithm using advanced vessel segmentation schemes and iterative nonlinear registration to isolate, extract, and quantify cerebral vessels in susceptibility weighting imaging (SWI) and time-of-flight angiography (TOF-MRA) datasets acquired in a large cohort (n = 42) of healthy individuals. From this, whole-brain venous and arterial probabilistic maps were generated along with the computation of regional densities and diameters within regions based on popular anatomical and functional atlases. The results show that cerebral vasculature is highly heterogeneous, displaying disproportionally large vessel densities in brain areas such as the anterior and posterior cingulate, cuneus, precuneus, parahippocampus, insula, and temporal gyri. On average, venous densities were slightly higher and less variable across subjects than arterial. Moreover, regional variations in both venous and arterial density were significantly correlated to cortical thickness (R = 0.42). This publicly available new atlas of the human cerebrovascular system provides a first step toward quantifying morphological changes in the diseased brain and serving as a potential regression tool in fMRI analysis.

Journal ArticleDOI
TL;DR: Neurophysiological changes associated with working memory following iTBS suggest functional relevance, but the effects of different intensities on behavioural performance remain elusive in the present healthy sample, and should be carefully considered for clinical populations.
Abstract: Intermittent theta burst stimulation (iTBS) is a noninvasive brain stimulation technique capable of increasing cortical excitability beyond the stimulation period. Due to the rapid induction of modulatory effects, prefrontal application of iTBS is gaining popularity as a therapeutic tool for psychiatric disorders such as depression. In an attempt to increase efficacy, higher than conventional intensities are currently being applied. The assumption that this increases neuromodulatory may be mechanistically false for iTBS. This study examined the influence of intensity on the neurophysiological and behavioural effects of iTBS in the prefrontal cortex. Sixteen healthy participants received iTBS over prefrontal cortex at either 50, 75 or 100% resting motor threshold in separate sessions. Single-pulse TMS and concurrent electroencephalography (EEG) was used to assess changes in cortical reactivity measured as TMS-evoked potentials and oscillations. The n-back task was used to assess changes in working memory performance. The data can be summarised as an inverse U-shape relationship between intensity and iTBS plastic effects, where 75% iTBS yielded the largest neurophysiological changes. Improvement in reaction time in the 3-back task was supported by the change in alpha power, however, comparison between conditions revealed no significant differences. The assumption that higher intensity results in greater neuromodulatory effects may be false, at least in healthy individuals, and should be carefully considered for clinical populations. Neurophysiological changes associated with working memory following iTBS suggest functional relevance. However, the effects of different intensities on behavioural performance remain elusive in the present healthy sample.

Journal ArticleDOI
TL;DR: The propagation of TMS‐induced activity from the DLPFC to sgACC may be an accurate biomarker for rTMS efficacy and further research is required to determine whether this method can contribute to the selection of patients with treatment resistant MDD who will respond to rT MS treatment.
Abstract: Major depressive disorder (MDD) is a severe mental disorder associated with high morbidity and mortality rates, which remains difficult to treat, as both resistance and recurrence rates are high Repetitive transcranial magnetic stimulation (TMS) of the left dorsolateral prefrontal cortex (DLPFC) provides a safe and effective treatment for selected patients with treatment-resistant MDD Little is known about the mechanisms of action of TMS provided to the left DLPFC in MDD and we can currently not predict who will respond to this type of treatment, precluding effective patient selection In order to shed some light on the mechanism of action, we applied single pulse TMS to the left DLPFC in 10 healthy participants using a unique TMS-fMRI set-up, in which we could record the direct effects of TMS Stimulation of the DLPFC triggered activity in a number of connected brain regions, including the subgenual anterior cingulate cortex (sgACC) in four out of nine participants The sgACC is of particular interest, because normalization of activity in this region has been associated with relief of depressive symptoms in MDD patients This is the first direct evidence that TMS pulses delivered to the DLPFC can propagate to the sgACC The propagation of TMS-induced activity from the DLPFC to sgACC may be an accurate biomarker for rTMS efficacy Further research is required to determine whether this method can contribute to the selection of patients with treatment resistant MDD who will respond to rTMS treatment

Journal ArticleDOI
TL;DR: The finding of excessive variability in the dorsal striatal‐sensorimotor circuitry could be an indication of increased sensitivity to regional fluctuations in the epileptogenic zone, while excessive stability in the ventral striatal–cognitive circuitry could represent compensatory mechanisms that prevent or postpone cognitive impairments in BECTS.
Abstract: Benign epilepsy with centrotemporal spikes (BECTS) is characterized by abnormal (static) functional interactions among cortical and subcortical regions, regardless of the active or chronic epileptic state. However, human brain connectivity is dynamic and associated with ongoing rhythmic activity. The dynamic functional connectivity (dFC) of the distinct striato-cortical circuitry associated with or without interictal epileptiform discharges (IEDs) are poorly understood in BECTS. Herein, we captured the pattern of dFC using sliding window correlation of putamen subregions in the BECTS (without IEDs, n = 23; with IEDs, n = 20) and sex- and age-matched healthy controls (HCs, n = 28) during rest. Furthermore, we quantified dFC variability using their standard deviation. Compared with HCs and patients without IEDs, patients with IEDs exhibited excessive variability in the dorsal striatal-sensorimotor circuitry related to typical seizure semiology. By contrast, excessive stability (decreased dFC variability) was found in the ventral striatal-cognitive circuitry (p < .05, GRF corrected). In addition, correlation analysis revealed that the excessive variability in the dorsal striatal-sensorimotor circuitry was related to highly frequent IEDs (p < .05, uncorrected). Our finding of excessive variability in the dorsal striatal-sensorimotor circuitry could be an indication of increased sensitivity to regional fluctuations in the epileptogenic zone, while excessive stability in the ventral striatal-cognitive circuitry could represent compensatory mechanisms that prevent or postpone cognitive impairments in BECTS. Overall, the differentiated dynamics of the striato-cortical circuitry extend our understanding of interactions among epileptic activity, striato-cortical functional architecture, and neurocognitive processes in BECTS.

Journal ArticleDOI
TL;DR: FreeSurfer saves time and money, and approximates the same atrophy measures as manual tracing, but it introduces biases that could require statistical adjustments in some studies, and FreeSurfer consistently reports larger volumes than manual tracing.
Abstract: MRI has become an indispensable tool for brain volumetric studies, with the hippocampus an important region of interest. Automation of the MRI segmentation process has helped advance the field by facilitating the volumetric analysis of larger cohorts and more studies. FreeSurfer has emerged as the de facto standard tool for these analyses, but studies validating its output are all based on older versions. To characterize FreeSurfer's validity, we compare several versions of FreeSurfer software with traditional hand-tracing. Using MRI images of 262 males and 402 females aged 38 to 84, we directly compare estimates of hippocampal volume from multiple versions of FreeSurfer, its hippocampal subfield routines, and our manual tracing protocol. We then use those estimates to assess asymmetry and atrophy, comparing performance of different estimators with each other and with brain atrophy measures. FreeSurfer consistently reports larger volumes than manual tracing. This difference is smaller in larger hippocampi or older people, with these biases weaker in version 6.0.0 than prior versions. All methods tested agree qualitatively on rightward asymmetry and increasing atrophy in older people. FreeSurfer saves time and money, and approximates the same atrophy measures as manual tracing, but it introduces biases that could require statistical adjustments in some studies.

Journal ArticleDOI
TL;DR: It is found that RF‐ANTs performed the best for mapping between fsaverage and MNI 152/Colin27, even for new subjects registered to MNI152/ Colin27 using a different software tool (FSL FNIRT), suggesting that RF•ANTs would be useful even for researchers not using ANTs.
Abstract: The results of most neuroimaging studies are reported in volumetric (e.g., MNI152) or surface (e.g., fsaverage) coordinate systems. Accurate mappings between volumetric and surface coordinate systems can facilitate many applications, such as projecting fMRI group analyses from MNI152/Colin27 to fsaverage for visualization or projecting resting-state fMRI parcellations from fsaverage to MNI152/Colin27 for volumetric analysis of new data. However, there has been surprisingly little research on this topic. Here, we evaluated three approaches for mapping data between MNI152/Colin27 and fsaverage coordinate systems by simulating the above applications: projection of group-average data from MNI152/Colin27 to fsaverage and projection of fsaverage parcellations to MNI152/Colin27. Two of the approaches are currently widely used. A third approach (registration fusion) was previously proposed, but not widely adopted. Two implementations of the registration fusion (RF) approach were considered, with one implementation utilizing the Advanced Normalization Tools (ANTs). We found that RF-ANTs performed the best for mapping between fsaverage and MNI152/Colin27, even for new subjects registered to MNI152/Colin27 using a different software tool (FSL FNIRT). This suggests that RF-ANTs would be useful even for researchers not using ANTs. Finally, it is worth emphasizing that the most optimal approach for mapping data to a coordinate system (e.g., fsaverage) is to register individual subjects directly to the coordinate system, rather than via another coordinate system. Only in scenarios where the optimal approach is not possible (e.g., mapping previously published results from MNI152 to fsaverage), should the approaches evaluated in this manuscript be considered. In these scenarios, we recommend RF-ANTs (https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/registration/Wu2017_RegistrationFusion).

Journal ArticleDOI
TL;DR: Results showed that older participants tend to spend more time in states which reflect overall stronger connectivity patterns throughout the brain, and dynamic functional connectivity is an important factor to consider when examining brain development across childhood.
Abstract: Brain maturation through adolescence has been the topic of recent studies. Previous works have evaluated changes in morphometry and also changes in functional connectivity. However, most resting-state fMRI studies have focused on static connectivity. Here we examine the relationship between age/maturity and the dynamics of brain functional connectivity. Utilizing a resting fMRI dataset comprised 421 subjects ages 3-22 from the PING study, we first performed group ICA to extract independent components and their time courses. Next, dynamic functional network connectivity (dFNC) was calculated via a sliding window followed by clustering of connectivity patterns into 5 states. Finally, we evaluated the relationship between age and the amount of time each participant spent in each state as well as the transitions among different states. Results showed that older participants tend to spend more time in states which reflect overall stronger connectivity patterns throughout the brain. In addition, the relationship between age and state transition is symmetric. This can mean individuals change functional connectivity through time within a specific set of states. On the whole, results indicated that dynamic functional connectivity is an important factor to consider when examining brain development across childhood.