scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Animal Ecology in 2014"


Journal ArticleDOI
TL;DR: In this paper, the authors present a mechanistic model for the thermal response of consumer-resource interactions, which predicts that temperature affects species interactions via key traits such as body velocity, detection distance, search rate and handling time.
Abstract: Summary Environmental temperature has systematic effects on rates of species interactions, primarily through its influence on organismal physiology. We present a mechanistic model for the thermal response of consumer–resource interactions. We focus on how temperature affects species interactions via key traits – body velocity, detection distance, search rate and handling time – that underlie per capita consumption rate. The model is general because it applies to all foraging strategies: active-capture (both consumer and resource body velocity are important), sit-and-wait (resource velocity dominates) and grazing (consumer velocity dominates). The model predicts that temperature influences consumer–resource interactions primarily through its effects on body velocity (either of the consumer, resource or both), which determines how often consumers and resources encounter each other, and that asymmetries in the thermal responses of interacting species can introduce qualitative, not just quantitative, changes in consumer–resource dynamics. We illustrate this by showing how asymmetries in thermal responses determine equilibrium population densities in interacting consumer–resource pairs. We test for the existence of asymmetries in consumer–resource thermal responses by analysing an extensive database on thermal response curves of ecological traits for 309 species spanning 15 orders of magnitude in body size from terrestrial, marine and freshwater habitats. We find that asymmetries in consumer–resource thermal responses are likely to be a common occurrence. Overall, our study reveals the importance of asymmetric thermal responses in consumer–resource dynamics. In particular, we identify three general types of asymmetries: (i) different levels of performance of the response, (ii) different rates of response (e.g. activation energies) and (iii) different peak or optimal temperatures. Such asymmetries should occur more frequently as the climate changes and species' geographical distributions and phenologies are altered, such that previously noninteracting species come into contact. By using characteristics of trophic interactions that are often well known, such as body size, foraging strategy, thermy and environmental temperature, our framework should allow more accurate predictions about the thermal dependence of consumer–resource interactions. Ultimately, integration of our theory into models of food web and ecosystem dynamics should be useful in understanding how natural systems will respond to current and future temperature change.

372 citations


Journal ArticleDOI
TL;DR: It is suggested that events during the migration seasons have an important impact on the population dynamics of long-distance migrants, and mortality during spring migration may account for short-term annual variation in survival and population sizes, while mortality during autumn migration may be more important for long-term population regulation.
Abstract: Information about when and where animals die is important to understand population regulation In migratory animals, mortality might occur not only during the stationary periods (eg breeding and wintering) but also during the migration seasons However, the relative importance of population limiting factors during different periods of the year remains poorly understood, and previous studies mainly relied on indirect evidence Here, we provide direct evidence about when and where migrants die by identifying cases of confirmed and probable deaths in three species of long-distance migratory raptors tracked by satellite telemetry We show that mortality rate was about six times higher during migration seasons than during stationary periods However, total mortality was surprisingly similar between periods, which can be explained by the fact that risky migration periods are shorter than safer stationary periods Nevertheless, more than half of the annual mortality occurred during migration We also found spatiotemporal patterns in mortality: spring mortality occurred mainly in Africa in association with the crossing of the Sahara desert, while most mortality during autumn took place in Europe Our results strongly suggest that events during the migration seasons have an important impact on the population dynamics of long-distance migrants We speculate that mortality during spring migration may account for short-term annual variation in survival and population sizes, while mortality during autumn migration may be more important for long-term population regulation (through density-dependent effects)

365 citations


Journal ArticleDOI
TL;DR: Results indicate that visual acuity and habitat cover jointly moderate the effect of moonlight on predation risk, whereas trophic position has little effect, and highlight the importance of sensory systems and phylogenetic history in determining the level of risk.
Abstract: The risk of predation strongly affects mammalian population dynamics and community interactions. Bright moonlight is widely believed to increase predation risk for nocturnal mammals by increasing the ability of predators to detect prey, but the potential for moonlight to increase detection of predators and the foraging efficiency of prey has largely been ignored. Studies have reported highly variable responses to moonlight among species, calling into question the assumption that moonlight increases risk. Here, we conducted a quantitative meta-analysis examining the effects of moonlight on the activity of 59 nocturnal mammal species to test the assumption that moonlight increases predation risk. We examined patterns of lunarphilia and lunarphobia across species in relation to factors such as trophic level, habitat cover preference and visual acuity. Across all species included in the meta-analysis, moonlight suppressed activity. The magnitude of suppression was similar to the presence of a predator in experimental studies of foraging rodents (13.6% and 18.7% suppression, respectively). Contrary to the expectation that moonlight increases predation risk for all prey species, however, moonlight effects were not clearly related to trophic level and were better explained by phylogenetic relatedness, visual acuity and habitat cover. Moonlight increased the activity of prey species that use vision as their primary sensory system and suppressed the activity of species that primarily use other senses (e.g. olfaction, echolocation), and suppression was strongest in open habitat types. Strong taxonomic patterns underlay these relationships: moonlight tended to increase primate activity, whereas it tended to suppress the activity of rodents, lagomorphs, bats and carnivores. These results indicate that visual acuity and habitat cover jointly moderate the effect of moonlight on predation risk, whereas trophic position has little effect. While the net effect of moonlight appears to increase predation risk for most nocturnal mammals, our results highlight the importance of sensory systems and phylogenetic history in determining the level of risk.

235 citations


Journal ArticleDOI
TL;DR: This study is the first to use microbial genetics to construct and analyse transmission networks in a wildlife population and highlights the potential utility of an approach integrating microbial genetics with network analysis.
Abstract: Although network analysis has drawn considerable attention as a promising tool for disease ecology, empirical research has been hindered by limitations in detecting the occurrence of pathogen transmission (who transmitted to whom) within social networks. Using a novel approach, we utilize the genetics of a diverse microbe, Escherichia coli, to infer where direct or indirect transmission has occurred and use these data to construct transmission networks for a wild giraffe population (Giraffe camelopardalis). Individuals were considered to be a part of the same transmission chain and were interlinked in the transmission network if they shared genetic subtypes of E. coli. By using microbial genetics to quantify who transmits to whom independently from the behavioural data on who is in contact with whom, we were able to directly investigate how the structure of contact networks influences the structure of the transmission network. To distinguish between the effects of social and environmental contact on transmission dynamics, the transmission network was compared with two separate contact networks defined from the behavioural data: a social network based on association patterns, and a spatial network based on patterns of home-range overlap among individuals. We found that links in the transmission network were more likely to occur between individuals that were strongly linked in the social network. Furthermore, individuals that had more numerous connections or that occupied 'bottleneck' positions in the social network tended to occupy similar positions in the transmission network. No similar correlations were observed between the spatial and transmission networks. This indicates that an individual's social network position is predictive of transmission network position, which has implications for identifying individuals that function as super-spreaders or transmission bottlenecks in the population. These results emphasize the importance of association patterns in understanding transmission dynamics, even for environmentally transmitted microbes like E. coli. This study is the first to use microbial genetics to construct and analyse transmission networks in a wildlife population and highlights the potential utility of an approach integrating microbial genetics with network analysis.

192 citations


Journal ArticleDOI
TL;DR: The ecological and genetic data suggest a major invasion event that is currently unfolding in southern South America with disastrous consequences for the native bumblebee species.
Abstract: Summary: The Palaearctic Bombus ruderatus (in 1982/1983) and Bombus terrestris (1998) have both been introduced into South America (Chile) for pollination purposes. We here report on the results of sampling campaigns in 2004, and 2010-2012 showing that both species have established and massively expanded their range. Bombus terrestris, in particular, has spread by some 200 km year-1 and had reached the Atlantic coast in Argentina by the end of 2011. Both species, and especially B. terrestris, are infected by protozoan parasites that seem to spread along with the imported hosts and spillover to native species. Genetic analyses by polymorphic microsatellite loci suggest that the host population of B. terrestris is genetically diverse, as expected from a large invading founder population, and structured through isolation by distance. Genetically, the populations of the trypanosomatid parasite, Crithidia bombi, sampled in 2004 are less diverse, and distinct from the ones sampled later. Current C. bombi populations are highly heterozygous and also structured through isolation by distance correlating with the genetic distances of B. terrestris, suggesting the latter's expansion to be a main structuring factor for the parasite. Remarkably, wherever B. terrestris spreads, the native Bombus dahlbomii disappears although the reasons remain unclear. Our ecological and genetic data suggest a major invasion event that is currently unfolding in southern South America with disastrous consequences for the native bumblebee species. © 2013 British Ecological Society.

185 citations


Journal ArticleDOI
TL;DR: This study provides evidence that life-history diversity can dampen fluctuations in population abundances and biomass via portfolio effects, and examines steelhead in two large watersheds in north-western British Columbia, Canada.
Abstract: Summary 1. Life-history strategies can buffer individuals and populations from environmental variability. For instance, it is possible that asynchronous dynamics among different life histories can stabilize populations through portfolio effects. 2. Here, we examine life-history diversity and its importance to stability for an iconic migratory fish species. In particular, we examined steelhead (Oncorhynchus mykiss), an anadromous and iteroparous salmonid, in two large, relatively pristine, watersheds, the Skeena and Nass, in north-western British Columbia, Canada. We synthesized life-history information derived from scales collected from adult steelhead (N = 7227) in these watersheds across a decade. 3. These migratory fishes expressed 36 different manifestations of the anadromous life-history strategy, with 16 different combinations of freshwater and marine ages, 7! 6% of fish performing multiple spawning migrations, and up to a maximum of four spawning migrations per lifetime. Furthermore, in the Nass watershed, various life histories were differently prevalent through time ‐ three different life histories were the most prevalent in a given year, and no life history ever represented more than 45% of the population. 4. These asynchronous dynamics among life histories decreased the variability of numerical abundance and biomass of the aggregated population so that it was > 20% more stable than the stability of the weighted average of specific life histories: evidence of a substantial portfolio effect. Year of ocean entry was a key driver of dynamics; the median correlation coefficient of abundance of life histories that entered the ocean the same year was 2! 5 times higher than the median pairwise coefficient of life histories that entered the ocean at different times. Simulations illustrated how different elements of life-history diversity contribute to stability and persistence of populations. 5. This study provides evidence that life-history diversity can dampen fluctuations in population abundances and biomass via portfolio effects. Conserving genetic integrity and habitat diversity in these and other large watersheds can enable a diversity of life histories that increases population and biomass stability in the face of environmental variability.

149 citations


Journal ArticleDOI
TL;DR: The validity of utilizing hunting mode and habitat domain for predicting predator-prey interactions is demonstrated, and the importance of accounting for flexibility in prey movement ranges as an anti-predator response rather than treating the domain as a static attribute is highlighted.
Abstract: Ecologists have long searched for a framework of a priori species traits to help predict predator-prey interactions in food webs. Empirical evidence has shown that predator hunting mode and predator and prey habitat domain are useful traits for explaining predator-prey interactions. Yet, individual experiments have yet to replicate predator hunting mode, calling into question whether predator impacts can be attributed to hunting mode or merely species identity. We tested the effects of spider predators with sit-and-wait, sit-and-pursue and active hunting modes on grasshopper habitat domain, activity and mortality in a grassland system. We replicated hunting mode by testing two spider predator species of each hunting mode on the same grasshopper prey species. We observed grasshoppers with and without each spider species in behavioural cages and measured their mortality rates, movements and habitat domains. We likewise measured the movements and habitat domains of spiders to characterize hunting modes. We found that predator hunting mode explained grasshopper mortality and spider and grasshopper movement activity and habitat domain size. Sit-and-wait spider predators covered small distances over a narrow domain space and killed fewer grasshoppers than sit-and-pursue and active predators, which ranged farther distances across broader domains and killed more grasshoppers, respectively. Prey adjusted their activity levels and horizontal habitat domains in response to predator presence and hunting mode: sedentary sit-and-wait predators with narrow domains caused grasshoppers to reduce activity in the same-sized domain space; more mobile sit-and-pursue predators with broader domains caused prey to reduce their activity within a contracted horizontal (but not vertical) domain space; and highly mobile active spiders led grasshoppers to increase their activity across the same domain area. All predators impacted prey activity, and sit-and-pursue predators generated strong effects on domain size. This study demonstrates the validity of utilizing hunting mode and habitat domain for predicting predator-prey interactions. Results also highlight the importance of accounting for flexibility in prey movement ranges as an anti-predator response rather than treating the domain as a static attribute.

140 citations


Journal ArticleDOI
TL;DR: Analysis of data on temporal change in laying date and clutch size of birds from Europe and North America suggests that, across a wide variety of species, mismatches in the timing of egg laying or numbers of offspring have had relatively little influence on population size compared with other aspects of phenology and life history.
Abstract: Summary Although the phenology of numerous organisms has advanced significantly in response to recent climate change, the life-history and population consequences of earlier reproduction remain poorly understood. We analysed extensive data on temporal change in laying date and clutch size of birds from Europe and North America to test whether these changes were related to recent trends in population size. Across studies, laying date advanced significantly, while clutch size did not change. However, within populations, changes in laying date and clutch size were positively correlated, implying that species which advanced their laying date the most were also those that increased their clutch size the most. Greater advances in laying date were associated with species that had multiple broods per season, lived in nonagricultural habitats and were herbivorous or predatory. The duration of the breeding season increased for multibrooded species and decreased for single-brooded species. Changes in laying date and clutch size were not related to changes in population size (for resident or migratory species). This suggests that, across a wide variety of species, mismatches in the timing of egg laying or numbers of offspring have had relatively little influence on population size compared with other aspects of phenology and life history.

135 citations


Journal ArticleDOI
TL;DR: A strong seasonal effect was detected in both urban and rural populations, such as birds tended to be active earlier in the morning and later in the evening in the early breeding season than at later stages.
Abstract: The growing interest in the effects of light pollution on daily and seasonal cycles of animals has led to a boost of research in recent years. In birds, it has been hypothesized that artificial light at night can affect daily aspects of behaviour, but one caveat is the lack of knowledge about the light intensity that wild animals, such as birds, are exposed to during the night. Organisms have naturally evolved daily rhythms to adapt to the 24-h cycle of day and night, thus, it is important to investigate the potential shifts in daily cycles due to global anthropogenic processes such as urbanization. We captured adult male European blackbirds (Turdus merula) in one rural forest and two urban sites differing in the degree of anthropogenic disturbance. We tagged these birds with light loggers and simultaneously recorded changes in activity status (active/non-active) through an automated telemetry system. We first analysed the relationship between light at night, weather conditions and date with daily activity onset and end. We then compared activity, light at night exposure and noise levels between weekdays and weekends. Onset of daily activity was significantly advanced in both urban sites compared to the rural population, while end of daily activity did not vary either among sites. Birds exposed to higher amounts of light in the late night showed earlier onset of activity in the morning, but light at night did not influence end of daily activity. Light exposure at night and onset/end of daily activity timing was not different between weekdays and weekends, but all noise variables were. A strong seasonal effect was detected in both urban and rural populations, such as birds tended to be active earlier in the morning and later in the evening (relative to civil twilight) in the early breeding season than at later stages. Our results point at artificial light at night as a major driver of change in timing of daily activity. Future research should focus on the costs and benefits of altered daily rhythmicity in birds thriving in urban areas.

134 citations


Journal ArticleDOI
TL;DR: Assessment of the effect of wolf density, prey abundance and population structure, as well as winter severity, on age-specific survival in Yellowstone National Park indicates that density-dependent intraspecific aggression is a major driver of adult wolf survival in northern Yellowstone, suggesting intrinsic density- dependent mechanisms have the potential to regulate wolf populations at high ungulate densities.
Abstract: Summary 1. Understanding the population dynamics of top-predators is essential to assess their impact on ecosystems and to guide their management. Key to this understanding is identifying the mechanisms regulating vital rates. 2. Determining the influence of density on survival is necessary to understand the extent to which human-caused mortality is compensatory or additive. In wolves (Canis lupus), empirical evidence for density-dependent survival is lacking. Dispersal is considered the principal way in which wolves adjust their numbers to prey supply or compensate for human exploitation. However, studies to date have primarily focused on exploited wolf populations, in which density-dependent mechanisms are likely weak due to artificially low wolf densities. 3. Using 13 years of data on 280 collared wolves in Yellowstone National Park, we assessed the effect of wolf density, prey abundance and population structure, as well as winter severity, on age-specific survival in two areas (prey-rich vs. prey-poor) of the national park. We further analysed cause-specific mortality and explored the factors driving intraspecific aggression in the prey-rich northern area of the park. 4. Overall, survival rates decreased during the study. In northern Yellowstone, density dependence regulated adult survival through an increase in intraspecific aggression, independent of prey availability. In the interior of the park, adult survival was less variable and density-independent, despite reduced prey availability. There was no effect of prey population structure in northern Yellowstone, or of winter severity in either area. Survival was similar among yearlings and adults, but lower for adults older than 6 years. 5. Our results indicate that density-dependent intraspecific aggression is a major driver of adult wolf survival in northern Yellowstone, suggesting intrinsic density-dependent mechanisms have the potential to regulate wolf populations at high ungulate densities. When low prey availability or high removal rates maintain wolves at lower densities, limited inter-pack interactions may prevent density-dependent survival, consistent with our findings in the interior of the park.

127 citations


Journal ArticleDOI
TL;DR: Findings demonstrate differential responses of subordinate species within the same guild and challenge a widespread perception that lions undermine cheetah conservation efforts by highlighting fine-scale spatial avoidance as a possible mechanism for mitigating mesopredator suppression.
Abstract: Top predators can dramatically suppress populations of smaller predators, with cascading effects throughout communities, and this pressure is often unquestioningly accepted as a constraint on mesopredator populations. In this study, we reassess whether African lions suppress populations of cheetahs and African wild dogs and examine possible mechanisms for coexistence between these species. Using long-term records from Serengeti National Park, we tested 30 years of population data for evidence of mesopredator suppression, and we examined six years of concurrent radio-telemetry data for evidence of large-scale spatial displacement. The Serengeti lion population nearly tripled between 1966 and 1998; during this time, wild dogs declined but cheetah numbers remained largely unchanged. Prior to their local extinction, wild dogs primarily occupied low lion density areas and apparently abandoned the long-term study area as the lion population 'saturated' the region. In contrast, cheetahs mostly utilized areas of high lion density, and the stability of the cheetah population indicates that neither high levels of lion-inflicted mortality nor behavioural avoidance inflict sufficient demographic consequences to translate into population-level effects. Population data from fenced reserves in southern Africa revealed a similar contrast between wild dogs and cheetahs in their ability to coexist with lions. These findings demonstrate differential responses of subordinate species within the same guild and challenge a widespread perception that lions undermine cheetah conservation efforts. Paired with several recent studies that document fine-scale lion-avoidance by cheetahs, this study further highlights fine-scale spatial avoidance as a possible mechanism for mitigating mesopredator suppression.

Journal ArticleDOI
TL;DR: Strong evidence is provided for the role of migratory birds as key drivers for seasonal epizootics of LPAIV, regardless of their role as vectors of these viruses.
Abstract: Summary 1. Similar to other infectious diseases, the prevalence of low pathogenic avian influenza viruses (LPAIV) has been seen to exhibit marked seasonal variation. However, mechanisms driving this variation in wild birds have yet to be tested. We investigated the validity of three previously suggested drivers for the seasonal dynamics in LPAIV infections in wild birds: (i) host density, (ii) immunologically na€ive young and (iii) increased susceptibility in migrants. 2. To address these questions, we sampled a key LPAIV host species, the mallard Anas platy- rhynchos, on a small spatial scale, comprehensively throughout a complete annual cycle, mea- suring both current and past infection (i.e. viral and seroprevalence, respectively). 3. We demonstrate a minor peak in LPAIV prevalence in summer, a dominant peak in autumn, during which half of the sampled population was infected, and no infections in spring. Seroprevalence of antibodies to a conserved gene segment of avian influenza virus (AIV) peaked in winter and again in spring. 4. The summer peak of LPAIV prevalence coincided with the entrance of unfledged na€ive young in the population. Moreover, juveniles were more likely to be infected, shed higher quantities of virus and were less likely to have detectable antibodies to AIV than adult birds. The arrival of migratory birds, as identified by stable hydrogen isotope analysis, appeared to drive the autumn peak in LPAIV infection, with both temporal coincidence and higher infec- tion prevalence in migrants. Remarkably, seroprevalence in migrants was substantially lower than viral prevalence throughout autumn migration, further indicating that each wave of migrants amplified local AIV circulation. Finally, while host abundance increased throughout autumn, it peaked in winter, showing no direct correspondence with either of the LPAIV infection peaks. 5. At an epidemiologically relevant spatial scale, we provide strong evidence for the role of migratory birds as key drivers for seasonal epizootics of LPAIV, regardless of their role as vectors of these viruses. This study exemplifies the importance of understanding host demog- raphy and migratory behaviour when examining seasonal drivers of infection in wildlife popu- lations.

Journal ArticleDOI
TL;DR: A detailed description of the steps involved in constructing an integral projection models (IPMs) is provided, explaining how to translate your study system into an IPM; implement your IPM; and diagnose potential problems with your IPM.
Abstract: In order to understand how changes in individual performance (growth, survival or reproduction) influence population dynamics and evolution, ecologists are increasingly using parameterized mathematical models. For continuously structured populations, where some continuous measure of individual state influences growth, survival or reproduction, integral projection models (IPMs) are commonly used. We provide a detailed description of the steps involved in constructing an IPM, explaining how to: (i) translate your study system into an IPM; (ii) implement your IPM; and (iii) diagnose potential problems with your IPM. We emphasize how the study organism's life cycle, and the timing of censuses, together determine the structure of the IPM kernel and important aspects of the statistical analysis used to parameterize an IPM using data on marked individuals. An IPM based on population studies of Soay sheep is used to illustrate the complete process of constructing, implementing and evaluating an IPM fitted to sample data. We then look at very general approaches to parameterizing an IPM, using a wide range of statistical techniques (e.g. maximum likelihood methods, generalized additive models, nonparametric kernel density estimators). Methods for selecting models for parameterizing IPMs are briefly discussed. We conclude with key recommendations and a brief overview of applications that extend the basic model. The online Supporting Information provides commented R code for all our analyses.

Journal ArticleDOI
TL;DR: The present study provides the first evidence that the larvae of pollen generalist bees can benefit from the nutrient content of unfavourable pollen without being negatively affected by its unfavourably chemical properties if such pollen is mixed with favourable pollen.
Abstract: Summary 1. Generalist herbivorous insects, which feed on plant tissue that is nutritionally heterogeneous or varies in its content of secondary metabolites, often benefit from dietary mixing through more balanced nutrient intake or reduced exposure to harmful secondary metabolites. Pollen is similarly heterogeneous as other plant tissue in its content of primary and secondary metabolites, suggesting that providing their offspring with mixed pollen diets might be a promising strategy for pollen generalist bees to complement nutrient imbalances or to mitigate harmful secondary metabolites of unfavourable pollen. 2. In the present study, we compared larval performance of the pollen generalist solitary bee species Osmia cornuta (Megachilidae) on five experimental pollen diets that consisted of different proportions of unfavourable pollen diet of Ranunculus acris (Ranunculaceae) and favourable pollen diet of Sinapis arvensis (Brassicaceae). In addition, we microscopically analysed the pollen contained in the scopal brushes of field-collected females of O. cornuta and three closely related species to elucidate to what degree these pollen generalist bees mix pollen of different hosts in their brood cells. 3. In striking contrast to a pure Ranunculus pollen diet, which had a lethal effect on most developing larvae of O. cornuta, larval survival, larval development time and adult body mass of both males and females remained nearly unaffected by the admixture of up to 50% of Ranunculus pollen diet to the larval food. 4. Between 42% and 66% of all female scopal pollen loads analysed contained mixtures of pollen from two to six plant families, indicating that pollen mixing is a common behaviour in O. cornuta and the three related bee species. 5. The present study provides the first evidence that the larvae of pollen generalist bees can benefit from the nutrient content of unfavourable pollen without being negatively affected by its unfavourable chemical properties if such pollen is mixed with favourable pollen. We conclude that the widespread pollen mixing by females of pollen generalist bees should also be considered as a possible strategy to exploit flowers with unfavourable pollen and to optimize larval food quality.

Journal ArticleDOI
TL;DR: This study provides the clearest evidence yet for dietary self-medication using macronutrients and shows that the temporal dynamics of feeding behaviour depends on the severity and stage of the infection.
Abstract: (1) Some animals change their feeding behaviour when infected with parasites, seeking out substances that enhance their ability to overcome infection. This “self-medication” is typically considered to involve the consumption of toxins, minerals or secondary compounds. However, recent studies have shown that macronutrients can influence the immune response, and that pathogen-challenged individuals can self-medicate by choosing a diet rich in protein and low in carbohydrates. Infected individuals might also reduce food intake when infected (i.e. illness-induced anorexia). (2) Here, we examine macronutrient self-medication and illness-induced anorexia in caterpillars of the African armyworm (Spodoptera exempta) by asking how individuals change their feeding decisions over the time course of infection with a baculovirus. We measured self-medication behaviour across several full-sib families to evaluate the plasticity of diet choice and underlying genetic variation. (3) Larvae restricted to diets high in protein (P) and low in carbohydrate (C) were more likely to survive a virus challenge than those restricted to diets with a low P:C ratio. When allowed free choice, virus-challenged individuals chose a higher protein diet than controls. (4) Individuals challenged with either a lethal or sub-lethal dose of virus increased the P:C ratio of their chosen diets. This was mostly due to a sharp decline in carbohydrate intake, rather than an increased intake of protein, reducing overall food intake, consistent with an illness-induced anorexic response. Over time the P:C ratio of the diet decreased until it matched that of controls. (5) Our study provides the clearest evidence yet for dietary self-medication using macronutrients, and shows that the temporal dynamics of feeding behaviour depends on the severity and stage of the infection. The strikingly similar behaviour shown by different families suggests that self-medication is phenotypically plastic and not a consequence of genetically-based differences in diet choice between families.

Journal ArticleDOI
TL;DR: An optimization algorithm was used to identify the rate at which the impact of prior passage of wolves decreases over time and with the predator's distance, and the spatial and temporal scales of anti-predator responses varied with prey species and season.
Abstract: Summary 1. Predators impact prey populations not only by consuming individuals, but also by altering their behaviours. These nonlethal effects can influence food web properties as much as lethal effects. The mechanisms of nonlethal effects include chronic and temporary anti-predator behaviours, the nature of which depends on the spatial dynamics of predators and the range over which prey perceive risk. 2. The relation between chronic and ephemeral responses to risk determines predator–prey interactions, with consequences that can ripple across the food web. Nonetheless, few studies have quantified the spatio-temporal scales over which prey respond to predation threat, and how this response varies with habitat features. 3. We evaluated the reaction of radio-collared caribou and moose to the passage of radio-collared wolves, by considering changes in movement characteristics during winter and summer. We used an optimization algorithm to identify the rate at which the impact of prior passage of wolves decreases over time and with the predator’s distance. 4. The spatial and temporal scales of anti-predator responses varied with prey species and season. Caribou and moose displayed four types of behaviour following the passage of wolves: lack of response, increased selection of safe land cover types, decreased selection of risky cover types and increased selection of food-rich forest stands. For example, moose increased their avoidance of open conifer stands with lichen in summer, which are selected by wolves in this season. Also in winter, caribou increased their selection of conifer stands with lichen for nearly 10 days following a wolf’s passage. This stronger selection for foodrich patches could indicate that the recent passage of wolves informs caribou on the current predator distribution and reveals the rate at which this information become less reliable over time. 5. Caribou and moose used anti-predator responses that combine both long- and short-term behavioural adjustments. The spatial game between wolves and their prey involves complex and nonlinear mechanisms that vary between species and seasons. A comprehensive assessment of risk effects on ecosystem dynamics thus requires the characterization of chronic and temporary anti-predator behaviours.

Journal ArticleDOI
TL;DR: It is suggested that spatial heterogeneity in predator community composition can generate a geographical mosaic of selection facilitating the evolution of polymorphic warning signals, the first time this mechanism gains experimental support.
Abstract: Summary 1. Polymorphism in warning coloration is puzzling because positive frequency-dependent selection by predators is expected to promote monomorphic warning signals in defended prey. 2. We studied predation on the warning-coloured wood tiger moth (Parasemia plantaginis )b y using artificial prey resembling white and yellow male colour morphs in five separate populations with different naturally occurring morph frequencies. 3. We tested whether predation favours one of the colour morphs over the other and whether that is influenced either by local, natural colour morph frequencies or predator community composition. 4. We found that yellow specimens were attacked less than white ones regardless of the local frequency of the morphs indicating frequency-independent selection, but predation did depend on predator community composition: yellows suffered less attacks when Paridae were abundant, whereas whites suffered less attacks when Prunellidae were abundant. 5. Our results suggest that spatial heterogeneity in predator community composition can generate a geographical mosaic of selection facilitating the evolution of polymorphic warning signals. This is the first time this mechanism gains experimental support. Altogether, this study sheds light on the evolution of adaptive coloration in heterogeneous environments.

Journal ArticleDOI
TL;DR: The results show that the activity of the immune system of an ectothermic animal species is temperature dependent and suggest that heat waves associated with global warming may immunocompromise host species, thereby potentially facilitating the spread of infectious diseases.
Abstract: Global climate change is predicted to lead to increased temperatures and more extreme climatic events. This may influence host-parasite interactions, immunity and therefore the impact of infectious diseases on ecosystems. However, little is known about the effects of rising temperatures on immune defence, in particular in ectothermic animals, where the immune system is directly exposed to external temperature change. Fish are ideal models for studying the effect of temperature on immunity, because they are poikilothermic, but possess a complete vertebrate immune system with both innate and adaptive immunity. We used three-spined sticklebacks ( Gasterosteus aculeatus) originating from a stream and a pond, whereby the latter supposedly were adapted to higher temperature variation. We studied the effect of increasing and decreasing temperatures and a simulated heat wave with subsequent recovery on body condition and immune parameters. We hypothesized that the immune system might be less active at low temperatures, but will be even more suppressed at temperatures towards the upper tolerable temperature range. Contrary to our expectation, we found innate and adaptive immune activity to be highest at a temperature as low as 13 °C. Exposure to a simulated heat wave induced long-lasting immune disorders, in particular in a stickleback population that might be less adapted to temperature variation in its natural environment. The results show that the activity of the immune system of an ectothermic animal species is temperature dependent and suggest that heat waves associated with global warming may immunocompromise host species, thereby potentially facilitating the spread of infectious diseases.

Journal ArticleDOI
TL;DR: Positive relationships between the predicted values of a resource selection function (RSF) and survival are found, yet subsequently incorporating an additional negative effect of predation risk greatly improved models further, revealing a positive, but non-ideal relationship between selection and survival.
Abstract: 1. A central assumption underlying the study of habitat selection is that selected habitats confer enhanced fitness. Unfortunately, this assumption is rarely tested, and in some systems, gradients of predation risk may more accurately characterize spatial variation in vital rates than gradients described by habitat selection studies. 2. Here, we separately measured spatial patterns of both resource selection and predation risk and tested their relationships with a key demographic trait, adult female survival, for a threatened ungulate, woodland caribou (Rangifer tarandus caribou Gmelin). We also evaluated whether exposure to gradients in both predation risk and resource selection value was manifested temporally through instantaneous or seasonal effects on survival outcomes. 3. We used Cox proportional hazards spatial survival modelling to assess the relative support for 5 selection- and risk-based definitions of habitat quality, as quantified by woodland caribou adult female survival. These hypotheses included scenarios in which selection ideally mirrored survival, risk entirely drove survival, non-ideal selection correlated with survival but with additive risk effects, an ecological trap with maladaptive selection and a non-spatial effect of annual variation in weather. 4. Indeed, we found positive relationships between the predicted values of a resource selection function (RSF) and survival, yet subsequently incorporating an additional negative effect of predation risk greatly improved models further. This revealed a positive, but non-ideal relationship between selection and survival. Gradients in these covariates were also shown to affect individual survival probability at multiple temporal scales. Exposure to increased predation risk had a relatively instantaneous effect on survival outcomes, whereas variation in habitat suitability predicted by an RSF had both instantaneous and longer-term seasonal effects on survival. 5. Predation risk was an additive source of hazard beyond that detected through selection alone, and woodland caribou selection thus was shown to be non-ideal. Furthermore, by combining spatial adult female survival models with herd-specific estimates of recruitment in matrix population models, we estimated a spatially explicit landscape of population growth predictions for this endangered species.

Journal ArticleDOI
TL;DR: Novel individual-based analyses of species' realized functional niches are presented, which are applied to a herbivorous coral reef fish community and reveal extensive complementarity, demonstrating its potential applicability to other high-diversity ecosystems.
Abstract: Detailed knowledge of a species' functional niche is crucial for the study of ecological communities and processes. The extent of niche overlap, functional redundancy and functional complementarity is of particular importance if we are to understand ecosystem processes and their vulnerability to disturbances. Coral reefs are among the most threatened marine systems, and anthropogenic activity is changing the functional composition of reefs. The loss of herbivorous fishes is particularly concerning as the removal of algae is crucial for the growth and survival of corals. Yet, the foraging patterns of the various herbivorous fish species are poorly understood. Using a multidimensional framework, we present novel individual-based analyses of species' realized functional niches, which we apply to a herbivorous coral reef fish community. In calculating niche volumes for 21 species, based on their microhabitat utilization patterns during foraging, and computing functional overlaps, we provide a measurement of functional redundancy or complementarity. Complementarity is the inverse of redundancy and is defined as less than 50% overlap in niche volumes. The analyses reveal extensive complementarity with an average functional overlap of just 15.2%. Furthermore, the analyses divide herbivorous reef fishes into two broad groups. The first group (predominantly surgeonfishes and parrotfishes) comprises species feeding on exposed surfaces and predominantly open reef matrix or sandy substrata, resulting in small niche volumes and extensive complementarity. In contrast, the second group consists of species (predominantly rabbitfishes) that feed over a wider range of microhabitats, penetrating the reef matrix to exploit concealed surfaces of various substratum types. These species show high variation among individuals, leading to large niche volumes, more overlap and less complementarity. These results may have crucial consequences for our understanding of herbivorous processes on coral reefs, as algal removal appears to depend strongly on species-specific microhabitat utilization patterns of herbivores. Furthermore, the results emphasize the capacity of the individual-based analyses to reveal variation in the functional niches of species, even in high-diversity systems such as coral reefs, demonstrating its potential applicability to other high-diversity ecosystems.

Journal ArticleDOI
TL;DR: It is highlighted that parasite virulence can be shaped by the host nutritional status and that parasite can adapt to the environment provided by their hosts, possibly through genetic selection.
Abstract: Host resources can drive the optimal parasite exploitation strategy by offering a good or a poor environment to pathogens. Hosts living in resource-rich habitats might offer a favourable environment to developing parasites because they provide a wealth of resources. However, hosts living in resource-rich habitats might afford a higher investment into costly immune defences providing an effective barrier against infection. Understanding how parasites can adapt to hosts living in habitats of different quality is a major challenge in the light of the current human-driven environmental changes. We studied the role of nutritional resources as a source of phenotypic variation in host exploitation by the avian malaria parasite Plasmodium relictum. We investigated how the nutritional status of birds altered parasite within-host dynamics and virulence, and how the interaction between past and current environments experienced by the parasite accounts for the variation in the infection dynamics. Experimentally infected canaries were allocated to control or supplemented diets. Plasmodium parasites experiencing the two different environments were subsequently transmitted in a full-factorial design to new hosts reared under similar control or supplemented diets. Food supplementation was effective since supplemented hosts gained body mass during a 15-day period that preceded the infection. Host nutrition had strong effects on infection dynamics and parasite virulence. Overall, parasites were more successful in control nonsupplemented birds, reaching larger population sizes and producing more sexual (transmissible) stages. However, supplemented hosts paid a higher cost of infection, and when keeping parasitaemia constant, they had lower haematocrit than control hosts. Parasites grown on control hosts were better able to exploit the subsequent hosts since they reached higher parasitaemia than parasites originating from supplemented hosts. They were also more virulent since they induced higher mass and haematocrit loss. Our study highlights that parasite virulence can be shaped by the host nutritional status and that parasite can adapt to the environment provided by their hosts, possibly through genetic selection.

Journal ArticleDOI
TL;DR: This study is among the first to link manipulative experiments, in which a potential dilution mechanism is supported, with analyses of field data on species richness, host identity, spatial autocorrelation and disease prevalence, to support the dilution effect hypothesis.
Abstract: The dilution effect, the hypothesis that biodiversity reduces disease risk, has received support in many systems. However, few dilution effect studies have linked mechanistic experiments to field patterns to establish both causality and ecological relevance. We conducted a series of laboratory experiments and tested the dilution effect hypothesis in an amphibian-Batrachochytrium dendrobatidis (Bd) system and tested for consistency between our laboratory experiments and field patterns of amphibian species richness, host identity and Bd prevalence. In our laboratory experiments, we show that tadpoles can filter feed Bd zoospores and that the degree of suspension feeding was positively associated with their dilution potential. The obligate suspension feeder, Gastrophryne carolinensis, generally diluted the risk of chytridiomycosis for tadpoles of Bufo terrestris and Hyla cinerea, whereas tadpoles of B. terrestris (an obligate benthos feeder) generally amplified infections for the other species. In addition, G. carolinensis reduced Bd abundance on H. cinerea more so in the presence than absence of B. terrestris and B. terrestris amplified Bd abundance on H. cinerea more so in the absence than presence of G. carolinensis. Also, when ignoring species identity, species richness was a significant negative predictor of Bd abundance. In our analysis of field data, the presence of Bufo spp. and Gastrophryne spp. were significant positive and negative predictors of Bd prevalence, respectively, even after controlling for climate, vegetation, anthropogenic factors (human footprint), species richness and sampling effort. These patterns of dilution and amplification supported our laboratory findings, demonstrating that the results are likely ecologically relevant. The results from our laboratory and field data support the dilution effect hypothesis and also suggest that dilution and amplification are predictable based on host traits. Our study is among the first to link manipulative experiments, in which a potential dilution mechanism is supported, with analyses of field data on species richness, host identity, spatial autocorrelation and disease prevalence.

Journal ArticleDOI
TL;DR: Results are consistent with a trophic cascade involving increased predation by wolves and other large carnivores on elk, a reduced and redistributed elk population, decreased herbivory and increased production of plant-based foods that may aid threatened grizzly bears.
Abstract: Summary 1. We explored multiple linkages among grey wolves (Canis lupus), elk (Cervus elaphus), berry-producing shrubs and grizzly bears (Ursus arctos) in Yellowstone National Park. 2. We hypothesized competition between elk and grizzly bears whereby, in the absence of wolves, increases in elk numbers would increase browsing on berry-producing shrubs and decrease fruit availability to grizzly bears. After wolves were reintroduced and with a reduced elk population, we hypothesized there would be an increase in the establishment of berry-producing shrubs, such as serviceberry (Amelanchier alnifolia), which is a major berry-producing plant. We also hypothesized that the percentage fruit in the grizzly bear diet would be greater after than before wolf reintroduction. 3. We compared the frequency of fruit in grizzly bear scats to elk densities prior to wolf reintroduction during a time of increasing elk densities (1968–1987). For a period after wolf reintroduction, we calculated the percentage fruit in grizzly bear scat by month based on scats collected in 2007–2009 (n = 778 scats) and compared these results to scat data collected before wolf reintroduction. Additionally, we developed an age structure for serviceberry showing the origination year of stems in a northern range study area. 4. We found that over a 19-year period, the percentage frequency of fruit in the grizzly diet (6231 scats) was inversely correlated (P <0 001) with elk population size. The average percentage fruit in grizzly bear scats was higher after wolf reintroduction in July (03% vs. 59%) and August (78% vs. 146%) than before. All measured serviceberry stems accessible to ungulates originated since wolf reintroduction, while protected serviceberry growing in a nearby ungulate exclosure originated both before and after wolf reintroduction. Moreover, in recent years, browsing of serviceberry outside of the exclosure decreased while their heights increased. 5. Overall, these results are consistent with a trophic cascade involving increased predation by wolves and other large carnivores on elk, a reduced and redistributed elk population, decreased herbivory and increased production of plant-based foods that may aid threatened grizzly bears.

Journal ArticleDOI
TL;DR: It is argued that exploring individual-based networks will improve the understanding of species- based networks and will enhance the link between network analysis, foraging theory and evolutionary biology.
Abstract: Summary 1. Most plant–pollinator network studies are conducted at species level, whereas little is known about network patterns at the individual level. In fact, nodes in traditional speciesbased interaction networks are aggregates of individuals establishing the actual links observed in nature. Thus, emergent properties of interaction networks might be the result of mechanisms acting at the individual level. 2. Pollen loads carried by insect flower visitors from two mountain communities were studied to construct pollen–transport networks. For the first time, these community-wide pollen– transport networks were downscaled from species–species (sp–sp) to individuals–species (i–sp) in order to explore specialization, network patterns and niche variation at both interacting levels. We used a null model approach to account for network size differences inherent to the downscaling process. Specifically, our objectives were (i) to investigate whether network structure changes with downscaling, (ii) to evaluate the incidence and magnitude of individual specialization in pollen use and (iii) to identify potential ecological factors influencing the observed degree of individual specialization. 3. Network downscaling revealed a high specialization of pollinator individuals, which was masked and unexplored in sp–sp networks. The average number of interactions per node, connectance, interaction diversity and degree of nestedness decreased in i–sp networks, because generalized pollinator species were composed of specialized and idiosyncratic conspecific individuals. An analysis with 21 pollinator species representative of two communities showed that mean individual pollen resource niche was only c. 46% of the total species niche. 4. The degree of individual specialization was associated with inter- and intraspecific overlap in pollen use, and it was higher for abundant than for rare species. Such niche heterogeneity depends on individual differences in foraging behaviour and likely has implications for community dynamics and species stability. 5. Our findings highlight the importance of taking interindividual variation into account when studying higher-order structures such as interaction networks. We argue that exploring individual-based networks will improve our understanding of species-based networks and will enhance the link between network analysis, foraging theory and evolutionary biology.

Journal ArticleDOI
TL;DR: Indices producing only a single global statistic (7 of the 8 indices) are unable to quantify infrequent and varying interactions through time, and guidelines are presented to inform researchers wishing to study dynamic interaction patterns in their own telemetry data sets.
Abstract: The deer data used in this study were supported by funding from The Samuel Roberts Noble Foundation.

Journal ArticleDOI
TL;DR: Individual fish prefer temperatures that vary predictably with SMR and activity level, which are both plastic in response to feeding history and growth trajectories, which probably allow individuals to reduce maintenance costs and divert more energy towards growth.
Abstract: Most animals experience temperature variations as they move through the environment. For ectotherms, in particular, temperature has a strong influence on habitat choice. While well studied at the species level, less is known about factors affecting the preferred temperature of individuals; especially lacking is information on how physiological traits are linked to thermal preference and whether such relationships are affected by factors such feeding history and growth trajectory. This study examined these issues in the common minnow Phoxinus phoxinus, to determine the extent to which feeding history, standard metabolic rate (SMR) and aerobic scope (AS), interact to affect temperature preference. Individuals were either: 1) food deprived (FD) for 21 days, then fed ad libitum for the next 74 days; or 2) fed ad libitum throughout the entire period. All animals were then allowed to select preferred temperatures using a shuttle-box, and then measured for SMR and AS at 10 °C, estimated by rates of oxygen uptake. Activity within the shuttle-box under a constant temperature regime was also measured. In both FD and control fish, SMR was negatively correlated with preferred temperature. The SMR of the FD fish was increased compared with the controls, probably due to the effects of compensatory growth, and so these growth-compensated fish preferred temperatures that were on average 2.85 °C cooler than controls fed a maintenance ration throughout the study. Fish experiencing compensatory growth also displayed a large reduction in activity. In growth-compensated fish and controls, activity measured at 10 °C was positively correlated with preferred temperature. Individual fish prefer temperatures that vary predictably with SMR and activity level, which are both plastic in response to feeding history and growth trajectories. Cooler temperatures probably allow individuals to reduce maintenance costs and divert more energy towards growth. A reduction in SMR at cooler temperatures, coupled with a decrease in spontaneous activity, could also allow individuals to increase surplus AS for coping with environmental stressors. In warming climates, however, aquatic ectotherms could experience frequent fluctuations in food supply with long-lasting effects on metabolic rate due to compensatory growth, while simultaneously having limited access to preferred cooler habitats.

Journal ArticleDOI
TL;DR: This study tests whether density simultaneously modified habitat selection and within-habitat resource selection in a rapidly growing population of feral horses and shows that isodars can effectively describe coarse-grained habitat selection in large mammals.
Abstract: Summary 1. Density is a fundamental driver of many ecological processes including habitat selection. Theory on density-dependent habitat selection predicts that animals should be distributed relative to profitability of habitat, resulting in reduced specialization in selection (i.e. generalization) as density increases and competition intensifies. 2. Despite mounting empirical support for density-dependent habitat selection using isodars to describe coarse-grained (interhabitat) animal movements, we know little of how density affects fine-grained resource selection of animals within habitats [e.g. using resource selection functions (RSFs)]. 3. Using isodars and RSFs, we tested whether density simultaneously modified habitat selection and within-habitat resource selection in a rapidly growing population of feral horses (Equus ferus caballus Linnaeus; Sable Island, Nova Scotia, Canada; 42% increase in population size from 2008 to 2012). 4. Among three heterogeneous habitat zones on Sable Island describing population clusters distributed along a west–east resource gradient (west–central–east), isodars revealed that horses used available habitat in a density-dependent manner. Intercepts and slopes of isodars demonstrated a pattern of habitat selection that first favoured the west, which generalized to include central and east habitats with increasing population size consistent with our understanding of habitat quality on Sable Island. 5. Resource selection functions revealed that horses selected for vegetation associations similarly at two scales of extent (total island and within-habitat zone). When densities were locally low, horses were able to select for sites of the most productive forage (grasslands) relative to those of poorer quality. However, as local carrying capacity was approached, selection for the best of available forage types weakened while selection for lower-quality vegetation increased (and eventually exceeded that of grasslands). 6. Isodars can effectively describe coarse-grained habitat selection in large mammals. Our study also shows that the main predictions of density-dependent habitat selection are highly relevant to our interpretation of RSFs in space and time. At low but not necessarily high population size, density will be a leading indicator of habitat quality. Fitness maximization from specialist vs. generalist strategies of habitat and resource selection may well be apparent at multiple spatial extents and grains of resolution.

Journal ArticleDOI
TL;DR: A model of optimal foraging over a day when a forager's state consists of its energy reserves and its condition is developed, which draws attention to the idea that hard work may have an adverse effect on an animal's condition.
Abstract: A fundamental issue in foraging theory is whether it is possible to find a simple currency that characterizes foraging behaviour. If such a currency exists, then it is tempting to argue that the selective forces that have shaped the evolution of foraging behaviour have been understood. We review previous work on currencies for the foraging behaviour of an animal that maximizes total energy gained. In many circumstances, it is optimal to maximize a suitably modified form of efficiency. We show how energy gain, predation and damage can be combined in a single currency based on reproductive value. We draw attention to the idea that hard work may have an adverse effect on an animal's condition. We develop a model of optimal foraging over a day when a forager's state consists of its energy reserves and its condition. Optimal foraging behaviour in our model depends on energy reserves, condition and time of day. The pattern of optimal behaviour depends strongly on assumptions about the probability that the forager is killed by a predator. If condition is important, no simple currency characterizes foraging behaviour, but behaviour can be understood in terms of the maximization of reproductive value. It may be optimal to adopt a foraging option that results in a rate of energy expenditure that is less than the rate associated with maximizing efficiency.

Journal ArticleDOI
TL;DR: Overall, this study demonstrates size-specific effects of a behavioural type on a predator-prey interaction, as well as a general pathway by which the effects of individual behavioural types can scale up to influence predator- prey population dynamics.
Abstract: The predator functional response (i.e. per capita consumption rate as a function of prey density) is central to our understanding of predator-prey population dynamics. This response is behavioural, depending on the rate of attack and time it takes to handle prey. Consistent behavioural differences among conspecific individuals, termed behavioural types, are a widespread feature of predator and prey populations but the effects of behavioural types on the functional response remain unexplored. We tested the effects of crab (Panopeus herbstii) behavioural type, specifically individual activity level, on the crab functional response to mussel (Brachidontes exustus) prey. We further tested whether the effects of activity level on the response are mediated by the presence of toadfish (Opsanus tau) predation threat in the form of waterborne chemical cues known to reduce crab activity level. The effects of crab activity level on the functional response were dependent on crab body size. Individual activity level increased the magnitude (i.e. slope and asymptote) of the type II functional response of small crabs, potentially through an increase in time spent foraging, but had no effect on the functional response of large crabs. Predation threat did not interact with activity level to influence mussel consumption, but independently reduced the slope of the type II functional response. Overall, this study demonstrates size-specific effects of a behavioural type on a predator-prey interaction, as well as a general pathway (modification of the functional response) by which the effects of individual behavioural types can scale up to influence predator-prey population dynamics.

Journal ArticleDOI
TL;DR: It is shown that an alternative explanation for physicochemical constraints on individual metabolism, as formalised by dynamic energy budget (DEB) theory, can contribute to the theoretical underpinning of metabolic ecology, while increasing coherence between intra- and interspecific scaling relationships.
Abstract: Metabolic theory specifies constraints on the metabolic organisation of individual organisms. These constraints have important implications for biological processes ranging from the scale of molecules all the way to the level of populations, communities and ecosystems, with their application to the latter emerging as the field of metabolic ecology. While ecologists continue to use individual metabolism to identify constraints in ecological processes, the topic of metabolic scaling remains controversial. Much of the current interest and controversy in metabolic theory relates to recent ideas about the role of supply networks in constraining energy supply to cells. We show that an alternative explanation for physicochemical constraints on individual metabolism, as formalised by dynamic energy budget (DEB) theory, can contribute to the theoretical underpinning of metabolic ecology, while increasing coherence between intra- and interspecific scaling relationships. In particular, we emphasise how the DEB theory considers constraints on the storage and use of assimilated nutrients and derive an equation for the scaling of metabolic rate for adult heterotrophs without relying on optimisation arguments or implying cellular nutrient supply limitation. Using realistic data on growth and reproduction from the literature, we parameterise the curve for respiration and compare the a priori prediction against a mammalian data set for respiration. Because the DEB theory mechanism for metabolic scaling is based on the universal process of acquiring and using pools of stored metabolites (a basal feature of life), it applies to all organisms irrespective of the nature of metabolic transport to cells. Although the DEB mechanism does not necessarily contradict insight from transport-based models, the mechanism offers an explanation for differences between the intra- and interspecific scaling of biological rates with mass, suggesting novel tests of the respective hypotheses.