scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Biomechanical Engineering-transactions of The Asme in 1991"


Journal ArticleDOI
TL;DR: The results show that all three mechanisms are important in determining the overall compressive stiffness of cartilage.
Abstract: Swelling of articular cartilage depends on its fixed charge density and distribution, the stiffness of its collagen-proteoglycan matrix, and the ion concentrations in the interstitium. A theory for a tertiary mixture has been developed, including the two fluid-solid phases (biphasic), and an ion phase, representing cation and anion of a single salt, to describe the deformation and stress fields for cartilage under chemical and/or mechanical loads. This triphasic theory combines the physico-chemical theory for ionic and polyionic (proteoglycan) solutions with the biphasic theory for cartilage. The present model assumes the fixed charge groups to remain unchanged, and that the counter-ions are the cations of a single-salt of the bathing solution. The momentum equation for the neutral salt and for the intersitial water are expressed in terms of their chemical potentials whose gradients are the driving forces for their movements. These chemical potentials depend on fluid pressure p, salt concentration c, solid matrix dilatation e and fixed charge density cF. For a uni-uni valent salt such as NaCl, they are given by mu i = mu io + (RT/Mi)ln[gamma 2 +/- c(c + cF)] and mu w = mu wo + [p-RT phi (2c + cF) + Bwe]/pwT, where R, T, Mi, gamma +/-, phi, pwT and Bw are universal gas constant, absolute temperature, molecular weight, mean activity coefficient of salt, osmotic coefficient, true density of water, and a coupling material coefficient, respectively. For infinitesimal strains and material isotropy, the stress-strain relationship for the total mixture stress is sigma = - pI-TcI + lambda s(trE)I + 2 musE, where E is the strain tensor and (lambda s, mu s) are the Lame constants of the elastic solid matrix. The chemical-expansion stress (-Tc) derives from the charge-to-charge repulsive forces within the solid matrix. This theory can be applied to both equilibrium and non-equilibrium problems. For equilibrium free swelling problems, the theory yields the well known Donnan equilibrium ion distribution and osmotic pressure equations, along with an analytical expression for the "pre-stress" in the solid matrix. For the confined-compression swelling problem, it predicts that the applied compressive stress is shared by three load support mechanisms: 1) the Donnan osmotic pressure; 2) the chemical-expansion stress; and 3) the solid matrix elastic stress. Numerical calculations have been made, based on a set of equilibrium free-swelling and confined-compression data, to assess the relative contribution of each mechanism to load support. Our results show that all three mechanisms are important in determining the overall compressive stiffness of cartilage.

1,097 citations


Journal ArticleDOI
TL;DR: This paper reviews the research in developing novel matrices for cell transplantation using bioresorbable polymers on applications to liver and cartilage as paradigms for regeneration of metabolic and structural tissue, but review the approach in the context ofcell transplantation as a whole.
Abstract: This paper reviews our research in developing novel matrices for cell transplantation using bioresorbable polymers We focus on applications to liver and cartilage as paradigms for regeneration of metabolic and structural tissue, but review the approach in the context of cell transplantation as a whole Important engineering issues in the design of successful devices are the surface chemistry and surface microstructure, which influence the ability of the cells to attach, grow, and function normally; the porosity and macroscopic dimensions, which affect the transport of nutrients to the implanted cells; the shape, which may be necessary for proper function in tissues like cartilage; and the choice of implantation site, which may be dictated by the total mass of the implant and which may influence the dimensions of the device by the available vascularity Studies show that both liver and cartilage cells can be transplanted in small animals using this approach

592 citations


Journal ArticleDOI
TL;DR: The results indicate that torsion, residual stress and material anisotropy associated with the fiber architecture all can act to reduce endocardial stress gradients in the passive left ventricle.
Abstract: The equatorial region of the canine left ventricle was modeled as a thick-walled cylinder consisting of an incompressible hyperelastic material with homogeneous exponential properties. The anisotropic properties of the passive myocardium were assumed to be locally transversely isotropic with respect to a fiber axis whose orientation varied linearly across the wall. Simultaneous inflation, extension, and torsion were applied to the cylinder to produce epicardial strains that were measured previously in the potassium-arrested dog heart. Residual stress in the unloaded state was included by considering the stress-free configuration to be a warped cylindrical arc. In the special case of isotropic material properties, torsion and residual stress both significantly reduced the high circumferential stress peaks predicted at the endocardium by previous models. However, a resultant axial force and moment were necessary to cause the observed epicardial deformations. Therefore, the anisotropic material parameters were found that minimized these resultants and allowed the prescribed displacements to occur subject to the known ventricular pressure loads. The global minimum solution of this parameter optimization problem indicated that the stiffness of passive myocardium (defined for a 20 percent equibiaxial extension) would be 2.4 to 6.6 times greater in the fiber direction than in the transverse plane for a broad range of assumed fiber angle distributions and residual stresses. This agrees with the results of biaxial tissue testing. The predicted transmural distributions of fiber stress were relatively flat with slight peaks in the subepicardium, and the fiber strain profiles agreed closely with experimentally observed sarcomere length distributions. The results indicate that torsion, residual stress and material anisotropy associated with the fiber architecture all can act to reduce endocardial stress gradients in the passive left ventricle.

564 citations


Journal ArticleDOI
TL;DR: The purpose of this paper is to describe the current status of this research and to suggest some possible mechanosensory systems by which bone cells might sense environmental loads.
Abstract: Some potential mechanisms by which bone cells sense mechanical loads are described and hypotheses concerning the functioning of these mechanisms are explored. It is well known that bone tissue adapts its structure to its mechanical load environment. Recent research has illuminated the biological response of bone to mechanical loading at the cellular level, but the precise mechanosensory system that signals bone cells to deposit or resorb tissue has not been identified. The purpose of this paper is to describe the current status of this research and to suggest some possible mechanosensory systems by which bone cells might sense environmental loads.

491 citations


Journal ArticleDOI
TL;DR: Three-dimensional finite element models of the proximal femur were used to compare predicted stress distributions for one-legged stance and for a fall to the lateral greater trochanter and found excellent agreement between the in vitro failure data and the linear model, especially using a von Mises effective strain failure criterion.
Abstract: In Part I we reported the results of linear finite element models of the proximal femur generated using geometric and constitutive data collected with quantitative computed tomography. These models demonstrated excellent agreement with in vitro studies when used to predict ultimate failure loads. In Part II, we report our extension of those finite element models to include nonlinear behavior of the trabecular and cortical bone. A highly nonlinear material law, originally designed for representing concrete, was used for trabecular bone, while a bilinear material law was used for cortical bone. We found excellent agreement between the model predictions and in vitro fracture data for both the onset of bone yielding and bone fracture. For bone yielding, the model predictions were within 2 percent for a load which simulated one-legged stance and 1 percent for a load which simulated a fall. For bone fracture, the model predictions were within 1 percent and 17 percent, respectively. The models also demonstrated different fracture mechanisms for the two different loading configurations. For one-legged stance, failure within the primary compressive trabeculae at the subcapital region occurred first, leading to load transfer and, ultimately, failure of the surrounding cortical shell. However, for a fall, failure of the cortical and trabecular bone occurred simultaneously within the intertrochanteric region. These results support our previous findings that the strength of the subcapital region is primarily due to trabecular bone whereas the strength of the intertrochanteric region is primarily due to cortical bone.

317 citations


Journal ArticleDOI
TL;DR: Comparison between the fall impact force predictions and in-vitro measures of femoral fracture strength suggest that any fall from standing height producing direct, lateral impact on the greater trochanter can fracture the elderly hip.
Abstract: A major determinant of the risk of hip fracture in a fall from standing height is the force applied to the femur at impact. This force is determined by the impact velocity of the hip and the effective mass, stiffness, and damping of the body at the moment of contact. We have developed a simple experiment (the pelvis release experiment) to measure the effective stiffness and damping of the body when a step change in force is applied to the lateral aspect of the hip. Results from pelvis release experiments with 14 human subjects suggest that both increased soft tissue thickness over the hip and impacting the ground in a relaxed state can decrease the effective stiffness of the body, and subsequently reduce peak impact forces. Comparison between our fall impact force predictions and in-vitro measures of femoral fracture strength suggest that any fall from standing height producing direct, lateral impact on the greater trochanter can fracture the elderly hip.

310 citations


Journal ArticleDOI
TL;DR: It is demonstrated that EC can discriminate between different types of pulsatile flow environments, and changes in shape and orientation changed less rapidly but cells took on a more elongated shape than their steady flow controls long-term.
Abstract: Endothelial cells (EC) appear to adapt their morphology and function to the in vivo hemodynamic environment in which they reside In vitro experiments indicate that similar alterations occur for cultured EC exposed to a laminar steady-state flow-induced shear stress However, in vivo EC are exposed to a pulsatile flow environment; thus, in this investigation, the influence of pulsatile flow on cell shape and orientation and on actin microfilament localization in confluent bovine aortic endothelial cell (BAEC) monolayers was studied using a 1-Hz nonreversing sinusoidal shear stress of 40 +/- 20 dynes/cm2 (type I), 1-Hz reversing sinusoidal shear stresses of 20 +/- 40 and 10 +/- 15 dynes/cm2 (type II), and 1-Hz oscillatory shear stresses of 0 +/- 20 and 0 +/- 40 dynes/cm2 (type III) The results show that in a type I nonreversing flow, cell shape changed less rapidly, but cells took on a more elongated shape than their steady flow controls long-term For low-amplitude type II reversing flow, BAECs changed less rapidly in shape and were always less elongated than their steady controls; however, for high amplitude reversal, BAECs did not stay attached for more than 24 hours For type III oscillatory flows, BAEC cell shape remained polygonal as in static culture and did not exhibit actin stress fibers, such as occurred in all other flows These results demonstrate that EC can discriminate between different types of pulsatile flow environments(ABSTRACT TRUNCATED AT 250 WORDS)

290 citations


Journal ArticleDOI
TL;DR: The investigation shows complex flow patterns especially in the carotid sinus where flow separation occurs at the outer wall throughout the systolic deceleration phase and the changing sign of the velocity near the outer sinus wall results in oscillating shear stress during the pulse cycle.
Abstract: Numerical analysis of flow phenomena and wall shear stresses in the human carotid artery bifurcation has been carried out using a three-dimensional geometrical model. The primary aim of this study is the detailed discussion of non-Newtonian flow velocity and wall shear stress during the pulse cycle. A comparison of non-Newtonian and Newtonian results is also presented. The applied non-Newtonian behavior of blood is based on measured dynamic viscosity. In the foreground of discussion are the flow characteristics in the carotid sinus. The investigation shows complex flow patterns especially in the carotid sinus where flow separation occurs at the outer wall throughout the systolic deceleration phase. The changing sign of the velocity near the outer sinus wall results in oscillating shear stress during the pulse cycle. At the outer wall of the sinus at maximum diameter level the shear stress ranges from -1.92 N/m2 to 1.22 N/m2 with a time-averaged value of 0.04 N/m2. At the inner wall of the sinus at maximum diameter level the shear stress range is from 1.16 N/m2 to 4.18 N/m2 with a mean of 1.97 N/m2. The comparison of non-Newtonian and Newtonian results indicates unchanged flow phenomena and rather minor differences in the basic flow characteristics.

288 citations


Journal ArticleDOI
TL;DR: The alternative therapeutic approaches for diabetes under study are reviewed and the technical requirements that must be met by a hybrid device useful to humans are discussed, and three critical unresolved issues are discussed: biocompatibility, oxygen supply limitations, and prevention of immune rejection.
Abstract: The hybrid artificial pancreas for treatment of diabetes consists of insulin-secreting pancreatic tissue which is surrounded by a membrane that protects the tissue from rejection by the immune system following implantation. In this paper, we review the alternative therapeutic approaches for diabetes under study and then discuss the technical requirements that must be met by a hybrid device useful to humans. Previous work on intravascular and extravascular immunoisolation devices is reviewed from the standpoint of these requirements, and three critical unresolved issues are discussed: biocompatibility, oxygen supply limitations, and prevention of immune rejection.

230 citations


Journal ArticleDOI
TL;DR: A model for wrapping of a ligament around bone was incorporated in a three-dimensional mathematical model of the human knee and it was found that the bony edge redirected the ligament force of the MCL in such a way that it counterbalanced valgus moments on the tibia more effectively.
Abstract: In mathematical knee-joint models, the ligaments are usually represented by straight-line elements, connecting the insertions of the femur and tibia. Such a model may not be valid if a ligament is bent in its course over bony-surfaces, particularly not if the resulting redirection of the ligament force has a considerable effect on the laxity or motion characteristics of the knee-joint model. In the present study, a model for wrapping of a ligament around bone was incorporated in a three-dimensional mathematical model of the human knee. The bony edge was described by a curved line on which the contact point of the line element representing a ligament bundle was located. Frictionless contact between the ligament bundle and the bone was assumed. This model was applied to the medial collateral ligament (MCL) interacting with the bony edge of the tibia. It was found that, in comparison with the original model without bony interactions, the bony edge redirected the ligament force of the MCL in such a way that it counterbalanced valgus moments on the tibia more effectively. The effect of the bony interaction with the MCL on the internal-external rotation laxity, however, was negligible.

228 citations


Journal ArticleDOI
TL;DR: Flow in distal end-to-side anastomoses of iliofemoral artery bypass grafts was simulated to support the hypothesis of greater intimal hyperplasia occurring in regions of low fluid shear.
Abstract: Flow in distal end-to-side anastomoses of iliofemoral artery bypass grafts was simulated using a steady flow, three-dimensional numerical model. With the proximal artery occluded, anastomotic angles were varied over 20, 30, 40, 45, 50, 60 and 70 deg while the inlet Reynolds numbers were 100 and 205. Fully developed flow in the graft became somewhat skewed toward the inner wall with increasing angle for both Reynolds numbers. Separated flow regions were seen along the inner arterial wall (toe region) for angles > or = 60 deg at Re = 100 and for angles > or = 45 deg at Re = 205 while a stagnation point existed along the outer arterial wall (floor region) for all cases which moved downstream relative to the toe of the anastomosis with decreasing angles. Normalized shear rates (NSR) along the arterial wall varied widely throughout the anastomotic region with negative values seen in the separation zones and upstream of the stagnation points which increased in magnitude with angle. The NSR increased with distance downstream of the stagnation point and with magnitudes which increased with the angle. Compared with observations from chronic in vivo studies, these results appear to support the hypothesis of greater intimal hyperplasia occurring in regions of low fluid shear.

Journal ArticleDOI
TL;DR: The amount of lengthening of the three portions of the ACL during valgus and anterior loading was observed to increase with knee flexion angle, and that of the anteromedial (AM), posterolateral (PL), and intermediate (IM) portions in general.
Abstract: A six-degrees-of-freedom mechanical linkage device was designed and used to study the unconstrained motion of ten intact human cadaver knees. The knees were subjected to externally applied varus and valgus (V-V) moments up to 14 N-m as well as anterior and posterior (A-P) loads up to 100 N. Tests were done at four knee flexion angles; 0, 30, 45, and 90 deg. Significant coupled axial tibial rotation was found, up to 21.0 deg for V-V loading (at 90 deg of flexion) and 14.2 deg for A-P loading (at 45 deg of flexion). Subsequently, the knees were dissected and the locations of the insertion sites to the femur and tibia for the anteromedial (AM), posterolateral (PL), and intermediate (IM) portions of the ACL were identified. The distances between the insertion sites for all external loading conditions were calculated. In the case when the external load was zero, the AM portion of the ACL lengthened with knee flexion, while the PL portion shortened and the intermediate (IM) portion did not change in length. With the application of 14 N-m valgus moment, the PL and IM portions of the ACL lengthened significantly more than the AM portion (p less than 0.001). With the application of 100 N anterior load, the AM portion lengthened slightly less than the PL portion, which lengthened slightly less than the IM portion (p less than 0.005). In general, the amount of lengthening of the three portions of the ACL during valgus and anterior loading was observed to increase with knee flexion angle (p less than 0.001).

Journal ArticleDOI
TL;DR: The purpose of this study was to determine the effects of the membranes and that of the mechanical properties of the skull, brain, and membrane on the dynamic response of the brain during side impact, and to compare the pressure distributions from the plane strain model with the axisymmetric model.
Abstract: The dynamic response of the human head to side impact was studied by 2-dimensional finite element modeling. Three models were formulated in this study. Model I is an axisymmetric model. It simulated closed shell impact of the human head, and consisted of a single-layered spherical shell filled wiht an inviscid fluid. The other two models (Model II and III) are plane strain models of a coronal section of the human head. Model II approximated a 50th percentile male head by an outer layer to simulate cranial bone and an inviscid interior core to simulate the intracranial contents. The configuration of Model III is the same as Model II but more detailed anatomical features of the head interior were added, such as, cerebral spinal fluid (CSF); falx cerebri, dura, and tentorium. Linear elastic material properties were assigned to all three models. All three models were loaded by a triangular pulse with a peak pressure of 40 kPa, effectively producing a peak force of 1954 N (440 lb). The purpose of this study was to determine the effects of the membranes and that of the mechanical properties of the skull, brain, and membrane on the dynamic response of the brain during side impact, and to compare the pressure distributions from the plane strain model with the axisymmetric model. A parametric study was conducted on Model II to characterize fully its response to impact under various conditions.(ABSTRACT TRUNCATED AT 250 WORDS)

Journal ArticleDOI
TL;DR: The minimal recruitment length and the recruitment probability of ligament fiber bundles are useful parameters for the evaluation of ligaments length changes in those experiments where no other method can be used to determine the zero strain lengths, ligament strains and tensions.
Abstract: On the basis of earlier reported data on the in vitro kinematics of passive knee-joint motions of four knee specimens, the length changes of ligament fiber bundles were determined by using the points of insertion on the tibia and femur. The kinematic data and the insertions of the ligaments were obtained by using Roentgenstereophotogrammetry. Different fiber bundles of the anterior and posterior cruciate ligaments and the medial and lateral collateral ligaments were identified. On the basis of an assumption for the maximal strain of each ligament fiber bundle during the experiments, the minimal recruitment length and the probability of recruitment were defined and determined. The motions covered the range from extension to 95 degrees flexion and the loading conditions included internal or external moments of 3 Nm and anterior or posterior forces of 30 N. The ligament length and recruitment patterns were found to be consistent for some ligament bundles and less consistent for other ligament bundles. The most posterior bundle of each ligament was recruited in extension and the lower flexion angles, whereas the anterior bundle was recruited for the higher flexion angles. External rotation generally recruited the collateral ligaments, while internal rotation recruited the cruciate ligaments. However, the anterior bundle of the posterior cruciate ligament was recruited with external rotation at the higher flexion angles. At the lower flexion angles, the anterior cruciate and the lateral collateral ligaments were recruited with an anterior force. The recruitment of the posterior cruciate ligament with a posterior force showed that neither its most anterior nor its most posterior bundle was recruited at the lower flexion angles. Hence, the posterior restraint must have been provided by the intermediate fiber bundles, which were not considered in the experiment. At the higher flexion angles, the anterior bundles of the anterior cruciate ligament and the posterior cruciate ligament were found to be recruited with anterior and posterior forces, respectively. The minimal recruitment length and the recruitment probability of ligament fiber bundles are useful parameters for the evaluation of ligament length changes in those experiments where no other method can be used to determine the zero strain lengths, ligament strains and tensions.

Journal ArticleDOI
TL;DR: A grafting procedure which may lead to a successful animal model for studies of long term repair of major osteochondral defects is proposed, and tissues which were very similar to those found in normal articular cartilage are found.
Abstract: There is a vast clinical need for the development of an animal model to study the fundamentals of healing of injured or diseased diarthrodial joints (knee, hip, shoulder, wrist, etc). Current prosthetic replacements do not offer acceptable treatment for injuries and diseases of these joints in young active individuals. New clinical treatment modalities, based on sound biologic principles, are sought for the development of repair or healing tissues engineered to have similar biomechanical properties as normal articular cartilage. In this paper we present a brief review of this need, and propose a grafting procedure which may lead to a successful animal model for studies of long term repair of major osteochondral defects. This grafting procedure uses an autologous periosteum-bone graft or an autologous-synthetic bone replacement graft. We have applied these grafts for in vivo repair of large surgically created defects in the high weight bearing area of the distal femoral condyle of mature New Zealand white rabbits. Further, an interdisciplinary study, including histochemistry, biochemistry (composition and metabolic activities), and biomechanics (biphasic properties), was performed to assess the feasibility of our animal model to generate viable repair tissues. We found our grafting procedure produced, 8 weeks postoperatively, tissues which were very similar to those found in normal articular cartilage. However, our histological studies indicate incomplete bonding between the repair tissue and the adjacent cartilage, and lack of an appropriate superficial zone at the articular surface. These deficiencies may cause long term failure of the repair tissue. Further studies must be undertaken to enhance development of a strong bond and a collagen-rich surface zone. This may require the use of growth factors (e.g., transforming growth factors beta) capable of simulating extra collagen production, or the use of serum derived tissue glue for bonding. At present, we are pursuing these studies.

Journal ArticleDOI
TL;DR: Both the LSE and the Living Dermal Equivalent exhibit complex responses to UV radiation and to various chemicals that are greatly different from responses given by monolayered cells.
Abstract: Reconstituted Living Skin Equivalent (LSE) is made up of a dermal equivalent (DE) on which keratinocytes are plated where they give rise to a multilayered differentiated epidermis. The dermal equivalent develops through interactions between fibroblasts and collagen fibrils that begin to form after the cell-matrix precursor is cast. The gel that forms as a result of collagen polymerization and fluid trapping is contracted uniformly in all dimensions. By securing it at ends and edges in the mold in which it is cast, the final dimensions, strength and morphology of the forming tissue are altered. The same phenomena are seen in casting tubular tissues for the fabrication of small caliber blood vessel equivalents. The cells of the dermal equivalent are biosynthetically active and enrich the matrix to different degrees with secretory products, depending on how the cells are stimulated and on the presence or absence of an epidermis. Collagen biosynthesis by dermal cells in the DE is sensitive to growth factors, ascorbate concentrations and amino acid pools. Both ascorbate and TGF beta 1 increase total collagen biosynthesis at least two-fold by one week after tissue formation. With TGF beta 1 present, the capacity of cells in the DE to synthesize collagen increases with time, over a two-week period. If ascorbate (200 micrograms/ml) is added just after the tissue is cast and daily thereafter, contraction lattice is blocked, and collagen biosynthesis is enhanced relative to contracted controls that had received 200 micrograms/ml ascorbate once. The increase was nearly an order of magnitude over that of controls and was coordinate with a comparable increase in hyaluronate and sulfated glycosaminoglycan (GAG) production as shown by TCA-precipitable glucosamine in the intercellular matrix of the DE. Both the LSE and the Living Dermal Equivalent (LDE) exhibit complex responses to UV radiation and to various chemicals that are greatly different from responses given by monolayered cells.(ABSTRACT TRUNCATED AT 250 WORDS)

Journal ArticleDOI
TL;DR: It is shown that the ratio of the wall thickness to diameter of the pig is considerably larger than that of the rat throughout the aorta, similar to a previously known result that the opening angle is not affected by papaverine.
Abstract: The zero-stress state of an aorta can be characterized by the angle with which each segment of the vessel opens up when it is cut radially. The opening angle varies with the region of the aorta: significantly with respect to the axial location, less significantly with respect to polar angle of the radial cut. Both pig and rat aortas have large opening angles in the neighborhood of 130 deg in the aortic arch region. In the thoracic region, the species difference is evident. The opening angle of the pig aorta in the middle thoracic region is rather constant in the neighborhood of 60 deg. The opening angle of the rat aorta in the thoracic region varies considerably, decreasing to 10 deg at the lower end of the thoracic region. In the abdominal region the opening angle of the pig increases from 60 to about 80 deg, that of the rat increases from about 10 to 90 deg. The potassium ion has effect on vascular smooth muscle, but has little effect on the opening angle. This suggests that the opening angle is not sensitive to smooth muscle contraction, similar to a previously known result that the opening angle is not affected by papaverine. The vessel wall thickness and vessel diameter were measured. It is shown that the ratio of the wall thickness to diameter of the pig is considerably larger than that of the rat throughout the aorta.(ABSTRACT TRUNCATED AT 250 WORDS)

Journal ArticleDOI
TL;DR: Major advantages of the present system over those previously described in the literature are that sample mounting procedures are simplified, there is provision for independent adjustment of stress field uniformity and measurement of the applied point forces and faster strain rates can be imposed on the relatively small samples tested.
Abstract: A testing facility for measuring the biaxial mechanical properties of highly deformable membranes is described. Forces are applied, via strain-gauge force transducers, to four points on each side of an initially square 12 to 25 mm membrane sample to produce biaxial extensions of up to 80 percent of undeformed length. Strain is estimated from the displacement of markers bounding a 1 to 2 mm central square. The accuracy of stress and strain field measurements has been assessed by finite element analysis of a biaxially-loaded isotropic elastic membrane. Major advantages of the present system over those previously described in the literature are that 1) sample mounting procedures are simplified, 2) there is provision for independent adjustment of stress field uniformity and measurement of the applied point forces and 3) faster strain rates can be imposed on the relatively small samples tested.

Journal ArticleDOI
TL;DR: The present model considers for the first time the nonuniform subendothelial pressure field that arises from the different hydraulic resistances of normal and leaky endothelial clefts and the special role of the internal elastic lamina (IEL) in modulating the horizontal transport of macromolecules after they have passed through the leaky clefts of cells that are either in mitosis or demonstrate IgG labeling.
Abstract: In this paper a new theoretical framework is presented for analyzing the filtration and macromolecular convective-diffusive transport processes in the intimal region of an artery wall with widely dispersed macromolecular cellular leakage sites, as proposed in the leaky junction-cell turnover hypothesis of Weinbaum et al. [11]. In contrast to existing convection-diffusive models, which assume that the transport is either 1-D, or convection is primarily in a direction normal to the endothelial surface, the present model considers for the first time the nonuniform subendothelial pressure field that arises from the different hydraulic resistances of normal and leaky endothelial clefts and the special role of the internal elastic lamina (IEL) in modulating the horizontal transport of macromolecules after they have passed through the leaky clefts of cells that are either in mitosis or demonstrate IgG labeling. The new theory is able to quantitatively explain the growing body of recent experiments in which an unexpectedly rapid early-time growth of the leakage spot has been observed and the longer time asymptotic behavior in which the leakage spot appears to approach an equilibrium diameter. The new theory also predicts the observed doubling in macromolecular permeability between EBA labeled blue and white areas when the frequency of leakage sites is doubled. This frequency for doubling of permeability, however, is an order of magnitude smaller than predicted by the author’s previous model, Tzeghai et al. [10], in which only convection normal to the endothelial surface was considered and the pressure was uniform in the intima. The longer time model predictions are used to explain the time scale for the formation of liposomes [4] in subendothelial tissue matrix in animal feeding experiments where it has been observed that the extracellular lipid concentration rises sharply prior to the entry of monocytes into the intima [45].

Journal ArticleDOI
TL;DR: The current model shows that cartilage stresses for a particular system are a function of the ratio of contact radius to total layer thickness (a/h), which is alleviated as a/h is increased due to increased load, softening and/or thinning of the cartilage layer.
Abstract: An analytical model of two elastic spheres with two elastic layers in normal, frictionless contact is developed which simulates contact of articulating joints, and allows for the calculation of stresses and displacements in the layered region of contact. Using various layer/layer/substrate combinations, the effects of variations in layer and substrate properties are determined in relation to the occurrence of tensile and shear stresses as the source of crack initiation in joint cartilage and bone. Vertical cracking at the cartilage surface and horizontal splitting at the tidemark have been observed in joints with primary osteoarthritis. Deep vertical cracks in the calcified cartilage and underlying bone have been observed in blunt trauma experiments. The current model shows that cartilage stresses for a particular system are a function of the ratio of contact radius to total layer thickness (a/h). Surface tension, which is observed for a/h small, is alleviated as a/h is increased due to increased load, softening and/or thinning of the cartilage layer. Decreases in a/h due to cartilage stiffening lead to increased global compressive stresses and increased incidence of surface tension, consistent with impact-induced surface cracks. Cartilage stresses are not significantly affected by variations in stiffness of the underlying material. Tensile radial strains in the cartilage layer approach one-third of the normal compressive strains, and increase significantly with cartilage softening. For cases where the middle layer stiffness exceeds that of the underlying substrate, tensile stresses occur at the base of the middle layer, consistent with impact induced cracks in the zone of calcified cartilage and subchondral bone. The presence of the superficial tangential zone appears to have little effect on underlying cartilage stresses.

Journal ArticleDOI
TL;DR: The finite element method using the principle of virtual work was applied to the biphasic theory to establish a numerical routine for analyses of articular cartilage behavior and demonstrated excellent agreement with available closed-form and numerical solutions for the configurations of confined compression and unconfined compression under small strains.
Abstract: The finite element method using the principle of virtual work was applied to the biphasic theory to establish a numerical routine for analyses of articular cartilage behavior. The matrix equations that resulted contained displacements of the solid matrix (mu) and true fluid pressure (p) as the unknown variables at the element nodes. Both small and large strain conditions were considered. The algorithms and computer code for the analysis of two-dimensional plane strain, plane stress, and axially symmetric cases were developed. The u-p finite element numerical procedure demonstrated excellent agreement with available closed-form and numerical solutions for the configurations of confined compression and unconfined compression under small strains, and for confined compression under large strains. The model was also used to examine the behavior of a repaired articular surface. The differences in material properties between the repair tissue and normal cartilage resulted in significant deformation gradients across the repair interface as well as increased fluid efflux from the tissue.

Journal ArticleDOI
TL;DR: D dopamine-secreting cells, encapsulated by 2 different methods, are compared to reverse experimental Parkinson's disease, a neurodegenerative disease characterized by motor disturbances due to a lack of dopamine within the striatum following degeneration of the dopaminergic nigro-striatal pathway.
Abstract: Deficits associated with neurological diseases may be improved by the transplantation within the brain lesioned target structure of polymer encapsulated cells releasing the missing neurotransmitter. Surrounding cells with a permselective membrane of appropriate molecular weight cut-off allows inward diffusion of nutrients and outward diffusion of neurotransmitters, but prevents immunoglobulins or immune cells from reaching the transplant. This technique therefore allows transplantation of post-mitotic cells across species. It also permits neural grafting of transformed cell lines since the polymer capsule prevents the formation of tumors by physically sequestering the transplanted tissue. In the present study, we compared the ability of dopamine-secreting cells, encapsulated by 2 different methods, to reverse experimental Parkinson's disease, a neurodegenerative disease characterized by motor disturbances due to a lack of dopamine within the striatum following degeneration of the dopaminergic nigro-striatal pathway. PC12 cells were loaded in polyelectrolyte-based microcapsules or thermoplastic-based macrocapsules and maintained in vitro or transplanted in a rat experimental Parkinson model for 4 weeks. Chemically-induced depolarization increased the in vitro release of dopamine from macrocapsules over time, while no increase in release was observed from microcapsules. Encapsulated PC12 cells were able to reduce lesion-induced rotational asymmetry in rats for at least 4 weeks, regardless of the encapsulation technique used. With both encapsulation methods, PC12 cell viability was greater in vivo than in vitro which suggests that the striatum releases trophic factors for PC12 cells. More brain tissue damage was observed with microcapsules than macrocapsules, possibly the result of the difficulty of manipulating the more fragile microcapsules.(ABSTRACT TRUNCATED AT 250 WORDS)

Journal ArticleDOI
TL;DR: The change of opening angle is a convenient parameter to characterize any nonuniform remodeling of the vessel wall due to changes in physical stress or chemical environment.
Abstract: The zero-stress state of a vein is, like that of an artery, not a closed cylindrical tube, but is a series of segments whose cross-sections are open sectors. An opening angle of each sector is defined as the angle subtended between two radii joining the midpoint of the inner wall to the tips of the inner wall. Data on the opening angles (mean ± standard deviation) of the veins and vena cava of the rat are presented. For the superior vena cava and subclavian, jugular, facial, renal, common iliac, saphenous, and plantar veins, the opening angle varies in the range of 25 to 75 deg. The inferior vena cava (below the heart), however, has noncircular, nonaxisymmetric cross-sections, a curved axis, and a rapid longitudinal variation of its “diameter;” its zero-stress state is not circular sectors; but the opening angle is still a useful characterization. The mean opening angle of the interior vena cava varies in the range of 40 to 150 deg in the thoracic portion, and 75 to 130 deg in the abdominal portion, with the larger values occurring about the middle of each portion. There are considerable length, diameter reductions, and wall thickening of the vena cava from the homeostatic state to the no-load state in vitro. Physically, the zero-stress state is the basis of the stress analysis of blood vessels. The change of opening angle is a convenient parameter to characterize any nonuniform remodeling of the vessel wall due to changes in physical stress or chemical environment. Change of zerostress state influences the compliance and collapsibility of the viens, their pressure-volume and pressure-flow relationships, the waterfall phenomenon, and the tone in the vascular smooth muscles if the homeostatic stress is changed.

Journal ArticleDOI
TL;DR: In this study, canine femoral heads were subjected to dynamic compressive strain cycles, and a significant reduction in mechanical stiffness was observed when the fluid compartment boundary was disrupted by drilling a hole part way into the femoral neck.
Abstract: The mechanical properties of cancellous bone, as measured from bone plug samples, have been widely documented. However, few tests have been attempted to explore the effects the intertrabecular contents may have on the load bearing capabilities. In this study, canine femoral heads were subjected to dynamic compressive strain cycles. The femoral heads were tested intact, as well as with disrupted boundary conditions of the continuous, intraosseous fluid space. A significant reduction in mechanical stiffness was observed when the fluid compartment boundary was disrupted by drilling a hole part way into the femoral neck. A finite element model of a typical femoral head showed that the stiffness change was not due to removal of material from the neck, hydraulic effects notwithstanding. Refilling the hole in the neck with saline solution and sealing the boundary restored the stiffness to the intact baseline level. However, an increase in the fluid pressure did not cause a statistically significant increase in the stiffness of the femoral head.

Journal ArticleDOI
TL;DR: A technique for measuring load magnitude and resultant load contact location in the facet joint in response to applied loads and moments, and the technique applied to the canine lumbar spine motion segment is applicable to dynamic and in vivo studies.
Abstract: A technique is described for measuring load magnitude and resultant load contact location in the facet joint in response to applied loads and moments, and the technique applied to the canine lumbar spine motion segment. Due to the cantilever beam geometry of the cranial articular process, facet joint loads result in surface strains on the lateral aspect of the cranial articular process. Strains were quantified by four strain gages cemented to the bony surface of the process. Strain measured at any one gage depended on the loading site on the articular surface of the caudal facet and on the magnitude of the facet load. Determination of facet loads during in vitro motion segment testing required calibration of the strains to known loads of various magnitudes applied to multiple sites on the caudal facet. The technique is described in detail, including placement of the strain gages. There is good repeatability of strains to applied facet loads and the strains appear independent of load distribution area. Error in the technique depends on the location of the applied facet loads, but is only significant in nonphysiologic locations. The technique was validated by two independent methods in axial torsion. Application of the technique to five in vitro canine L2-3 motion segments testing resulted in facet loads (in newtons, N) of 74+ / -23 N (mean + / -STD) in 2 newton-meter, Nm, extension, to unloaded in flexion. Lateral bending resulted in loads in the right facet of 40+ / -32 N for 1 Nm right lateral bending and 54+ / -29 N for 1 Nm left lateral bending. 4 Nm Torsion with and without 100 N axial compression resulted in facet loads of 92+ / -27 N and 69+ / -19 N, respectively. The technique is applicable to dynamic and in vivo studies.


Journal ArticleDOI
TL;DR: This paper specializes the nonlinear laminated-muscle-shell theory developed in Part I to cylindrical geometry and computes stresses in arteries and the beating left ventricle and predicts strain distributions that agree fairly well with published experimental measurements.
Abstract: This paper specializes the nonlinear laminated-muscle-shell theory developed in Part I to cylindrical geometry and computes stresses in arteries and the beating left ventricle. The theory accounts for large strain, material nonlinearity, thick-shell effects, torsion, muscle activation, and residual strain. First, comparison with elasticity solutions for pressurized arteries shows that the accuracy of the shell theory increases as transmural stress gradients and the shell thickness decrease. Residual strain reduces the stress gradients, lowering the error in the predicted peak stress in thick-walled arteries (R/t = 2.8) from about 30 to 10 percent. Second, the canine left ventricle is modeled as a thick-walled laminated cylinder with an internal pressure. Each layer is composed of transversely isotropic muscle with a fiber orientation based on anatomical data. Using a single pseudostrain-energy density function (with time-varying coefficients) for passive and active myocardium, the model predicts strain distributions that agree fairly well with published experimental measurements. The results also show that the peak fiber stress occurs subendocardially near the beginning of ejection and that residual strains significantly alter stress gradients within each lamina, but the magnitude of the peak fiber stress changes by less than 20 percent.

Journal ArticleDOI
TL;DR: Two intrinsic (scapholunate and lunotriquetral) and two extrinsic wrist ligaments were studied at high and low elongation rates and significant rate dependency for stress and strain for all ligaments was demonstrated.
Abstract: Two intrinsic (scapholunate and lunotriquetral) and two extrinsic (radiolunate and radiocapitate) wrist ligaments were studied at high and low elongation rates (1 and 100 mm/min). Statistically significant differences among all four ligaments were noted for the viscoelastic and elastic components of stress versus strain for the fully recoverable strain and early permanent deformation stress for all ligaments. Intrinsic ligaments became permanently deformed at statistically significantly higher strain levels than the extrinsic ligaments and accept larger permanent deformation at strain levels below evident fiber failure. Ultimate strength data demonstrated significant rate dependency for stress and strain for all ligaments. Intrinsic ligaments failed statistically greater stress and strain levels than the extrinsic group. Some clinical implications of these findings are discussed.


Journal ArticleDOI
TL;DR: Considering transient two-dimensional laminar flow in a diseased carotid artery segment with realistic inlet and outflow conditions, detailed velocity profiles, pressure fields, wall shear stress distributions and coupled, localized plaque formations have been simulated.
Abstract: Considering transient two-dimensional laminar flow in a diseased carotid artery segment with realistic inlet and outflow conditions, detailed velocity profiles, pressure fields, wall shear stress distributions and coupled, localized plaque formations have been simulated. The type of outflow boundary condition influences to a certain degree the extent of plaque build-up, which in turn reduces "disturbed flow" phenomena such as flow separations, recirculation zones, and wavy flow patterns in the artery branches during portions of the pulse. Based on computer experiments varying key geometric factors, a plaque-mitigating design of a carotid artery bifurcation has been proposed. Elimination of the carotid bulb, a smaller bifurcation angle, lower area ratios, and smooth wall curvatures generated a design with favorable hemodynamics parameters, leading to reduced plaque build-up by factors of 10 and 2 in the internal carotid and in the external carotid, respectively.