scispace - formally typeset
Search or ask a question

Showing papers in "Journal of extracellular vesicles in 2016"


Journal ArticleDOI
TL;DR: The first large, detailed survey of current worldwide practices for the isolation and characterization of EVs is reported, with Ultracentrifugation remains the most commonly used isolation method and only 9% of respondents used only 1 characterization method, with others using 2 or more methods.
Abstract: Extracellular vesicles (EVs) represent an important mode of intercellular communication. Research in this field has grown rapidly in the last few years, and there is a plethora of techniques for the isolation and characterization of EVs, many of which are poorly standardized. EVs are heterogeneous in size, origin and molecular constituents, with considerable overlap in size and phenotype between different populations of EVs. Little is known about current practices for the isolation, purification and characterization of EVs. We report here the first large, detailed survey of current worldwide practices for the isolation and characterization of EVs. Conditioned cell culture media was the most widely used material (83%). Ultracentrifugation remains the most commonly used isolation method (81%) with 59% of respondents use a combination of methods. Only 9% of respondents used only 1 characterization method, with others using 2 or more methods. Sample volume, sample type and downstream application all influenced the isolation and characterization techniques employed.

654 citations


Journal ArticleDOI
TL;DR: High-resolution lipidomic and proteomic analyses of exosomes and MVs derived by differential ultracentrifugation from 3 different cell types: U87 glioblastoma cells, Huh7 hepatocellular carcinoma cells and human bone marrow-derived mesenchymal stem cells are reported.
Abstract: Extracellular vesicles (EVs), including exosomes and microvesicles (MVs), are explored for use in diagnostics, therapeutics and drug delivery. However, little is known about the relationship of protein and lipid composition of EVs and their source cells. Here, we report high-resolution lipidomic and proteomic analyses of exosomes and MVs derived by differential ultracentrifugation from 3 different cell types: U87 glioblastoma cells, Huh7 hepatocellular carcinoma cells and human bone marrow-derived mesenchymal stem cells (MSCs). We identified 3,532 proteins and 1,961 lipid species in the screen. Exosomes differed from MVs in several different areas: (a) The protein patterns of exosomes were more likely different from their cells of origin than were the protein patterns of MVs; (b) The proteomes of U87 and Huh7 exosomes were similar to each other but different from the proteomes of MSC exosomes, whereas the lipidomes of Huh7 and MSC exosomes were similar to each other but different from the lipidomes of U87 exosomes; (c) exosomes exhibited proteins of extracellular matrix, heparin-binding, receptors, immune response and cell adhesion functions, whereas MVs were enriched in endoplasmic reticulum, proteasome and mitochondrial proteins. Exosomes and MVs also differed in their types of lipid contents. Enrichment in glycolipids and free fatty acids characterized exosomes, whereas enrichment in ceramides and sphingomyelins characterized MVs. Furthermore, Huh7 and MSC exosomes were specifically enriched in cardiolipins; U87 exosomes were enriched in sphingomyelins. This study comprehensively analyses the protein and lipid composition of exosomes, MVs and source cells in 3 different cell types.

459 citations


Journal ArticleDOI
TL;DR: If ex-miRNA is to be employed in novel non-invasive diagnostic approaches and as a therapeutic target in cancer, two further advances are necessary: in methods to isolate and detect ex- miRNA, and a better understanding of their biogenesis and functions in tumour-cell communication.
Abstract: Intercommunication between cancer cells and with their surrounding and distant environments is key to the survival, progression and metastasis of the tumour. Exosomes play a role in this communication process. MicroRNA (miRNA) expression is frequently dysregulated in tumour cells and can be reflected by distinct exosomal miRNA (ex-miRNA) profiles isolated from the bodily fluids of cancer patients. Here, the potential of ex-miRNA as a cancer biomarker and therapeutic target is critically analysed. Exosomes are a stable source of miRNA in bodily fluids but, despite a number of methods for exosome extraction and miRNA quantification, their suitability for diagnostics in a clinical setting is questionable. Furthermore, exosomally transferred miRNAs can alter the behaviour of recipient tumour and stromal cells to promote oncogenesis, highlighting a role in cell communication in cancer. However, our incomplete understanding of exosome biogenesis and miRNA loading mechanisms means that strategies to target exosomes or their transferred miRNAs are limited and not specific to tumour cells. Therefore, if ex-miRNA is to be employed in novel non-invasive diagnostic approaches and as a therapeutic target in cancer, two further advances are necessary: in methods to isolate and detect ex-miRNA, and a better understanding of their biogenesis and functions in tumour-cell communication.

283 citations


Journal ArticleDOI
TL;DR: It is shown that nanobodies can be anchored on the surface of EVs via GPI, which alters their cell targeting behaviour and highlights GPI-anchoring as a new tool in the EV toolbox, which may be applied for EV display of a variety of proteins.
Abstract: Background : Extracellular vesicles (EVs) are attractive candidate drug delivery systems due to their ability to functionally transport biological cargo to recipient cells. However, the apparent lack of target cell specificity of exogenously administered EVs limits their therapeutic applicability. In this study, we propose a novel method to equip EVs with targeting properties, in order to improve their interaction with tumour cells. Methods : EV producing cells were transfected with vectors encoding for anti-epidermal growth factor receptor (EGFR) nanobodies, which served as targeting ligands for tumour cells, fused to glycosylphosphatidylinositol (GPI) anchor signal peptides derived from decay-accelerating factor (DAF). EVs were isolated using ultrafiltration/size-exclusion liquid chromatography and characterized using western blotting, Nanoparticle Tracking Analysis, and electron microscopy. EV–tumour cell interactions were analyzed under static conditions using flow cytometry and under flow conditions using a live-cell fluorescence microscopy-coupled perfusion system. Results : EV analysis showed that GPI-linked nanobodies were successfully displayed on EV surfaces and were highly enriched in EVs compared with parent cells. Display of GPI-linked nanobodies on EVs did not alter general EV characteristics (i.e. morphology, size distribution and protein marker expression), but greatly improved EV binding to tumour cells dependent on EGFR density under static conditions. Moreover, nanobody-displaying EVs showed a significantly improved cell association to EGFR-expressing tumour cells under flow conditions. Conclusions : We show that nanobodies can be anchored on the surface of EVs via GPI, which alters their cell targeting behaviour. Furthermore, this study highlights GPI-anchoring as a new tool in the EV toolbox, which may be applied for EV display of a variety of proteins, such as antibodies, reporter proteins and signaling molecules. Keywords: extracellular vesicles; nanobody; lipid raft; glycosylphosphatidylinositol anchor; targeting; drug delivery; epidermal growth factor receptor; perfusion; exosomes (Published: 14 March 2016) Citation: Journal of Extracellular Vesicles 2016, 5: 31053 - http://dx.doi.org/10.3402/jev.v5.31053

257 citations


Journal ArticleDOI
TL;DR: Mini-SEC allows for simple and reproducible isolation from human plasma of exosomes retaining structural integrity and functional activity and enables molecular/functional analysis of the exosome content in serial specimens of human plasma for clinical applications.
Abstract: Objective : Isolation from human plasma of exosomes that retain functional and morphological integrity for probing their protein, lipid and nucleic acid content is a priority for the future use of exosomes as biomarkers. A method that meets these criteria and can be scaled up for patient monitoring is thus desirable. Methods : Plasma specimens (1 mL) of patients with acute myeloid leukaemia (AML) or a head and neck squamous cell carcinoma (HNSCC) were differentially centrifuged, ultrafiltered and fractionated by size exclusion chromatography in small disposable columns (mini-SEC). Exosomes were eluted in phosphate-buffered saline and were evaluated by qNano for particle size and counts, morphology by transmission electron microscopy, protein content, molecular profiles by western blots, and for ability to modify functions of immune cells. Results : Exosomes eluting in fractions #3–5 had a diameter ranging from 50 to 200 nm by qNano, with the fraction #4 containing the bulk of clean, unaggregated exosomes. The exosome elution profiles remained constant for repeated runs of the same plasma. Larger plasma volumes could be fractionated running multiple mini-SEC columns in parallel. Particle concentrations per millilitre of plasma in #4 fractions of AML and HNSCC were comparable and were higher (p<0.003) than those in normal controls. Isolated AML exosomes co-incubated with normal human NK cells inhibited NKG2D expression levels (p<0.004), and HNSCC exosomes suppressed activation (p<0.01) and proliferation of activated T lymphocytes (p<0.03). Conclusions : Mini-SEC allows for simple and reproducible isolation from human plasma of exosomes retaining structural integrity and functional activity. It enables molecular/functional analysis of the exosome content in serial specimens of human plasma for clinical applications. Keywords: exosome isolation; mini size-exclusion column chromatography; human plasma; exosome morphology; exosome functions; human cancer (Published: 24 March 2016) Citation: Journal of Extracellular Vesicles 2016, 5: 29289 - http://dx.doi.org/10.3402/jev.v5.29289

228 citations


Journal ArticleDOI
TL;DR: A novel multiplex bead-based platform to investigate up to 39 different surface markers in one sample and show for the first time that NK cell–derived EVs and platelet-derived EVs are devoid of CD9 or CD81, respectively, and that EVs isolated from activated B cells comprise different EV subpopulations.
Abstract: The surface protein composition of extracellular vesicles (EVs) is related to the originating cell and may play a role in vesicle function. Knowledge of the protein content of individual EVs is still limited because of the technical challenges to analyse small vesicles. Here, we introduce a novel multiplex bead-based platform to investigate up to 39 different surface markers in one sample. The combination of capture antibody beads with fluorescently labelled detection antibodies allows the analysis of EVs that carry surface markers recognized by both antibodies. This new method enables an easy screening of surface markers on populations of EVs. By combining different capture and detection antibodies, additional information on relative expression levels and potential vesicle subpopulations is gained. We also established a protocol to visualize individual EVs by stimulated emission depletion (STED) microscopy. Thereby, markers on single EVs can be detected by fluorophore-conjugated antibodies. We used the multiplex platform and STED microscopy to show for the first time that NK cell-derived EVs and platelet-derived EVs are devoid of CD9 or CD81, respectively, and that EVs isolated from activated B cells comprise different EV subpopulations. We speculate that, according to our STED data, tetraspanins might not be homogenously distributed but may mostly appear as clusters on EV subpopulations. Finally, we demonstrate that EV mixtures can be separated by magnetic beads and analysed subsequently with the multiplex platform. Both the multiplex bead-based platform and STED microscopy revealed subpopulations of EVs that have been indistinguishable by most analysis tools used so far. We expect that an in-depth view on EV heterogeneity will contribute to our understanding of different EVs and functions.

211 citations


Journal ArticleDOI
TL;DR: This study demonstrates that cells secrete many types of EVs, and MSCs secrete at least 3 types that can be differentially isolated based on their affinities for membrane lipid-binding ligands.
Abstract: Mesenchymal stem cell (MSC), a widely used adult stem cell candidate for regenerative medicine, has been shown to exert some of its therapeutic effects through the secretion of extracellular vesicles (EVs). These homogenously sized EVs of 100–150 ηm exhibited many exosome-like biophysical and biochemical properties and carry both proteins and RNAs. Recently, exosome-associated proteins in this MSC EV preparation were found to segregate primarily to those EVs that bind cholera toxin B chain (CTB), a GM1 ganglioside-specific ligand, and pulse-chase experiments demonstrated that these EVs have endosomal origin and carried many of the exosome-associated markers. Here, we report that only a fraction of the MSC EV proteome was found in CTB-bound EVs. Using Annexin V (AV) and Shiga toxin B subunit (ST) with affinities for phosphatidylserine and globotriaosylceramide, respectively, AV- and a ST-binding EV were identified. CTB-, AV- and ST–binding EVs all carried actin. However, the AV-binding EVs carried low or undetectable levels of the exosome-associated proteins. Only the ST-binding EVs carried RNA and EDA-containing fibronectin. Proteins in AV-binding EVs were also different from those released by apoptotic MSCs. CTB- and AV-binding activities were localized to the plasma membrane and cytoplasm of MSCs, while ST-binding activity was localized to the nucleus. Together, this study demonstrates that cells secrete many types of EVs. Specifically, MSCs secrete at least 3 types. They can be differentially isolated based on their affinities for membrane lipid-binding ligands. As the subcellular sites of the binding activities of these ligands and cargo load are different for each EV type, they are likely to have a different biogenesis pathway and possibly different functions. Keywords: exosome; mesenchymal stem cell; cholera toxin B; shiga toxin; annexin V (Published: 24 February 2016) Citation: Journal of Extracellular Vesicles 2016, 5: 29828 - http://dx.doi.org/10.3402/jev.v5.29828

184 citations


Journal ArticleDOI
TL;DR: A platform for actively loading engineered cargo RNAs into EVs was developed and the TAMEL platform enabled a comparative analysis elucidating a key opportunity for enhancing EV-mediated delivery to prostate cancer cells, and this technology should be of general utility for investigations and applications of EV- mediated transfer in other systems.
Abstract: Extracellular vesicles (EVs) mediate intercellular communication through transfer of RNA and protein between cells. Thus, understanding how cargo molecules are loaded and delivered by EVs is of central importance for elucidating the biological roles of EVs and developing EV-based therapeutics. While some motifs modulating the loading of biomolecular cargo into EVs have been elucidated, the general rules governing cargo loading and delivery remain poorly understood. To investigate how general biophysical properties impact loading and delivery of RNA by EVs, we developed a platform for actively loading engineered cargo RNAs into EVs. In our system, the MS2 bacteriophage coat protein was fused to EV-associated proteins, and the cognate MS2 stem loop was engineered into cargo RNAs. Using this Targeted and Modular EV Loading (TAMEL) approach, we identified a configuration that substantially enhanced cargo RNA loading (up to 6-fold) into EVs. When applied to vesicles expressing the vesicular stomatitis virus glycoprotein (VSVG) – gesicles – we observed a 40-fold enrichment in cargo RNA loading. While active loading of mRNA-length (>1.5 kb) cargo molecules was possible, active loading was much more efficient for smaller (~0.5 kb) RNA molecules. We next leveraged the TAMEL platform to elucidate the limiting steps in EV-mediated delivery of mRNA and protein to prostate cancer cells, as a model system. Overall, most cargo was rapidly degraded in recipient cells, despite high EV-loading efficiencies and substantial EV uptake by recipient cells. While gesicles were efficiently internalized via a VSVG-mediated mechanism, most cargo molecules were rapidly degraded. Thus, in this model system, inefficient endosomal fusion or escape likely represents a limiting barrier to EV-mediated transfer. Altogether, the TAMEL platform enabled a comparative analysis elucidating a key opportunity for enhancing EV-mediated delivery to prostate cancer cells, and this technology should be of general utility for investigations and applications of EV-mediated transfer in other systems. Keywords: extracellular vesicles; exosomes; microvesicles; active loading; Lamp2b; VSVG; MS2 coat protein dimer; CD63 (Published: 13 May 2016) Citation: Journal of Extracellular Vesicles 2016, 5: 31027 - http://dx.doi.org/10.3402/jev.v5.31027

147 citations


Journal ArticleDOI
TL;DR: Using PEG precipitation in a longitudinal study with human samples, it is demonstrated that miRNA could be assessed in frozen samples up to 8 years of storage and point to precipitation using polyethylene glycol (PEG) as a suitable method for an easy and cheap enrichment of serum EVs for miRNA analyses.
Abstract: Extracellular vesicles (EVs) are emerging as potent non-invasive biomarkers. However, current methodologies are time consuming and difficult to translate to clinical practice. To analyse EV-encapsulated circulating miRNA, we searched for a quick, easy and economic method to enrich frozen human serum samples for EV. We compared the efficiency of several protocols and commercial kits to isolate EVs. Different methods based on precipitation, columns or filter systems were tested and compared with ultracentrifugation, which is the most classical protocol to isolate EVs. EV samples were assessed for purity and quantity by nanoparticle tracking analysis and western blot or cytometry against major EV protein markers. For biomarker validation, levels of a set of miRNAs were determined in EV fractions and compared with their levels in total serum. EVs isolated with precipitation-based methods were enriched for a subgroup of miRNAs that corresponded to miRNAs described to be encapsulated into EVs (miR-126, miR-30c and miR-143), while the detection of miR-21, miR-16-5p and miR-19a was very low compared with total serum. Our results point to precipitation using polyethylene glycol (PEG) as a suitable method for an easy and cheap enrichment of serum EVs for miRNA analyses. The overall performance of PEG was very similar, or better than other commercial precipitating reagents, in both protein and miRNA yield, but in comparison to them PEG is much cheaper. Other methods presented poorer results, mostly when assessing miRNA by qPCR analyses. Using PEG precipitation in a longitudinal study with human samples, we demonstrated that miRNA could be assessed in frozen samples up to 8 years of storage. We report a method based on a cut-off value of mean of fold EV detection versus serum that provides an estimate of the degree of encapsulation of a given miRNA.

135 citations


Journal ArticleDOI
TL;DR: The results of this study demonstrate the feasibility of this standardized methodology to facilitate comparable and reproducible EV concentration measurements.
Abstract: Background : Understanding the pathogenic role of extracellular vesicles (EVs) in disease and their potential diagnostic and therapeutic utility is extremely reliant on in-depth quantification, measurement and identification of EV sub-populations. Quantification of EVs has presented several challenges, predominantly due to the small size of vesicles such as exosomes and the availability of various technologies to measure nanosized particles, each technology having its own limitations. Materials and Methods : A standardized methodology to measure the concentration of extracellular vesicles (EVs) has been developed and tested. The method is based on measuring the EV concentration as a function of a defined size range. Blood plasma EVs are isolated and purified using size exclusion columns (qEV) and consecutively measured with tunable resistive pulse sensing (TRPS). Six independent research groups measured liposome and EV samples with the aim to evaluate the developed methodology. Each group measured identical samples using up to 5 nanopores with 3 repeat measurements per pore. Descriptive statistics and unsupervised multivariate data analysis with principal component analysis (PCA) were used to evaluate reproducibility across the groups and to explore and visualise possible patterns and outliers in EV and liposome data sets. Results : PCA revealed good reproducibility within and between laboratories, with few minor outlying samples. Measured mean liposome (not filtered with qEV) and EV (filtered with qEV) concentrations had coefficients of variance of 23.9% and 52.5%, respectively. The increased variance of the EV concentration measurements could be attributed to the use of qEVs and the polydisperse nature of EVs. Conclusion : The results of this study demonstrate the feasibility of this standardized methodology to facilitate comparable and reproducible EV concentration measurements. Keywords: exosomes; extracellular vesicles; EV; nanoparticles; microparticles; colloids; resistive pulse sensing; Coulter counter; nanopores; micropores; concentration (Published: 27 September 2016) Citation: Journal of Extracellular Vesicles 2016, 5: 31242 - http://dx.doi.org/10.3402/jev.v5.31242

130 citations


Journal ArticleDOI
TL;DR: The objective was to establish an experimental procedure and show direct AFM measurements that unequivocally can be assigned as aType IIb cell type and show AFM signal constellations similar to those of EMTs.
Abstract: No abstract available. (Published: 27 September 2016) Citation: Journal of Extracellular Vesicles 2016, 5: 33109 - http://dx.doi.org/10.3402/jev.v5.33109

Journal ArticleDOI
TL;DR: A protocol for the isolation of EVs from human saliva using density gradient centrifugation is established and it is confirmed that several miRNAs were expressed strongly in the EV-marker-expressing fractions.
Abstract: Diagnostic methods that focus on the extracellular vesicles (EVs) present in saliva have been attracting great attention because of their non-invasiveness. EVs contain biomolecules such as proteins, messenger RNA (mRNA) and microRNA (miRNA), which originate from cells that release EVs, making them an ideal source for liquid biopsy. Although there have been many reports on density-based fractionation of EVs from blood and urine, the number of reports on EVs from saliva has been limited, most probably because of the difficulties in separating EVs from viscous saliva using density gradient centrifugation. This article establishes a protocol for the isolation of EVs from human saliva using density gradient centrifugation. The fractionated salivary EVs were characterized by atomic force microscopy, western blot and reverse transcription polymerase chain reaction. The results indicate that salivary EVs have a smaller diameter (47.8±12.3 nm) and higher density (1.11 g/ml) than EVs isolated from conditioned cell media (74.0±23.5 nm and 1.06 g/ml, respectively). Additionally, to improve the throughput of density-based fractionation of EVs, the original protocol was further modified by using a fixed angle rotor instead of a swinging rotor. It was also confirmed that several miRNAs were expressed strongly in the EV-marker-expressing fractions. Keywords: saliva; exosome; EVs; microRNA; diagnosis (Published: 17 May 2016) Citation: Journal of Extracellular Vesicles 2016, 5: 30829 - http://dx.doi.org/10.3402/jev.v5.30829

Journal ArticleDOI
TL;DR: The results show that the isolation of uEVs is feasible from small volumes of urine and avoiding ultracentrifugation, making easier the analysis in a clinical facility, but caution should be taken in the selection of the enrichment method since they have a differential affinity for protein u EVs markers and by extension for different subpopulation of EVs.
Abstract: Urine sample analysis is irreplaceable as a non-invasive method for disease diagnosis and follow-up. However, in urine samples, non-degraded protein and RNA may be only found in urinary extracellular vesicles (uEVs). In recent years, various methods of uEV enrichment using low volumes of urine and unsophisticated equipment have been developed, with variable success. We compared the results of the differential ultracentrifugation procedure with 4 of these methods. The methods tested were a lectin-based purification, Exoquick (System Biosciences), Total Exosome Isolation from Invitrogen and an in-house modified procedure employing the Exosomal RNA Kit from Norgen Biotek Corp. The analysis of selected gene transcripts and protein markers of extracellular vesicles (EVs) revealed that each method isolates a different mixture of uEV protein markers. In our conditions, the extraction with Norgen's reagent achieved the best performance in terms of gene transcript and protein detection and reproducibility. By using this method, we were able to detect alterations of EVs protein markers in urine samples from prostate cancer adenoma patients. Taken together, our results show that the isolation of uEVs is feasible from small volumes of urine and avoiding ultracentrifugation, making easier the analysis in a clinical facility. However, caution should be taken in the selection of the enrichment method since they have a differential affinity for protein uEVs markers and by extension for different subpopulation of EVs.

Journal ArticleDOI
TL;DR: Describing vesicle secretion across the NCI-60 panel of human cancer cells by nanoparticle tracking analysis reveals new insights into genes involved in exosome and microvesicle formation, and may provide a means to distinguish EV sub-populations.
Abstract: Background : Extracellular vesicles (EVs) are important mediators of cell-to-cell communication in healthy and pathological environments. Because EVs are present in a variety of biological fluids and contain molecular signatures of their cell or tissue of origin, they have great diagnostic and prognostic value. The ability of EVs to deliver biologically active proteins, RNAs and lipids to cells has generated interest in developing novel therapeutics. Despite their potential medical use, many of the mechanisms underlying EV biogenesis and secretion remain unknown. Methods : Here, we characterized vesicle secretion across the NCI-60 panel of human cancer cells by nanoparticle tracking analysis. Using CellMiner, the quantity of EVs secreted by each cell line was compared to reference transcriptomics data to identify gene products associated with vesicle secretion. Results : Gene products positively associated with the quantity of exosomal-sized vesicles included vesicular trafficking classes of proteins with Rab GTPase function and sphingolipid metabolism. Positive correlates of larger microvesicle-sized vesicle secretion included gene products involved in cytoskeletal dynamics and exocytosis, as well as Rab GTPase activation. One of the identified targets, CD63, was further evaluated for its role in vesicle secretion. Clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 knockout of the CD63 gene in HEK293 cells resulted in a decrease in small vesicle secretion, suggesting the importance of CD63 in exosome biogenesis. Conclusion : These observations reveal new insights into genes involved in exosome and microvesicle formation, and may provide a means to distinguish EV sub-populations. This study offers a foundation for further exploration of targets involved in EV biogenesis and secretion. Keywords: oncosomes; polyethylene glycol; endocytosis; trafficking; bioinformatics; tetraspanin; genome engineering (Published: 13 July 2016) Citation: Journal of Extracellular Vesicles 2016, 5: 31295 - http://dx.doi.org/10.3402/jev.v5.31295

Journal ArticleDOI
TL;DR: A novel lateral flow immunoassay (LFIA) for the detection of exosomes based on the use of tetraspanins as targets is successfully developed and could be well suited to be used as a rapid exosome quantification tool, with promising diagnostic applications.
Abstract: Exosomes are cell-secreted nanovesicles (40–200 nm) that represent a rich source of novel biomarkers in the diagnosis and prognosis of certain diseases. Despite the increasingly recognized relevance of these vesicles as biomarkers, their detection has been limited due in part to current technical challenges in the rapid isolation and analysis of exosomes. The complexity of the development of analytical platforms relies on the heterogeneous composition of the exosome membrane. One of the most attractive tests is the inmunochromatographic strips, which allow rapid detection by unskilled operators. We have successfully developed a novel lateral flow immunoassay (LFIA) for the detection of exosomes based on the use of tetraspanins as targets. We have applied this platform for the detection of exosomes purified from different sources: cell culture supernatants, human plasma and urine. As proof of concept, we explored the analytical potential of this LFIA platform to accurately quantify exosomes purified from a human metastatic melanoma cell line. The one-step assay can be completed in 15 min, with a limit of detection of 8.54×10 5 exosomes/µL when a blend of anti-CD9 and anti-CD81 were selected as capture antibodies and anti-CD63 labelled with gold nanoparticles as detection antibody. Based on our results, this platform could be well suited to be used as a rapid exosome quantification tool, with promising diagnostic applications, bearing in mind that the detection of exosomes from different sources may require adaptation of the analytical settings to their specific composition.

Journal ArticleDOI
TL;DR: An antibody microarray (DotScan) was used to compare the surface protein profiles of live cancer cells with those of their EV, based on their binding patterns to immobilized antibodies, to profile CD19+ EV from the plasma of CLL patients.
Abstract: Extracellular vesicles (EV) are membranous particles (30–1,000 nm in diameter) secreted by cells. Important biological functions have been attributed to 2 subsets of EV, the exosomes (bud from endosomal membranes) and the microvesicles (MV; bud from plasma membranes). Since both types of particles contain surface proteins derived from their cell of origin, their detection in blood may enable diagnosis and prognosis of disease. We have used an antibody microarray (DotScan) to compare the surface protein profiles of live cancer cells with those of their EV, based on their binding patterns to immobilized antibodies. Initially, EV derived from the cancer cell lines, LIM1215 (colorectal cancer) and MEC1 (B-cell chronic lymphocytic leukaemia; CLL), were used for assay optimization. Biotinylated antibodies specific for EpCAM (CD326) and CD19, respectively, were used to detect captured particles by enhanced chemiluminescence. Subsequently, this approach was used to profile CD19+ EV from the plasma of CLL patients...

Journal ArticleDOI
TL;DR: It is proposed that FAVS may be a useful tool to monitor EGFR and AREG in circulating exosomes from individuals with colorectal cancer and possibly other solid tumours.
Abstract: Exosomes are small, 40–130 nm secreted extracellular vesicles that recently have become the subject of intense focus as agents of intercellular communication, disease biomarkers and potential vehicles for drug delivery. It is currently unknown whether a cell produces different populations of exosomes with distinct cargo and separable functions. To address this question, high-resolution methods are needed. Using a commercial flow cytometer and directly labelled fluorescent antibodies, we show the feasibility of using fluorescence-activated vesicle sorting ( FAVS) to analyse and sort individual exosomes isolated by sequential ultracentrifugation from the conditioned medium of DiFi cells, a human colorectal cancer cell line. EGFR and the exosomal marker, CD9, were detected on individual DiFi exosomes by FAVS; moreover, both markers were identified by high-resolution stochastic optical reconstruction microscopy on individual, approximately 100 nm vesicles from flow-sorted EGFR/CD9 double-positive exosomes. We present evidence that the activation state of EGFR can be assessed in DiFi-derived exosomes using a monoclonal antibody (mAb) that recognizes “conformationally active” EGFR (mAb 806). Using human antigen-specific antibodies, FAVS was able to detect human EGFR and CD9 on exosomes isolated from the plasma of athymic nude mice bearing DiFi tumour xenografts. Multicolour FAVS was used to simultaneously identify CD9, EGFR and an EGFR ligand, amphiregulin (AREG), on human plasma-derived exosomes from 3 normal individuals. These studies demonstrate the feasibility of FAVS to both analyse and sort individual exosomes based on specific cell-surface markers. We propose that FAVS may be a useful tool to monitor EGFR and AREG in circulating exosomes from individuals with colorectal cancer and possibly other solid tumours. Keywords: exosomes; extracellular vesicles; flow cytometry; EGFR; amphiregulin; xenograft models; colorectal cancer; cetuximab; mAb 806 (Published: 24 June 2016) Citation: Journal of Extracellular Vesicles 2016, 5: 29254 - http://dx.doi.org/10.3402/jev.v5.29254

Journal ArticleDOI
TL;DR: A sensitive analytical method for isolation and subsequent miRNA profiling of epithelial-derived EVs from blood samples of patients with colorectal cancer indicates that the miRNAs are of tumour origin and may have potential as non-invasive biomarkers for detection of CRC.
Abstract: Cancer cells secrete small membranous extracellular vesicles (EVs) into their microenvironment and circulation. These contain biomolecules, including proteins and microRNAs (miRNAs). Both circulating EVs and miRNAs have received much attention as biomarker candidates for non-invasive diagnostics. Here we describe a sensitive analytical method for isolation and subsequent miRNA profiling of epithelial-derived EVs from blood samples of patients with colorectal cancer (CRC). The epithelial-derived EVs were isolated by immunoaffinity-capture using the epithelial cell adhesion molecule (EpCAM) as marker. This approach mitigates some of the specificity issues observed in earlier studies of circulating miRNAs, in particular the negative influence of miRNAs released by erythrocytes, platelets and non-epithelial cells. By applying this method to 2 small-scale patient cohorts, we showed that blood plasma isolated from CRC patients prior to surgery contained elevated levels of 13 EpCAM + -EV miRNAs compared with healthy individuals. Upon surgical tumour removal, the plasma levels of 8 of these were reduced (miR-16-5p, miR-23a-3p, miR-23b-3p, miR-27a-3p, miR-27b-3p, miR-30b-5p, miR-30c-5p and miR-222-3p). These findings indicate that the miRNAs are of tumour origin and may have potential as non-invasive biomarkers for detection of CRC. This work describes a non-invasive blood-based method for sensitive detection of cancer with potential for clinical use in relation to diagnosis and screening. We used the method to study CRC; however, it is not restricted to this disease. It may in principle be used to study any cancer that release epithelial-derived EVs into circulation. Keywords: colorectal cancer; epithelial-derived extracellular vesicles; isolation; immunoaffinity; blood-based CRC detection; non-invasive biomarkers; microRNA (Published: 29 August 2016) Citation: Journal of Extracellular Vesicles 2016, 5: 31488 - http://dx.doi.org/10.3402/jev.v5.31488

Journal ArticleDOI
TL;DR: The results suggest that lymph from atherosclerotic mice displays a higher concentration of EVs, bringing forward the concept that EVs contained in lymph could either be a biomarker for lymphatic dysfunction or, conversely, for inflammatory disease progression.
Abstract: The lymphatic system works in close collaboration with the cardiovascular system to preserve fluid balance throughout the body and is essential for the trafficking of antigen-presenting cells and lymphocytes to lymphoid organs. Recent findings have associated lymphatic dysfunction with the pathogenesis of cardiovascular-related diseases such as atherosclerosis, inflammation and obesity. Whether lymphatic dysfunction is a cause or a consequence of these diseases, as well as how, is under intensive investigation. Extracellular vesicles (EVs) are submicron vesicles released by diverse cell types upon activation or apoptosis and are considered important biomarkers for several inflammatory diseases. Thus, it is critical to characterize the presence of EVs in various biological tissues and fluids to delineate their origins and, subsequently, their functions. In the past few years, new techniques allowing the quantitative and qualitative analysis of EVs have emerged, thus facilitating the onset of studies bridging these vesicles to the lymphatic system. Using several state-of-the-art approaches, this article reports the presence of diverse EVs inclusively derived from red blood cells and platelets in lymph of healthy animals. Our results suggest that lymph from atherosclerotic mice displays a higher concentration of EVs, bringing forward the concept that EVs contained in lymph could either be a biomarker for lymphatic dysfunction or, conversely, for inflammatory disease progression. Keywords: inflammation; biomarkers; lymphatic vessels; atherosclerosis; platelets (Published: 22 September 2016) Citation: Journal of Extracellular Vesicles 2016, 5: 31427 - http://dx.doi.org/10.3402/jev.v5.31427

Journal ArticleDOI
TL;DR: Comparative global lipidomic analysis is used to examine the composition of EVs that are secreted by the gastrointestinal nematode, Heligmosomoides polygyrus, in relation to exosomes secreting by cells of its murine host to suggest that nematodes can maintain exosome membrane structure and integrity through increased plasmalogens, compensating for diminished levels of other lipids.
Abstract: Extracellular vesicles (EVs) mediate communication between cells and organisms across all 3 kingdoms of life. Several reports have demonstrated that EVs can transfer molecules between phylogenetically diverse species and can be used by parasites to alter the properties of the host environment. Whilst the concept of vesicle secretion and uptake is broad reaching, the molecular composition of these complexes is expected to be diverse based on the physiology and environmental niche of different organisms. Exosomes are one class of EVs originally defined based on their endocytic origin, as these derive from multivesicular bodies that then fuse with the plasma membrane releasing them into the extracellular environment. The term exosome has also been used to describe any small EVs recovered by high-speed ultracentrifugation, irrespective of origin since this is not always well characterized. Here, we use comparative global lipidomic analysis to examine the composition of EVs, which we term exosomes, that are secreted by the gastrointestinal nematode, Heligmosomoides polygyrus , in relation to exosomes secreted by cells of its murine host. Ultra-performance liquid chromatography – tandem mass spectrometry (UPLC-MS/MS) analysis reveals a 9- to 62-fold enrichment of plasmalogens, as well as other classes of ether glycerophospholipids, along with a relative lack of cholesterol and sphingomyelin (SM) in the nematode exosomes compared with those secreted by murine cells. Biophysical analyses of the membrane dynamics of these exosomes demonstrate increased rigidity in those from the nematode, and parallel studies with synthetic vesicles support a role of plasmalogens in stabilizing the membrane structure. These results suggest that nematodes can maintain exosome membrane structure and integrity through increased plasmalogens, compensating for diminished levels of other lipids, including cholesterol and SM. This work also illuminates the prevalence of plasmalogens in some EVs, which has not been widely reported and could have implications for the biochemical or immunomodulatory properties of EVs. Further comparative analyses such as those described here will shed light on diversity in the molecular properties of EVs that enable them to function in cross-species communication. Keywords: extracellular vesicles; helminth; host–pathogen; ether lipids; dynamic light scattering; cholesterol; cross-species communication (Published: 5 July 2016) Citation: Journal of Extracellular Vesicles 2016, 5: 30741 - http://dx.doi.org/10.3402/jev.v5.30741

Journal ArticleDOI
TL;DR: A combination of ultracentrifugation and size-exclusion chromatography is used to isolate and analyse vesicles of plasma or urine origin, highlighting several proteins with the potential to indicate treatment refractory disease in prostate cancer patients.
Abstract: Proteomics analysis of biofluid-derived vesicles holds enormous potential for discovering non-invasive disease markers. Obtaining vesicles of sufficient quality and quantity for profiling studies has, however, been a major problem, as samples are often replete with co-isolated material that can interfere with the identification of genuine low abundance, vesicle components. Here, we used a combination of ultracentrifugation and size-exclusion chromatography to isolate and analyse vesicles of plasma or urine origin. We describe a sample-handling workflow that gives reproducible, quality vesicle isolations sufficient for subsequent protein profiling. Using a semi-quantitative aptamer-based protein array, we identified around 1,000 proteins, of which almost 400 were present at comparable quantities in plasma versus urine vesicles. Significant differences were, however, apparent with elements like HSP90, integrin αVβ5 and Contactin-1 more prevalent in urinary vesicles, while hepatocyte growth factor activator, prostate-specific antigen–antichymotrypsin complex and many others were more abundant in plasma vesicles. This was also applied to a small set of specimens collected from men with metastatic prostate cancer, highlighting several proteins with the potential to indicate treatment refractory disease. The study provides a practical platform for furthering protein profiling of vesicles in prostate cancer, and, hopefully, many other disease scenarios.

Journal ArticleDOI
TL;DR: It is demonstrated that the presence of Cx43 in dox-loaded EVs reduces the cardiotoxicity of the drug, and this results bring new insights into the concrete potential of EVs as therapeutic vehicles and open new avenues toward the development of strategies that help to reduce unwanted side effects.
Abstract: Extracellular vesicles (EVs) are major conveyors of biological information, mediating local and systemic cell-to-cell communication under physiological and pathological conditions. These endogenous vesicles have been recognized as prominent drug delivery vehicles of several therapeutic cargoes, including doxorubicin (dox), presenting major advantages over the classical approaches. Although dox is one of the most effective anti-tumour agents in the clinical practice, its use is very often hindered by its consequent dramatic cardiotoxicity. Despite significant advances witnessed in the past few years, more comprehensive studies, supporting the therapeutic efficacy of EVs, with decreased side effects, are still scarce. The main objective of this study was to evaluate the role of the gap junction protein connexin43 (Cx43) in mediating the release of EV content into tumour cells. Moreover, we investigated whether Cx43 improves the efficiency of dox-based anti-tumour treatment, with a concomitant decrease of cardiotoxicity. In the present report, we demonstrate that the presence of Cx43 in EVs increases the release of luciferin from EVs into tumour cells in vitro and in vivo . In addition, using cell-based approaches and a subcutaneous mouse tumour model, we show that the anti-tumour effect of dox incorporated into EVs is similar to the administration of the free drug, regardless the presence of Cx43. Strikingly, we demonstrate that the presence of Cx43 in dox-loaded EVs reduces the cardiotoxicity of the drug. Altogether, these results bring new insights into the concrete potential of EVs as therapeutic vehicles and open new avenues toward the development of strategies that help to reduce unwanted side effects. Keywords: extracellular vesicles; drug delivery; cancer; cardioprotection; intercellular communication (Published: 29 September 2016)

Journal ArticleDOI
TL;DR: Non-invasive tests to identify age and early disease-associated pathology within the kidney are needed and specific populations of urinary extracellular vesicles (EVs) derived from cells of the glomerulus and nephron associate with underlying kidney structural changes.
Abstract: Non-invasive tests to identify age and early disease-associated pathology within the kidney are needed. Specific populations of urinary extracellular vesicles (EVs) could potentially be used for such a diagnostic test. Random urine samples were obtained from age- and sex-stratified living kidney donors before kidney donation. A biopsy of the donor kidney was obtained at the time of transplantation to identify nephron hypertrophy (larger glomerular volume, cortex per glomerulus and mean profile tubular area) and nephrosclerosis (% fibrosis, % glomerulosclerosis and arteriosclerosis). Renal parenchymal-derived EVs in cell-free urine were quantified by digital flow cytometry. The relationship between these EV populations and structural pathology on the kidney biopsy was assessed. Clinical characteristics of the kidney donors (n=138, age range: 20–70 years, 50% women) were within the normative range. Overall, urine from women contained more EVs than that from men. The number of exosomes, juxtaglomerular cells and podocyte marker–positive EVs decreased (p<0.05) with increasing age. There were fewer total EVs as well as EVs positive for mesangial cell, parietal cell, descending limb of Henle’s loop (simple squamous epithelium), collecting tubule-intercalated cell and monocyte chemoattractant protein-1 markers (p<0.05) in persons with nephron hypertrophy. The number of EVs positive for intercellular adhesion molecule-1, juxtaglomerular cell, podocyte, parietal cell, proximal tubular epithelial cell, distal tubular epithelial cell and collecting duct cells were fewer (p<0.05) in persons with nephrosclerosis. EVs carrying markers of cells from the renal pelvis epithelium did not associate with any indices of nephron hypertrophy or nephrosclerosis. Therefore, specific populations of EVs derived from cells of the glomerulus and nephron associate with underlying kidney structural changes. Further validation of these findings in other cohorts is needed to determine their clinical utility. Keywords: microvesicles; microparticles; exosomes; urinary vesicles; fibrosis; nephron hypertrophy; glomerulosclerosis; arteriosclerosis (Published: 1 February 2016) Citation: Journal of Extracellular Vesicles 2016, 5: 29642 - http://dx.doi.org/10.3402/jev.v5.29642

Journal ArticleDOI
TL;DR: Major portion of CPPs does not show activation phenotype but exhibits grape-like membrane disintegration with significant increase of membrane fluidity induced by 6% DMSO alone and further aggravated by freezing–thawing process.
Abstract: Background : Freezing is promising for extended platelet (PLT) storage for transfusion. 6% DMSO cryopreserved PLTs (CPPs) are currently in clinical development. CPPs contain significant amount of platelet membrane vesicles (PMVs). PLT-membrane changes and PMV release in CPP are poorly understood, and haemostatic effects of CPP PMVs are not fully elucidated. This study aims to investigate PLT-membrane alterations in CPPs and provide comprehensive characterization of CPP PMVs, and their contribution to procoagulant activity (PCA) of CPPs. Methods : CPPs and corresponding liquid-stored PLTs (LSPs) were characterized by flow cytometry (FC), fluorescence polarization (FP), nanoparticle tracking analysis (NTA), electron microscopy (SEM, TEM), atomic force microscopy (AFM) and thrombin-generation (TG) test. Results : SEM and TEM revealed disintegration and vesiculation of the PLT-plasma membrane and loss of intracellular organization in 60% PLTs in CPPs. FP demonstrated that 6% DMSO alone and with freezing–thawing caused marked increase in PLT-membrane fluidity. The FC counts of annexin V-binding PMVs and CD41a + PMVs were 68- and 56-folds higher, respectively, in CPPs than in LSPs. The AFM and NTA size distribution of PMVs in CPPs indicated a peak diameter of 100 nm, corresponding to exosome-size vesicles. TG-based PCA of CPPs was 2- and 9-folds higher per PLT and per volume, respectively, compared to LSPs. Differential centrifugation showed that CPP supernatant contributed 26% to CPP TG-PCA, mostly by the exosome-size PMVs and their TG-PCA was phosphatidylserine dependent. Conclusions : Major portion of CPPs does not show activation phenotype but exhibits grape-like membrane disintegration with significant increase of membrane fluidity induced by 6% DMSO alone and further aggravated by freezing–thawing process. DMSO cryopreservation of PLTs is associated with the release of PMVs and marked increase of TG-PCA, as compared to LSPs. Exosome-size PMVs have significant contribution to PCA of CPPs. Keywords: extracellular vesicles; microparticles; platelet physiology; blood products; thrombin; transfusion medicine; nanoparticle tracking analysis; flow cytometry; atomic force microscopy; electron microscopy (Published: 4 May 2016) Citation: Journal of Extracellular Vesicles 2016, 5: 30422 - http://dx.doi.org/10.3402/jev.v5.30422

Journal ArticleDOI
TL;DR: The capacity of extracellular vesicles (EVs) to generate ATP between normal seminal prostasomes and exosomes secreted by PC3 cells (PC3 exosome), a prostate cancer cell line is compared to find that both of them were capable of generating ATP when supplied with substrates.
Abstract: Epithelial cells lining the prostate acini release, in a regulated manner (exocytosis), nanosized vesicles called prostasomes that belong to the exosome family. Prostate cancer cells have preserved this ability to generate and export exosomes to the extracellular space. We previously demonstrated that human prostasomes have an ATP-forming capacity. In this study, we compared the capacity of extracellular vesicles (EVs) to generate ATP between normal seminal prostasomes and exosomes secreted by PC3 cells (PC3 exosomes), a prostate cancer cell line. Proteomic analyses identified enzymes of the glycolytic chain in both prostasomes and PC3 exosomes, and we found that both of them were capable of generating ATP when supplied with substrates. Notably, the net production of extracellular ATP was low for prostasomes due to a high ATPase activity contrary to an elevated net ATP level for PC3 exosomes because of their low ATPase activity. The uptake of the 2 types of EVs by normal prostate epithelial cells (CRL2221) and prostate cancer cells (PC3) was visualized and measured, demonstrating differential kinetics. Interestingly, this uptake was dependent upon an ongoing glycolytic flux involving extracellular ATP formation by EVs and/or intracellular ATP produced from the recipient cells. We conclude that the internalization of EVs into recipient cells is an energy-requiring process also demanding an active V-ATPase and the capacity of EVs to generate extracellular ATP may play a role in this process.

Journal ArticleDOI
TL;DR: The results show that the presence of bacteria can lead to misidentification in the electrophoresis peaks, and Fluorometry is more reliable than spectrophotometry.
Abstract: Background : Urinary extracellular vesicles (UEVs) represent an ideal platform for biomarker discovery. They carry different types of RNA species, and reported profile discrepancies related to the presence/absence of 18s and 28s rRNA remain controversial. Moreover, sufficient urinary RNA yields and respective quality RNA profiles are still to be fully established. Methods : UEVs were enriched by hydrostatic filtration dialysis, and RNA content was extracted using 7 different commercially available techniques. RNA quantity was assessed using spectrophotometry and fluorometry, whilst RNA quality was determined by capillary electrophoresis. Results : The presence of prokaryotic transcriptome was stressed when cellular RNA, as a control, was spiked into the UEVs samples before RNA extraction. The presence of bacteria in hydrostatic filtration dialysis above 1,000 kDa molecular weight cut-off and in crude urine was confirmed with growth media plates. The efficiency in removing urinary bacteria was evaluated by differential centrifugation, filtration (0.22 µm filters) and chemical pretreatment (water purification tablet). For volumes of urine >200 ml, the chemical treatment provides ease of handling without affecting vesicle integrity, protein and RNA profiles. This protocol was selected to enrich RNA with 7 methods, and its respective quality and quantity were assessed. The results were given as follows: (a) Fluorometry gave more repeatability and reproducibility than spectrophotometry to assess the RNA yields, (b) UEVs were enriched with small RNA, (c) Ribosomal RNA peaks were not observed for any RNA extraction method used and (d) RNA yield was higher for column-based method designed for urinary exosome, whilst the highest relative microRNA presence was obtained using TRIzol method. Conclusion : Our results show that the presence of bacteria can lead to misidentification in the electrophoresis peaks. Fluorometry is more reliable than spectrophotometry. RNA isolation method must be selected in conjunction with appropriate UEV collection procedure. We also suggested that a minimum 250 ml of urine should be processed to gather enough RNA for robust quantification, qualification and downstream analysis. Keywords: extracellular vesicles; urine; microRNA; RNA isolation; RNA quality; filtration; dialysis (Published: 24 June 2016) Citation: Journal of Extracellular Vesicles 2016, 5: 30281 - http://dx.doi.org/10.3402/jev.v5.30281

Journal ArticleDOI
TL;DR: In this paper, the authors used high-resolution flow cytometry to detect extracellular vesicles (EVs) in synovial fluid (SF) from healthy equine SF samples.
Abstract: Extracellular vesicles (EVs) in synovial fluid (SF) are gaining increased recognition as important factors in joint homeostasis, joint regeneration, and as biomarkers of joint disease. A limited number of studies have investigated EVs in SF samples of patients with joint disease, but knowledge on the role of EVs in healthy joints is lacking. In addition, no standardized protocol is available for isolation of EVs from SF. Based on the high viscosity of SF caused by high concentrations of hyaluronic acid (HA) – a prominent extracellular matrix component – it was hypothesized that EV recovery could be optimized by pretreatment with hyaluronidase (HYase). Therefore, the efficiency of EV isolation from healthy equine SF samples was tested by performing sequential ultracentrifugation steps (10,000 g , 100,000 g and 200,000 g ) in the presence or absence of HYase. Quantitative EV analysis using high-resolution flow cytometry showed an efficient recovery of EVs after 100,000 g ultracentrifugation, with an increased yield of CD44+ EVs when SF samples were pretreated with HYase. Morphological analysis of SF-derived EVs with cryo-transmission-electron microscopy did not indicate damage by high-speed ultracentrifugation and revealed that most EVs are spherical with a diameter of 20–200 nm. Further protein characterization by Western blotting revealed that healthy SF-derived EVs contain CD9, Annexin-1, and CD90/Thy1.1. Taken together, these data suggest that EV isolation protocols for body fluids that contain relatively high amounts of HA, such as SF, could benefit from treatment of the fluid with HYase prior to ultracentrifugation. This method facilitates recovery and detection of CD44+ EVs within the HA-rich extracellular matrix. Furthermore, based on the findings presented here, it is recommended to sediment SF-derived EVs with at least 100,000 g for optimal EV recovery. Keywords: extracellular vesicles; isolation; synovial fluid; joint; equine; hyaluronidase; high-resolution flow cytometry; CD44; cryo-TEM; standardization (Published: 9 August 2016) Citation: Journal of Extracellular Vesicles 2016, 5 : 31751 - http://dx.doi.org/10.3402/jev.v5.31751

Journal ArticleDOI
TL;DR: This first massive open online course (MOOC) on EVs was launched on 15 August 2016 at the platform “Coursera” and is free of charge.
Abstract: The International Society for Extracellular Vesicles (ISEV) has organised its first educational online course for students and beginners in the field of extracellular vesicles (EVs). This course, “Basics of Extracellular Vesicles,” uses recorded lectures from experts in the field and will be open for an unlimited number of participants. The course is divided into 5 modules and can be accessed at www.coursera.org/learn/extracellular-vesicles . The first module is an introduction to the field covering the nomenclature and history of EVs. Module 2 focuses on the biogenesis and uptake mechanisms of EVs, as well as their RNA, protein and lipid cargo. Module 3 covers the collection and processing of cell culture media and body fluids such as blood, breast milk, cerebrospinal fluid and urine prior to isolation of EVs. Modules 4 and 5 present different isolation methods and characterisation techniques utilised in the EV field. Here, differential ultracentrifugation, size-exclusion chromatography, density gradient centrifugation, kit-based precipitation, electron microscopy, cryo-electron microscopy, flow cytometry, atomic-force microscopy and nanoparticle-tracking analysis are covered. This first massive open online course (MOOC) on EVs was launched on 15 August 2016 at the platform “Coursera” and is free of charge. Keywords: exosomes; microvesicles; extracellular vesicles; education; massive open online course; International Society for Extracellular Vesicles; Coursera (Published: 16 December 2016) Citation: Journal of Extracellular Vesicles 2016, 5: 34299 - http://dx.doi.org/10.3402/jev.v5.34299

Journal ArticleDOI
TL;DR: It is demonstrated that the cellular and vesicular presentation of selected lineage-specific and vESicle-related markers may differ, supporting the accumulating observations that sorting of molecular cargo into EVs is tightly controlled.
Abstract: Extracellular vesicles (EVs) have a demonstrated involvement in modulating the immune system. It has been proposed that EVs could be used as biomarkers for detection of inflammatory and immunological disorders. Consequently, it is of great interest to investigate EVs in more detail with focus on immunological markers. In this study, five major leukocyte subpopulations and the corresponding leukocyte-derived EVs were phenotyped with focus on selected immunological lineage-specific markers and selected vesicle-related markers. The leukocyte-derived EVs displayed phenotypic differences in the 34 markers investigated. The majority of the lineage-specific markers used for identification of the parent cell types could not be detected on EVs released from monocultures of the associated cell types. In contrast, the vesicular presentation of CD9, CD63, and CD81 correlated to the cell surface expression of these markers, however, with few exceptions. Furthermore, the cellular expression of CD9, CD63, and CD81 varied between leukocytes present in whole blood and cultured leukocytes. In summary, these data demonstrate that the cellular and vesicular presentation of selected lineage-specific and vesicle-related markers may differ, supporting the accumulating observations that sorting of molecular cargo into EVs is tightly controlled.

Journal Article
TL;DR: In this paper, the Journal of Extracellular Vesicles 2016, 5: 31552 - http://dx.doi.org/10.3402/jev.v5.31552
Abstract: (no abstract available) (Published: 30 May 2016) Citation: Journal of Extracellular Vesicles 2016, 5: 31552 - http://dx.doi.org/10.3402/jev.v5.31552