scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Neurochemistry in 2012"


Journal ArticleDOI
TL;DR: In this paper, the authors demonstrate that the number and morphology of microglia throughout development is dependent upon the sex and age of the individual, as well as the brain region of interest, and that gene expression of a large number of cytokines, chemokines and their receptors shifts dramatically over development, and is highly dependent upon sex.
Abstract: Microglia are the resident immune cells within the brain and their production of immune molecules such as cytokines and chemokines is critical for the processes of normal brain development including neurogenesis, axonal migration, synapse formation, and programmed cell death Notably, sex differences exist in many of these processes throughout brain development; however, it is unknown whether a sex difference concurrently exists in the colonization, number, or morphology of microglia within the developing brain We demonstrate for the first time that the number and morphology of microglia throughout development is dependent upon the sex and age of the individual, as well as the brain region of interest Males have overall more microglia early in postnatal development [postnatal day (P) 4], whereas females have more microglia with an activated/amoeboid morphology later in development, as juveniles and adults (P30-60) Finally, gene expression of a large number of cytokines, chemokines and their receptors shifts dramatically over development, and is highly dependent upon sex Taken together, these data warrant further research into the role that sex-dependent mechanisms may play in microglial colonization, number, and function, and their potential contribution to neural development, function, or potential dysfunction

503 citations


Journal ArticleDOI
TL;DR: A review of brain operation in health and disease can be found in this article, which not only sheds new light on the brain operation, but also points to many unknowns, such as how gliotransmitters can modulate synaptic plasticity and cause changes in behavior.
Abstract: Neuroglial cells define brain homeostasis and mount defense against pathological insults. Astroglia regulate neurogenesis and development of brain circuits. In the adult brain, astrocytes enter into intimate dynamic relationship with neurons, especially at synaptic sites where they functionally form the tripartite synapse. At these sites, astrocytes regulate ion and neurotransmitter homeostasis, metabolically support neurons and monitor synaptic activity; one of the readouts of the latter manifests in astrocytic intracellular Ca(2+) signals. This form of astrocytic excitability can lead to release of chemical transmitters via Ca(2+) -dependent exocytosis. Once in the extracellular space, gliotransmitters can modulate synaptic plasticity and cause changes in behavior. Besides these physiological tasks, astrocytes are fundamental for progression and outcome of neurological diseases. In Alzheimer's disease, for example, astrocytes may contribute to the etiology of this disorder. Highly lethal glial-derived tumors use signaling trickery to coerce normal brain cells to assist tumor invasiveness. This review not only sheds new light on the brain operation in health and disease, but also points to many unknowns.

494 citations


Journal ArticleDOI
TL;DR: In this article, the authors investigated whether alterations in mitochondrial biogenesis contribute to mitochondrial abnormalities in Alzheimer's disease (AD) brain and showed that the PKA/CREB pathway plays a critical role in the regulation of PGC-1α expression in APPswe M17 cells.
Abstract: Mitochondrial dysfunction is a prominent feature of Alzheimer's disease (AD) brain. Our prior studies demonstrated reduced mitochondrial number in susceptible hippocampal neurons in the brain from AD patients and in M17 cells overexpressing FAD-causing APP mutant (APPswe). In the current study, we investigated whether alterations in mitochondrial biogenesis contribute to mitochondrial abnormalities in AD. Mitochondrial biogenesis is regulated by the PGC-1α-NRF-TFAM pathway. Expression levels of PGC-1α, NRF 1, NRF 2, and TFAM were significantly decreased in both AD hippocampal tissues and APPswe M17 cells, suggesting a reduced mitochondrial biogenesis. Indeed, APPswe M17 cells demonstrated decreased mitochondrial DNA/nuclear DNA ratio, correlated with reduced ATP content, and decreased cytochrome C oxidase activity. Importantly, overexpression of PGC-1α could completely rescue while knockdown of PGC-1α could exacerbate impaired mitochondrial biogenesis and mitochondrial deficits in APPswe M17 cells, suggesting reduced mitochondrial biogenesis is likely involved in APPswe-induced mitochondrial deficits. We further demonstrated that reduced expression of p-CREB and PGC-1α in APPswe M17 cells could be rescued by cAMP in a dose-dependent manner, which could be inhibited by PKA inhibitor H89, suggesting that the PKA/CREB pathway plays a critical role in the regulation of PGC-1α expression in APPswe M17 cells. Overall, our study demonstrated that impaired mitochondrial biogenesis likely contributes to mitochondrial dysfunction in AD.

415 citations


Journal ArticleDOI
TL;DR: The authors showed that resveratrol, a natural polyphenol associated with anti-inflammatory effects and currently in clinical trials for AD, prevented the activation of macrophages and microglial BV-2 cells treated with TLR4 ligand, lipopolysaccharide (LPS).
Abstract: Activation of microglia, the resident macrophages of the brain, around the amyloid plaques is a key hallmark of Alzheimer's disease (AD). Recent evidence in mouse models indicates that microglia are required for the neurodegenerative process of AD. Amyloid-β (Aβ) peptides, the core components of the amyloid plaques, can trigger microglial activation by interacting with several Toll-like receptors (TLRs), including TLR4. In this study, we show that resveratrol, a natural polyphenol associated with anti-inflammatory effects and currently in clinical trials for AD, prevented the activation of murine RAW 264.7 macrophages and microglial BV-2 cells treated with the TLR4 ligand, lipopolysaccharide (LPS). Resveratrol preferentially inhibited nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) activation upon LPS stimulation by interfering with IKK and IκB phosphorylation, an effect that potently reduced the transcriptional stimulation of several NF-κB target genes, including tumor necrosis factor-α and interleukin-6. Consequently, downstream phosphorylation of signal transducer and activator of transcription (STAT)1 and STAT3 upon LPS stimulation was also inhibited by resveratrol. We found that resveratrol acted upstream in the activation cascade by interfering with TLR4 oligomerization upon receptor stimulation. Resveratrol treatment also prevented the pro-inflammatory effect of fibrillar Aβ on macrophages by potently inhibiting the effect of Aβ on IκB phosphorylation, activation of STAT1 and STAT3, and on tumor necrosis factor-α and interleukin-6 secretion. Importantly, orally administered resveratrol in a mouse model of cerebral amyloid deposition lowered microglial activation associated with cortical amyloid plaque formation. Together this work provides strong evidence that resveratrol has in vitro and in vivo anti-inflammatory effects against Aβ-triggered microglial activation. Further studies in cell culture systems showed that resveratrol acted via a mechanism involving the TLR4/NF-κB/STAT signaling cascade.

355 citations


Journal ArticleDOI
TL;DR: J. Neurochem. (2012) 120 (Suppl. 1), 125–139, http://www.ncbi.nlm.nih.gov/pubs/journal/suppl.aspx?id=120 for more information about the determinants of central nervous system injury and the role of language in the injury.
Abstract: For nearly 100 years following the first description of this neurological disorder by Dr Alois Alzheimer, amyloid plaques and neurofibrillary tangles have been hypothesized to cause neuronal loss. With evidence that the extent of insoluble, deposited amyloid poorly correlated with cognitive impairment, research efforts focused on soluble forms of Aβ, also referred as Aβ oligomers. Following a decade of studies, soluble oligomeric forms of Aβ are now believed to induce the deleterious cascade(s) involved in the pathophysiology of Alzheimer's disease. In this review, we will discuss our current understanding about endogenous oligomeric Aβ production, their relative toxicity in vivo and in vitro, and explore the potential future directions needed for the field.

329 citations


Journal ArticleDOI
TL;DR: J. Neurochem.
Abstract: β-Amyloid precursor protein (APP) is a critical factor in the pathogenesis of Alzheimer's disease (AD). APP undergoes post-translational proteolysis/processing to generate the hydrophobic β-amyloid (Aβ) peptides. Deposition of Aβ in the brain, forming oligomeric Aβ and plaques, is identified as one of the key pathological hallmarks of AD. The processing of APP to generate Aβ is executed by β- and γ-secretase and is highly regulated. Aβ toxicity can lead to synaptic dysfunction, neuronal cell death, impaired learning/memory and abnormal behaviors in AD models in vitro and in vivo. Aside from Aβ, proteolytic cleavages of APP can also give rise to the APP intracellular domain, reportedly involved in multiple types of cellular events such as gene transcription and apoptotic cell death. In addition to amyloidogenic processing, APP can also be cleaved by α-secretase to form a soluble or secreted APP ectodomain (sAPP-α) that has been shown to be mostly neuro-protective. In this review, we describe the mechanisms involved in APP metabolism and the likely functions of its various proteolytic products to give a better understanding of the patho/physiological functions of APP.

299 citations


Journal ArticleDOI
TL;DR: J. Neurochem. (2012) 120 (Suppl. 1), 71–83, http://www.ncbi.nlm.nih.gov/pubs/journal/suppl.php?id = 120 to describe the findings of a 12-week study investigating the role of “navel-gazing” in the development of central nervous system disease and its role in Parkinson's disease.
Abstract: β-Secretase (memapsin 2; BACE-1) is the first protease in the processing of amyloid precursor protein leading to the production of amyloid-β (Aβ) in the brain. It is believed that high levels of brain Aβ are responsible for the pathogenesis of Alzheimer's disease (AD). Therefore, β-secretase is a major therapeutic target for the development of inhibitor drugs. During the past decade, steady progress has been made in the evolution of β-secretase inhibitors toward better drug properties. Recent inhibitors are potent, selective and have been shown to penetrate the blood-brain barrier to inhibit Aβ levels in the brains of experimental animals. Moreover, continuous administration of a β-secretase inhibitor was shown to rescue age-related cognitive decline in transgenic AD mice. A small number of β-secretase inhibitors have also entered early phase clinical trials. These developments offer some optimism for the clinical development of a disease-modifying drug for AD.

240 citations


Journal ArticleDOI
TL;DR: J. Neurochem. (2012) 120 (Suppl. 1), 149–166, http://www.ncbi.nlm.nih.gov/pubs/journal/suppl.php?id=120 to describe the findings of a 12-week study investigating the role of “navel-gazing” in the development of central nervous system injury and its role in memory loss.
Abstract: The biggest risk factor for Alzheimer's disease is the process of ageing, but the mechanisms that lead to the manifestation of the disease remain to be elucidated. Why age triggers the disease is unclear but an emerging theme is the inability for a cell to efficiently maintain many key processes such as energy production, repair, and regenerative mechanisms. Metal ions are essential to the metabolic function of every cell. This review will explore the role and reported changes in metal ions in Alzheimer disease, particularly the brain, blood and cerebral spinal fluid, emphasizing how iron, copper and zinc may be involved through the interactions with amyloid precursor protein, the proteolytically cleaved peptide amyloid-beta (Aβ), and other related metalloproteins. Finally, we explore the monomeric makeup of possible Aβ dimers, what a dimeric Aβ species from Alzheimer's disease brain tissue is likely to be composed of, and discuss how metals may influence Aβ production and toxicity via a copper catalyzed dityrosine cross-link.

239 citations


Journal ArticleDOI
TL;DR: In this paper, the effects of long-chain fatty acids on inflammatory signaling in cultured astrocytes were investigated, and it was shown that the saturated fatty acid palmitic acid, as well as lauric acid and stearic acid can trigger the release of TNFα and IL-6 from the cells.
Abstract: This study describes the effects of long-chain fatty acids on inflammatory signaling in cultured astrocytes. Data show that the saturated fatty acid palmitic acid, as well as lauric acid and stearic acid, trigger the release of TNFα and IL-6 from astrocytes. Unsaturated fatty acids were unable to induce cytokine release from cultured astrocytes. Furthermore, the effects of palmitic acid on cytokine release require Toll-like receptor 4 rather than CD36 or Toll-like receptor 2, and do not depend on palmitic acid metabolism to palmitoyl-CoA. Inhibitor studies revealed that pharmacologic inhibition of p38 or p42/44 MAPK pathways prevents the pro-inflammatory effects of palmitic acid, whereas JNK and PI3K inhibition does not affect cytokine release. Depletion of microglia from primary astrocyte cultures using the lysosomotropic agent l-leucine methyl ester revealed that the ability of palmitic acid to trigger cytokine release is not dependent on the presence of microglia. Finally, data show that the essential ω-3 fatty acid docosahexaenoic acid acts in a dose-dependent manner to prevent the actions of palmitic acid on inflammatory signaling in astrocytes. Collectively, these data demonstrate the ability of saturated fatty acids to induce astrocyte inflammation in vitro. These data thus raise the possibility that high levels of circulating saturated fatty acids could cause reactive gliosis and brain inflammation in vivo, and could potentially participate in the reported adverse neurologic consequences of obesity and metabolic syndrome.

231 citations


Journal ArticleDOI
TL;DR: S100B is a calcium-binding protein concentrated in glial cells, although it has also been detected in definite extra-neural cell types, although its biological role is still debated as discussed by the authors.
Abstract: J. Neurochem. (2012) 120, 644–659. Abstract S100B is a calcium-binding protein concentrated in glial cells, although it has also been detected in definite extra-neural cell types. Its biological role is still debated. When secreted, S100B is believed to have paracrine/autocrine trophic effects at physiological concentrations, but toxic effects at higher concentrations. Elevated S100B levels in biological fluids (CSF, blood, urine, saliva, amniotic fluid) are thus regarded as a biomarker of pathological conditions, including perinatal brain distress, acute brain injury, brain tumors, neuroinflammatory/neurodegenerative disorders, psychiatric disorders. In the majority of these conditions, high S100B levels offer an indicator of cell damage when standard diagnostic procedures are still silent. The key question remains as to whether S100B is merely leaked from injured cells or is released in concomitance with both physiological and pathological conditions, participating at high concentrations in the events leading to cell injury. In this respect, S100B levels in biological fluids have been shown to increase in physiological conditions characterized by stressful physical and mental activity, suggesting that it may be physiologically regulated and raised during conditions of stress, with a putatively active role. This possibility makes this protein a candidate not only for a biomarker but also for a potential therapeutic target.

205 citations


Journal ArticleDOI
TL;DR: In this paper, the role of cavolin-1 (cav-1) in regulating blood-brain barrier (BBB) permeability is investigated in the context of cerebral ischemia-reperfusion injury.
Abstract: The roles of caveolin-1 (cav-1) in regulating blood-brain barrier (BBB) permeability are unclear yet. We previously reported that cav-1 was down-regulated and the production of nitric oxide (NO) induced the loss of cav-1 in focal cerebral ischemia and reperfusion injury. The present study aims to address whether the loss of cav-1 impacts on BBB permeability and matrix metalloproteinases (MMPs) activity during cerebral ischemia-reperfusion injury. We found that focal cerebral ischemia-reperfusion down-regulated the expression of cav-1 in isolated cortex microvessels, hippocampus, and cortex of ischemic brain. The down-regulation of cav-1 was correlated with the increased MMP-2 and -9 activities, decreased tight junction (TJ) protein zonula occludens (ZO)-1 expression and enhanced BBB permeability. Treatment of N(G) -nitro-L-arginine methyl ester [L-NAME, a non-selective nitric oxide synthase (NOS) inhibitor] reserved the expression of cav-1, inhibited MMPs activity, and reduced BBB permeability. To elucidate the roles of cav-1 in regulating MMPs and BBB permeability, we used two approaches including cav-1 knockdown in cultured brain microvascular endothelial cells (BMECs) in vitro and cav-1 knockout (KO) mice in vivo. Cav-1 knockdown remarkably increased MMPs activity in BMECs. Meanwhile, with focal cerebral ischemia-reperfusion, cav-1 deficiency mice displayed higher MMPs activities and BBB permeability than wild-type mice. Interestingly, the effects of L-NAME on MMPs activity and BBB permeability was partly reversed in cav-1 deficiency mice. These results, when taken together, suggest that cav-1 plays important roles in regulating MMPs activity and BBB permeability in focal cerebral ischemia and reperfusion injury. The effects of L-NAME on MMPs activity and BBB permeability are partly mediated by preservation of cav-1.

Journal ArticleDOI
TL;DR: J. Neurochem. (2012) 120 (Suppl. 1), 99–108, http://www.ncbi.nlm.nih.gov/pubs/journal/suppl.php?id = 120 to describe the findings of a 12-week study investigating the role of “navel-gazing” in the development of central nervous system injury and its role in memory loss.
Abstract: Amyloid peptide (Aβ) is derived from the cleavage of amyloid precursor protein (APP), which also generates the soluble peptide APPβ (sAPPβ). An antagonist and major APP metabolic pathway involves cleavage by alpha secretase, which releases sAPPα. Although soluble Aβ oligomers are neurotoxic, Aβ monomers share similar properties with sAPPα. These include neurotrophic and neuroprotective effects, as well as stimulation of neural-progenitor proliferation. The properties of Aβ monomers and the neurotrophic capacity of sAPPβ to stimulate axonal outgrowth suggest that Aβ production is not deleterious per se. Consequently, therapeutic strategies for Alzheimer's disease that are targeted at Aβ-cleaving enzymes should modulate rather than inhibit Aβ generation. These strategies should focus on the factors that induce the conversion of Aβ monomers into toxic soluble oligomers. Another interesting therapeutic approach is to focus on the mechanisms of the different properties of sAPPα. Indeed, increasing sAPPα levels could shift proliferating cells towards tumorigenesis. In contrast to its neuroprotective effects, sAPPα is also able to activate microglia, leading to neurotoxicity. Understanding the mechanisms that underlie the different properties of sAPPα could therefore lead to the development of therapeutic strategies against Alzheimer's disease, which could be curative as well as preventive.

Journal ArticleDOI
TL;DR: In this article, the role of NADPH oxidase in microglial activation state using p47(phox) and gp91-phox -deficient mice as well as apocynin, a NADPH enzyme inhibitor during neuroinflammation induced by an intracerebroventricular injection of LPS or Aβ₁₋₄₂₆₉.
Abstract: Like macrophages, microglia are functionally polarized into different phenotypic activation states, referred as classical and alternative. The balance of the two phenotypes may be critical to ensure proper brain homeostasis, and may be altered in brain pathological states, such as Alzheimer's disease. We investigated the role of NADPH oxidase in microglial activation state using p47(phox) and gp91(phox) -deficient mice as well as apocynin, a NADPH oxidase inhibitor during neuroinflammation induced by an intracerebroventricular injection of LPS or Aβ₁₋₄₂. We showed that NADPH oxidase plays a critical role in the modulation of microglial phenotype and subsequent inflammatory response. We demonstrated that inhibition of NADPH oxidase or gene deletion of its functional p47(phox) subunit switched microglial activation from a classical to an alternative state in response to an inflammatory challenge. Moreover, we showed a shift in redox state towards an oxidized milieu and that subpopulations of microglia retain their detrimental phenotype in Alzheimer's disease brains. Microglia can change their activation phenotype depending on NADPH oxidase-dependent redox state of microenvironment. Inhibition of NADPH oxidase represents a promising neuroprotective approach to reduce oxidative stress and modulate microglial phenotype towards an alternative state.

Journal ArticleDOI
TL;DR: In this paper, the authors investigated whether DJ-1 is involved in the regulation of mitochondrial dynamics and function in neuronal cells, and they found that over-expression of PD-associated DJ1 mutants resulted in mitochondria dysfunction and increased neuronal vulnerability to oxidative stress (H(2) O(2)) or neurotoxin.
Abstract: Mitochondrial dysfunction represents a critical event during the pathogenesis of Parkinson's disease (PD) and expanding evidences demonstrate that an altered balance in mitochondrial fission/fusion is likely an important mechanism leading to mitochondrial and neuronal dysfunction/degeneration. In this study, we investigated whether DJ-1 is involved in the regulation of mitochondrial dynamics and function in neuronal cells. Confocal and electron microscopic analysis demonstrated that M17 human neuroblastoma cells over-expressing wild-type DJ-1 (WT DJ-1 cells) displayed elongated mitochondria while M17 cells over-expressing PD-associated DJ-1 mutants (R98Q, D149A and L166P) (mutant DJ-1 cells) showed significant increase of fragmented mitochondria. Similar mitochondrial fragmentation was also noted in primary hippocampal neurons over-expressing PD-associated mutant forms of DJ-1. Functional analysis revealed that over-expression of PD-associated DJ-1 mutants resulted in mitochondria dysfunction and increased neuronal vulnerability to oxidative stress (H(2) O(2)) or neurotoxin. Further immunoblot studies demonstrated that levels of dynamin-like protein (DLP1), also known as Drp1, a regulator of mitochondrial fission, was significantly decreased in WT DJ-1 cells but increased in mutant DJ-1 cells. Importantly, DLP1 knockdown in these mutant DJ-1 cells rescued the abnormal mitochondria morphology and all associated mitochondria/neuronal dysfunction. Taken together, these studies suggest that DJ-1 is involved in the regulation of mitochondrial dynamics through modulation of DLP1 expression and PD-associated DJ-1 mutations may cause PD by impairing mitochondrial dynamics and function.

Journal ArticleDOI
TL;DR: In this article, the authors investigated the cross-seeding effects of Aβ and α-synuclein (αS) on the aggregation pathways of amyloid plaques and Lewy bodies.
Abstract: Amyloid β-protein (Aβ) and α-synuclein (αS) are the primary components of amyloid plaques and Lewy bodies (LBs), respectively. Previous in vitro and in vivo studies have suggested that interactions between Aβ and αS are involved in the pathogenesis of Alzheimer's disease and LB diseases. However, the seeding effects of their aggregates on their aggregation pathways are not completely clear. To investigate the cross-seeding effects of Aβ and αS, we examined how sonicated fibrils or cross-linked oligomers of Aβ40, Aβ42, and αS affected their aggregation pathways using thioflavin T(S) assay and electron microscopy. Fibrils and oligomers of Aβ40, Aβ42, and αS acted as seeds, and affected the aggregation pathways within and among species. The seeding effects of αS fibrils were higher than those of Aβ40 and Aβ42 fibrils in the Aβ40 and Aβ42 aggregation pathways, respectively. We showed that Aβ and αS acted as seeds and affected each other's aggregation pathways in vitro, which may contribute to our understanding of the molecular mechanisms of interactions between Alzheimer's disease and LB diseases pathologies.

Journal ArticleDOI
TL;DR: In this article, the anticonvulsant properties of ketone bodies and the ketogenic diet are discussed (including GABAergic and glutamatergic effects), and the effects of the ketone body metabolism on developing neurons in vitro also are discussed.
Abstract: Seizures that are resistant to standard medications remain a major clinical problem. One underutilized option for patients with medication-resistant seizures is the high-fat, low-carbohydrate ketogenic diet. The diet received its name based on the observation that patients consuming this diet produce ketone bodies (e.g., acetoacetate, β-hydroxybutyrate, and acetone). Although the exact mechanisms of the diet are unknown, ketone bodies have been hypothesized to contribute to the anticonvulsant and antiepileptic effects. In this review, anticonvulsant properties of ketone bodies and the ketogenic diet are discussed (including GABAergic and glutamatergic effects). Because of the importance of ketone body metabolism in the early stages of life, the effects of ketone bodies on developing neurons in vitro also are discussed. Understanding how ketone bodies exert their effects will help optimize their use in treating epilepsy and other neurological disorders.

Journal ArticleDOI
TL;DR: J. Neurochem.
Abstract: The amyloid cascade hypothesis of Alzheimer's disease envisages that the initial elevation of amyloid β-peptide (Aβ) levels, especially of Aβ(1-42) , is the primary trigger for the neuronal cell death specific to onset of Alzheimer's disease There is now substantial evidence that brain amyloid levels are manipulable because of a dynamic equilibrium between their synthesis from the amyloid precursor protein and their removal by amyloid-degrading enzymes (ADEs) providing a potential therapeutic strategy Since the initial reports over a decade ago that two zinc metallopeptidases, insulin-degrading enzyme and neprilysin (NEP), contributed to amyloid degradation in the brain, there is now an embarras de richesses in relation to this category of enzymes, which currently number almost 20 These now include serine and cysteine proteinases, as well as numerous zinc peptidases The experimental validation for each of these enzymes, and which to target, varies enormously but up-regulation of several of them individually in mouse models of Alzheimer's disease has proved effective in amyloid and plaque clearance, as well as cognitive enhancement The relative status of each of these enzymes will be critically evaluated NEP and its homologues, as well as insulin-degrading enzyme, remain as principal ADEs and recently discovered mechanisms of epigenetic regulation of NEP expression potentially open new avenues in manipulation of AD-related genes, including ADEs

Journal ArticleDOI
TL;DR: In this paper, the authors showed that LRRK2 G2019S can cause defects in the morphology and dynamics of mitochondria in cortical neurons, which may contribute to the pathogenesis of both sporadic and familial PD.
Abstract: Mutations in Leucine-rich repeat kinase 2 (LRRK2) are the leading causes of genetically inherited Parkinson's disease (PD) identified so far. The underlying mechanism whereby missense alterations in LRRK2 initiate neurodegeneration remains largely unclear. Mitochondrial dysfunction has been recognized to contribute to the pathogenesis of both sporadic and familial PD. The pathogenic gain-of-function mutant form of LRRK2, LRRK2 G2019S, is associated with elevated kinase activity and PD. Here we show that LRRK2 G2019S can cause defects in the morphology and dynamics of mitochondria in cortical neurons. In neurons, endogenous LRRK2 and the mitochondrial fission factor Dynamin like protein 1 (DLP1) interact with and partially co-localize with each other. DLP1 plays an essential role in LRRK2-induced mitochondrial fission. In support of this, expression of LRRK2 leads to the translocation of DLP1 from the cytosol to the mitochondria and knockdown of DLP1 expression inhibits LRRK2-induced mitochondrial fission. In addition, co-expression of LRRK2 and DLP1 induces mitochondrial clearance. Furthermore, we have found that expression of LRRK2 leads to increased reactive oxygen species levels in cells. Taken together, our results provide insights into the pathobiology of LRRK2 and suggest that LRRK2 G2019S may induce neuronal dysfunction or cell death by disturbing normal mitochondrial fission/fusion dynamics and function.

Journal ArticleDOI
TL;DR: J. Neurochem.
Abstract: J. Neurochem. (2012) 120 (Suppl. 1), 186–193. Abstract Recent advances in the understanding of Alzheimer’s disease pathogenesis have led to the development of numerous compounds that might modify the disease process. Amyloid β (Aβ) peptide represents an important molecular target for intervention in Alzheimer’s disease. Several types of Aβ peptide immunotherapy for Alzheimer’s disease are under investigation, direct immunization with synthetic intact Aβ42, active immunization involving the administration of synthetic fragments of Aβ peptide conjugated to a carrier protein and passive administration with monoclonal antibodies directed against Aβ peptide. Pre-clinical studies showed that immunization against Aβ peptide can provide protection and reversal of the pathology of Alzheimer’s disease in animal models. Indeed, several adverse events have been described like meningoencephalitis with AN1792, vasogenic edema and microhemorrhages with bapineuzumab. Although immunotherapy approaches resulted in clearance of amyloid plaques in patients with Alzheimer’s disease, this clearance did not show significant cognitive effect for the moment. Currently, several Aβ peptide immunotherapy approaches are under investigation but also against tau pathology.

Journal ArticleDOI
TL;DR: J. Neurochem. (2012) 120 (Suppl. 1), 109–124, http://www.ncbi.nlm.nih.gov/pubs/journal/suppl.php?id=120 to describe the findings of a double-blind, placebo-controlled study of the immune response to central nervous system injury in rats.
Abstract: The amyloid-β precursor protein (βAPP) undergoes several cleavages by enzymatic activities called secretases. Numerous studies aimed at studying the biogenesis and catabolic fate of Aβ peptides, the proteinaceous component of the senile plaques that accumulate in Alzheimer's disease-affected brains. Relatively recently, another secretase-mediated β-APP-derived catabolite called APP IntraCellular Domain (AICD) entered the game. Whether AICD corresponded to a biologically inert by-pass product of βAPP processing or whether it could harbor its own function remained questionable. In this study, we review the mechanisms by which AICD is generated and how its production is regulated. Furthermore, we discuss the degradation mechanism underlying its rapid catabolic fate. Finally, we review putative AICD-related functions and more particularly, the numerous studies indicating that AICD could translocate to the nucleus and control at a transcriptional level, the expression of a series of proteins involved in various functions including the control of cell death and Aβ degradation.

Journal ArticleDOI
TL;DR: In this article, a mouse model of diet-induced obesity (DIO) was used to identify differential DNA methylation as an epigenetic mechanism linking the chronic intake of high-fat (HF) diet with altered dopamine-related gene expression.
Abstract: Chronic intake of high-fat (HF) diet is known to alter brain neurotransmitter systems that participate in the central regulation of food intake. Dopamine (DA) system changes in response to HF diet have been observed in the hypothalamus, important in the homeostatic control of food intake, as well as within the central reward circuitry [ventral tegmental area (VTA), nucleus accumbens (NAc), and pre-frontal cortex (PFC)], critical for coding the rewarding properties of palatable food and important in hedonically driven feeding behavior. Using a mouse model of diet-induced obesity (DIO), significant alterations in the expression of DA-related genes were documented in adult animals, and the general pattern of gene expression changes was opposite within the hypothalamus versus the reward circuitry (increased vs. decreased, respectively). Differential DNA methylation was identified within the promoter regions of tyrosine hydroxylase (TH) and dopamine transporter (DAT), and the pattern of this response was consistent with the pattern of gene expression. Behaviors consistent with increased hypothalamic DA and decreased reward circuitry DA were observed. These data identify differential DNA methylation as an epigenetic mechanism linking the chronic intake of HF diet with altered DA-related gene expression, and this response varies by brain region and DNA sequence.

Journal ArticleDOI
TL;DR: J. Neurochem.
Abstract: In this study, we review our finding of APP mutations in Alzheimer's disease in 1990-1991 with the benefit of 20 years' perspective. We discuss the historical context in which we made the finding, its immediate and continuing effects on research activity and our hopes for successful clinical testing of the hypothesis. We also briefly discuss the effects finding APP mutations has had on our own careers and those of our colleagues from 1991.

Journal ArticleDOI
Basak Caner1, Jack Hou1, Orhan Altay1, Mutsumi Fuj1, John H. Zhang1 
TL;DR: The pathological mechanisms of early brain injury are reviewed, which may reveal new therapeutic avenues that can be exploited to serve as combination therapy with anti‐vasospasm medications in the future.
Abstract: Subarachnoid hemorrhage is a devastating disease that can be difficult to manage. Not only is the initial bleeding and rebleeding associated with high mortality, but a large fraction of patients also develop a delayed neurological deficit even when the aneurysm was successfully secured with clipping or coiling. Past research effort has traditionally been focused on vasospasm, which was conceived to be the sole factor for delayed neurological deficit. The failure of anti-vasospastic drugs to improve outcome in clinical trials has brought into focus the significance of early brain injury. The immediate events associated with subarachnoid hemorrhage, including increased intracranial pressure, decreased cerebral blood flow and global ischemia initiate a cascade of pathological changes that occur before the onset of delayed vasospasm. These pathological changes in the very early stage of the hemorrhage propagate and cause blood-brain barrier disruption, inflammation, oxidative stress and cell death. Focusing only on the treatment of vasospasm with complete disregard for early brain injury is insufficient for the management of subarachnoid hemorrhage. Instead, a therapeutic intervention has to aim at stopping the molecular cascades of early brain injury that may lead to long-term deficits in addition to vasospasm. We review the pathological mechanisms of early brain injury, which may reveal new therapeutic avenues that can be exploited to serve as combination therapy with anti-vasospasm medications in the future.

Journal ArticleDOI
TL;DR: In this article, the authors used in vivo fast scan cyclic voltammetry (FSCV) measurements revealed that spontaneous dopamine transients constitute a major component of extracellular dopamine levels in the nucleus accumbens.
Abstract: J. Neurochem. (2012) 121, 252–262. Abstract Mesolimbic dopamine neurons fire in both tonic and phasic modes resulting in detectable extracellular levels of dopamine in the nucleus accumbens (NAc). In the past, different techniques have targeted dopamine levels in the NAc to establish a basal concentration. In this study, we used in vivo fast scan cyclic voltammetry (FSCV) in the NAc of awake, freely moving rats. The experiments were primarily designed to capture changes in dopamine caused by phasic firing – that is, the measurement of dopamine ‘transients’. These FSCV measurements revealed for the first time that spontaneous dopamine transients constitute a major component of extracellular dopamine levels in the NAc. A series of experiments were designed to probe regulation of extracellular dopamine. Lidocaine was infused into the ventral tegmental area, the site of dopamine cell bodies, to arrest neuronal firing. While there was virtually no instantaneous change in dopamine concentration, longer sampling revealed a decrease in dopamine transients and a time-averaged decrease in the extracellular level. Dopamine transporter inhibition using intravenous GBR12909 injections increased extracellular dopamine levels changing both frequency and size of dopamine transients in the NAc. To further unmask the mechanics governing extracellular dopamine levels we used intravenous injection of the vesicular monoamine transporter (VMAT2) inhibitor, tetrabenazine, to deplete dopamine storage and increase cytoplasmic dopamine in the nerve terminals. Tetrabenazine almost abolished phasic dopamine release but increased extracellular dopamine to ∼500 nM, presumably by inducing reverse transport by dopamine transporter (DAT). Taken together, data presented here show that average extracellular dopamine in the NAc is low (20–30 nM) and largely arises from phasic dopamine transients.

Journal ArticleDOI
TL;DR: In this article, the authors review putative mechanisms of enhanced iron uptake in MS and address the likely roles of iron in the pathogenesis of this disease. But, the mechanisms of abnormal iron deposition in MS are not fully understood, nor do we know whether these deposits have adverse consequences, i.e., contribute to pathogenesis.
Abstract: Iron, an essential element used for a multitude of biochemical reactions, abnormally accumulates in the central nervous system of patients with multiple sclerosis (MS). The mechanisms of abnormal iron deposition in MS are not fully understood, nor do we know whether these deposits have adverse consequences, i.e., contribute to pathogenesis. With some exceptions, excess levels of iron are represented concomitantly in multiple deep gray matter structures often with bilateral representation, while in white matter pathological iron deposits are usually located at sites of inflammation that are associated with veins. These distinct spatial patterns suggest disparate mechanisms of iron accumulation between these regions. Iron has been postulated to promote disease activity in MS by various means: 1) iron can amplify the activated state of microglia resulting in the increased production of proinflammatory mediators; 2) excess intracellular iron deposits could promote mitochondria dysfunction; and 3) improperly managed iron could catalyze the production of damaging reactive oxygen species. The pathological consequences of abnormal iron deposits may be dependent on the affected brain region and/or accumulation process. Here we review putative mechanisms of enhanced iron uptake in MS and address the likely roles of iron in the pathogenesis of this disease.

Journal ArticleDOI
TL;DR: Novel neuroprotective strategies should therefore be developed through more detailed understanding of this process and the regulation of post‐ischemic inflammation.
Abstract: Post-ischemic inflammation is an essential step in the progression of ischemic stroke. This review focuses on the function of infiltrating immune cells, macrophages, and T cells, in ischemic brain injury. The brain is a sterile organ; however, the activation of Toll-like receptor (TLR) 2 and TLR4 is pivotal in the beginning of post-ischemic inflammation. Some endogenous TLR ligands are released from injured brain cells, including high mobility group box 1 and peroxiredoxin family proteins, and activate the infiltrating macrophages and induce the expression of inflammatory cytokines. Following this step, T cells also infiltrate into the ischemic brain and mediate post-ischemic inflammation in the delayed phase. Various cytokines from helper T cells and γδT cells function as neurotoxic (IL-23/IL-17, IFN-γ) or neuroprotective (IL-10, IL-4) mediators. Novel neuroprotective strategies should therefore be developed through more detailed understanding of this process and the regulation of post-ischemic inflammation.

Journal ArticleDOI
TL;DR: In this article, the authors found that α-syn can impair the normal dynamics of mitochondria and this effect is particular prominent in A53T α-Syn mutant mice, and they found that A53Ts mutants reduced the movement of the mitochondria in both SH-SY5Y neuroblastoma and hippocampal neurons.
Abstract: J. Neurochem. (2012) 122, 404–414. Abstract Alpha-synuclein (α-syn) is a synaptic protein that mutations have been linked to Parkinson’s disease (PD), a common neurodegenerative disorder that is caused by the degeneration of the dopaminergic neurons in the substantia nigra pars compacta (SNc). How α-syn can contribute to neurodegeneration in PD is not conclusive but it is agreed that mutations or excessive accumulation of α-syn can lead to the formation of α-syn oligomers or aggregates that interfere with normal cellular function and contribute to the degeneration of dopaminergic neurons. In this study, we found that α-syn can impair the normal dynamics of mitochondria and this effect is particular prominent in A53T α-syn mutant. In mice expressing A53T α-syn, age-dependent changes in both mitochondrial morphology and proteins that regulate mitochondrial fission and fusion were observed. In the cellular model of PD, we found that α-syn reduces the movement of mitochondria in both SH-SY5Y neuroblastoma and hippocampal neurons. Taken together, our study provides a new mechanism of how α-syn can contribute to PD through the impairment of normal dynamics of mitochondria.

Journal ArticleDOI
TL;DR: J. Neurochem.
Abstract: γ-Secretase is a membrane embedded aspartyl protease complex with presenilin as the catalytic component. Along with β-secretase, this enzyme produces the amyloid β-protein of Alzheimer's disease (AD) from the amyloid β-protein precursor. Because of its key role in the pathogenesis of AD, γ-secretase has been a prime target for drug discovery, and many inhibitors of this protease have been developed. The therapeutic potential of these inhibitors is virtually negated by the fact that γ-secretase is an essential part of the Notch signaling pathway, rendering the compounds unacceptably toxic upon chronic exposure. However, these compounds have served as useful chemical tools for biological investigations. In contrast, γ-secretase modulators continue to be of keen interest as possible AD therapeutics. These modulators either shift amyloid β-protein production to shorter, less pathogenic peptides or inhibit the proteolysis of amyloid β-protein precursor selectively compared to that of Notch. The various chemical types of inhibitors and modulators will be discussed, along with their use as probes for basic biology and their potential as AD therapeutics.

Journal ArticleDOI
TL;DR: In this article, the acquired TMZ resistance in glioma cells in vitro was modeled to identify underlying molecular mechanisms, and the molecular mechanisms mediating acquired resistance were assessed by immunoblot, PCR, and flow cytometry.
Abstract: Temozolomide (TMZ) is an alkylating chemotherapeutic agent that prolongs the survival of patients with glioblastoma. Clinical benefit is more prominent in patients with methylation of the O(6) -methyl-guanine DNA methyltransferase (MGMT) promoter. However, all patients eventually suffer from tumor progression because their tumors become resistant to TMZ. Here, we modeled acquired TMZ resistance in glioma cells in vitro to identify underlying molecular mechanisms. To this end, the glioma cell lines LNT-229, LN-308, and LN-18 were exposed repetitively to increasing concentrations of TMZ to induce a stable resistant phenotype (R) defined by clonogenic survival assays. The molecular mechanisms mediating acquired resistance were assessed by immunoblot, PCR, and flow cytometry. Rescue experiments were performed with siRNA-mediated candidate gene silencing. We found in LN-18 cells constitutively expressing MGMT a strong up-regulation of MGMT levels in TMZ-resistant cells. TMZ resistance in the MGMT-negative cell lines LNT-229 and LN-308 was not associated with de novo expression of MGMT. Instead, we found a down-regulation of several DNA mismatch-repair proteins in resistant LNT-229 cells. A TMZ-resistant phenotype was also achieved by silencing selected DNA mismatch repair proteins in parental LNT-229 cells. No obvious mechanism of resistance was identified in the third cell line, LN-308, except for reduced methylation of LINE-1 repetitive elements. In conclusion, we demonstrate that different molecular mechanisms may contribute to the development of acquired TMZ resistance in glioma cells, indicating the need to develop distinct strategies to overcome resistance.

Journal ArticleDOI
TL;DR: This research presents a novel and exciting new approach to personalized medicine that addresses the central nervous system’s need for self-consistency in patients with learning disabilities.
Abstract: J. Neurochem. (2012) 120 (Suppl. 1), 22–33. Abstract The prescribed drugs for treatment of cognitive deficits in Alzheimer’s disease (AD) patients are regarded as symptomatic drugs. Effective disease modifying therapies are not yet prescribed in AD patients. Three major hallmarks of AD (e.g. cholinergic hypofunction, Aβ and tau neuropathologies) are closely linked raising the expectation that restoring the cholinergic hypofunction to normal, in particular via selective activation of M1 muscarinic receptors, may alter the onset or progression of AD dementia. This review is focused mainly on modulation of amyloid precursor processing and Aβ levels in the brain via cholinergic treatment strategies based on M1 muscarinic agonists versus other cholinergic treatments (e.g. cholinesterase inhibitors prescribed for treatment of AD, M2 antagonists and nicotinic agonists). Advantages and potential drawbacks of these treatment modalities are reviewed versus the notion that due to an elusive etiology of AD, future disease modifiers should address comprehensively most of these AD hallmarks (e.g. Aβ pathology, tau and tangle pathologies, as well as the cholinergic hypofunction and cognitive impairments). This major requirement may be fulfilled with M1-selective muscarinic agonists and less with other reviewed cholinergic treatments.