scispace - formally typeset
Search or ask a question

Showing papers in "Molecular Cancer in 2004"


Journal ArticleDOI
TL;DR: The data indicate that activation of the hedgehog pathway, through loss of Su(Fu) or overexpression of sonic hedgehog, may involve tumor progression and metastases of prostate cancer.
Abstract: The hedgehog pathway plays a critical role in the development of prostate. However, the role of the hedgehog pathway in prostate cancer is not clear. Prostate cancer is the second most prevalent cause of cancer death in American men. Therefore, identification of novel therapeutic targets for prostate cancer has significant clinical implications. Here we report that activation of the hedgehog pathway occurs frequently in advanced human prostate cancer. We find that high levels of hedgehog target genes, PTCH1 and hedgehog-interacting protein (HIP), are detected in over 70% of prostate tumors with Gleason scores 8–10, but in only 22% of tumors with Gleason scores 3–6. Furthermore, four available metastatic tumors all have high expression of PTCH1 and HIP. To identify the mechanism of the hedgehog signaling activation, we examine expression of Su(Fu) protein, a negative regulator of the hedgehog pathway. We find that Su(Fu) protein is undetectable in 11 of 27 PTCH1 positive tumors, two of them contain somatic loss-of-function mutations of Su(Fu). Furthermore, expression of sonic hedgehog protein is detected in majority of PTCH1 positive tumors (24 out of 27). High levels of hedgehog target genes are also detected in four prostate cancer cell lines (TSU, DU145, LN-Cap and PC3). We demonstrate that inhibition of hedgehog signaling by smoothened antagonist, cyclopamine, suppresses hedgehog signaling, down-regulates cell invasiveness and induces apoptosis. In addition, cancer cells expressing Gli1 under the CMV promoter are resistant to cyclopamine-mediated apoptosis. All these data suggest a significant role of the hedgehog pathway for cellular functions of prostate cancer cells. Our data indicate that activation of the hedgehog pathway, through loss of Su(Fu) or overexpression of sonic hedgehog, may involve tumor progression and metastases of prostate cancer. Thus, targeted inhibition of hedgehog signaling may have significant implications of prostate cancer therapeutics.

492 citations


Journal ArticleDOI
TL;DR: All HCT116 derivative cell lines demonstrated similar transcriptional profiles, despite the facts that they were generated by two different 5-FU exposure protocols and that the bolus exposure derivative had not become resistant to 5-fu.
Abstract: Background: Established colorectal cancer cell lines subjected to different 5-fluorouracil (5-FU) treatment protocols are often used as in vitro model systems for investigations of downstream cellular responses to 5-FU and to generate 5-FU-resistant derivatives for the investigation of biological mechanisms involved in drug resistance. We subjected HCT116 colon cancer cells to two different 5-FU treatment protocols in an attempt to generate resistant derivatives: one that simulated the clinical bolus regimens using clinically-achievable 5-FU levels, the other that utilized serial passage in the presence of increasing 5-FU concentrations (continuous exposure). HCT116 Bolus3, ContinB, and ContinD, corresponding to independently-derived cell lines generated either by bolus exposure or continuous exposure, respectively, were characterized for growth- and apoptosis-associated phenotypes, and gene expression using 8.5 K oligonucleotide microarrays. Comparative gene expression analyses were done in order to determine if transcriptional profiles for the respective treatment derivatives were similar or substantially different, and to identify the signaling and regulatory pathways involved in mediating the downstream response to 5-FU exposure and possibly involved in development of resistance. Results: HCT116 ContinB and ContinD cells were respectively 27-fold and >100-fold more resistant to 5-FU and had reduced apoptotic fractions in response to transient 5-FU challenge compared to the parental cell line, whereas HCT116 Bolus3 cells were not resistant to 5-FU after 3 cycles of bolus 5-FU treatment and had the same apoptotic response to transient 5-FU challenge as the parental cell line. However, gene expression levels and expression level changes for all detected genes in Bolus3 cells were similar to those seen in both the ContinB (strongest correlation) and ContinD derivatives, as demonstrated by correlation and cluster analyses. Regulatory pathways having to do with 5-FU metabolism, apoptosis, and DNA repair were among those that were affected by 5-FU treatment. Conclusion: All HCT116 derivative cell lines demonstrated similar transcriptional profiles, despite the facts that they were generated by two different 5-FU exposure protocols and that the bolus exposure derivative had not become resistant to 5-FU. Selection pressures on HCT116 cells as a result of 5-FU challenge are thus similar for both treatment protocols.

206 citations


Journal ArticleDOI
TL;DR: The present study shows that colon cancer cell lines are in general relevant in vitro models, comparable with the in vivo situation, as the cell lines display many of the same molecular alterations as do the primary carcinomas.
Abstract: Tumor cell lines are commonly used as experimental tools in cancer research, but their relevance for the in vivo situation is debated. In a series of 11 microsatellite stable (MSS) and 9 microsatellite unstable (MSI) colon cancer cell lines and primary colon carcinomas (25 MSS and 28 MSI) with known ploidy stem line and APC, KRAS, and TP53 mutation status, we analyzed the promoter methylation of the following genes: hMLH1, MGMT, p16 INK4a (CDKN2A α-transcript), p14 ARF (CDKN2A β-transcript), APC, and E-cadherin (CDH1). We compared the DNA methylation profiles of the cell lines with those of the primary tumors. Finally, we examined if the epigenetic changes were associated with known genetic markers and/or clinicopathological variables. The cell lines and primary tumors generally showed similar overall distribution and frequencies of gene methylation. Among the cell lines, 15%, 50%, 75%, 65%, 20% and 15% showed promoter methylation for hMLH1, MGMT, p16 INK4a , p14 ARF , APC, and E-cadherin, respectively, whereas 21%, 40%, 32%, 38%, 32%, and 40% of the primary tumors were methylated for the same genes. hMLH1 and p14 ARF were significantly more often methylated in MSI than in MSS primary tumors, whereas the remaining four genes showed similar methylation frequencies in the two groups. Methylation of p14 ARF , which indirectly inactivates TP53, was seen more frequently in tumors with normal TP53 than in mutated samples, but the difference was not statistically significant. Methylation of p14 ARF and p16 INK4a was often present in the same primary tumors, but association to diploidy, MSI, right-sided location and female gender was only significant for p14 ARF . E-cadherin was methylated in 14/34 tumors with altered APC further stimulating WNT signaling. The present study shows that colon cancer cell lines are in general relevant in vitro models, comparable with the in vivo situation, as the cell lines display many of the same molecular alterations as do the primary carcinomas. The combined pattern of epigenetic and genetic aberrations in the primary carcinomas reveals associations between them as well as to clinicopathological variables, and may aid in the future molecular assisted classification of clinically distinct stages.

176 citations


Journal ArticleDOI
TL;DR: The upregulation of a large number of genes implicated in immune response supports the theory that colorectal cancers displaying high-degree microsatellite instability are immunogenic.
Abstract: EKB-569 is an irreversible inhibitor of epidermal growth factor receptor (EGF-R) tyrosine kinase. It inhibits EGF-induced phosphorylation of EGF-R and the growth of tumors that overexpress EGF-R in animal models. In clinical trials, EKB-569 and all other EGF-R inhibitors cause skin rashes. To understand the latter phenomenon, the effect of EKB-569 on EGF-R as well as downstream signaling to phosphoinositide 3-kinase-protein kinase B (AKT), extracellular signal-regulated kinase 1 and 2 (ERK1/2), or signal transducer and activator of transcription 3 (STAT3) pathways were compared in tumor cell lines and normal human keratinocytes (NHEK) grown in tissue culture. Tumor cell lines that have high (A431 epidermoid and MDA-468 breast carcinomas) and low (MCF-7 breast carcinoma) expression of EGF-R were used. NHEK cells express at least 15-fold less EGF-R than A431 cells. EKB-569 was a potent inhibitor of proliferation in NHEK, A431, and MDA-468 cells (IC(50) = 61, 125, and 260 nM, respectively) but not MCF-7 cells (IC(50) = 3600 nM). EKB-569 was also a potent inhibitor of EGF-induced phosphorylated EGF-R (pEGF-R) in A431 and NHEK cells (IC(50) = 20-80 nM). The reduction in pEGF-R paralleled inhibition of phosphotyrosine-705 STAT3, while the inhibition of phosphorylated AKT and phosphorylated ERK1/2 occurred at higher concentrations of EKB-569 (75-500 nM) in both A431 and NHEK cells. The effects were specific because EKB-569 did not inhibit the nuclear factor-kappaB pathway. It is proposed that skin toxicity associated with EKB-569 is due to inhibition of EGF-R signaling. Downstream signal transduction markers, particularly the activation status of STAT3, may be useful surrogate markers to guide clinical development of EGF-R inhibitors.

163 citations


Journal ArticleDOI
TL;DR: In the future, targeting regulators of the PSC activation process might become a promising approach for the treatment of pancreatic fibrosis.
Abstract: Until now, no specific therapies are available to inhibit pancreatic fibrosis, a constant pathological feature of chronic pancreatitis and pancreatic cancer. One major reason is the incomplete knowledge of the molecular principles underlying fibrogenesis in the pancreas. In the past few years, evidence has been accumulated that activated pancreatic stellate cells (PSCs) are the predominant source of extracellular matrix (ECM) proteins in the diseased organ. PSCs are vitamin A-storing, fibroblast-like cells with close morphological and biochemical similarities to hepatic stellate cells (also known as Ito-cells). In response to profibrogenic mediators such as various cytokines, PSCs undergo an activation process that involves proliferation, exhibition of a myofibroblastic phenotype and enhanced production of ECM proteins. The intracellular mediators of activation signals, and their antagonists, are only partially known so far. Recent data suggest an important role of enzymes of the mitogen-activated protein kinase family in PSC activation. On the other hand, ligands of the nuclear receptor PPARγ (peroxisome proliferator-activated receptor γ) stimulate maintenance of a quiescent PSC phenotype. In the future, targeting regulators of the PSC activation process might become a promising approach for the treatment of pancreatic fibrosis.

163 citations


Journal ArticleDOI
TL;DR: It is suggested that promoter hypermethylation of RASSF1A and HIC1 genes play a role in resistance of GCT, while the transcriptional inactivation of MGMT by epigenetic alterations confer exquisite sensitivity to cisplatin.
Abstract: Background Male germ cell tumor (GCT) is a highly curable malignancy, which exhibits exquisite sensitivity to cisplatin treatment. The genetic pathway(s) that determine the chemotherapy sensitivity in GCT remain largely unknown.

142 citations


Journal ArticleDOI
TL;DR: An preliminary examination of the methylation status of CpG dinucleotides associated with the L1 and HERV-W retrotransposons in benign and malignant human ovarian tumors finds a reduction in the methylations within the promoter regions of these retroelements in malignant relative to non-malignant ovarian tissues.
Abstract: Wide-spread hypomethylation of CpG dinucleotides is characteristic of many cancers. Retrotransposons have been identified as potential targets of hypomethylation during cellular transformation. We report the results of an preliminary examination of the methylation status of CpG dinucleotides associated with the L1 and HERV-W retrotransposons in benign and malignant human ovarian tumors. We find a reduction in the methylation of CpG dinucleotides within the promoter regions of these retroelements in malignant relative to non-malignant ovarian tissues. Consistent with these results, we find that relative L1 and HERV-W expression levels are elevated in representative samples of malignant vs. non-malignant ovarian tissues.

134 citations


Journal ArticleDOI
TL;DR: The current technologies used in cancer gene discovery, the model systems used to validate the significance of the genes and pathways, and some of the gene and pathways implicated in the progression of preneoplastic and early stage cancer are described.
Abstract: Cancer progresses through a series of histopathological stages. Progression is thought to be driven by the accumulation of genetic alterations and consequently gene expression pattern changes. The identification of genes and pathways involved will not only enhance our understanding of the biology of this process, it will also provide new targets for early diagnosis and facilitate treatment design. Genomic approaches have proven to be effective in detecting chromosomal alterations and identifying genes disrupted in cancer. Gene expression profiling has led to the subclassification of tumors. In this article, we will describe the current technologies used in cancer gene discovery, the model systems used to validate the significance of the genes and pathways, and some of the genes and pathways implicated in the progression of preneoplastic and early stage cancer.

120 citations


Journal ArticleDOI
TL;DR: It is demonstrated that Akt signals through NF-κB/IκB pathway to induce COX-2 expression in mutated PTEN endometrial cancer cells.
Abstract: Cyclooxygenase-2 (COX-2) has been shown to be highly expressed in a broad series of primary endometrial tumors and its expression may be closely associated with parameters of tumor aggressiveness. In human endometrial cancer, tumor suppressor phosphatase tensin homologue (PTEN) is frequently mutated. In the presence of a mutated PTEN protein, Akt phosphorylation levels increase leading to the activation of this survival pathway. The nuclear transcription factor κB (NF-κB) is a well establish regulator of genes encoding cytokines, cytokine receptors, and cell adhesion molecules that drive immune and inflammatory responses. More recently, NF-κB activation has been connected with multiple aspects of oncogenesis, including the control of apoptosis, cell cycle, differentiation, and cell migration. It is known that Akt may act through NF-κB pathway and that COX-2 gene has been shown to be regulated at the promoter level by NF-κB. Recently, we showed that Akt regulates COX-2 gene and protein expressions in phospho-Akt expressing endometrial cancer cells. The present study was undertaken to determine the involvement of NF-κB pathway and IκB (an inhibitor of NF-κB) in the regulation of COX-2 expression and to determine more precisely the downstream targets of Akt involved in this process. Three different human endometrial cancer cell lines known to have wild type PTEN (HEC 1-A) or a mutated inactive PTEN protein (RL 95-2 and Ishikawa) were used for these studies. Expression IκB and Phospho-IκB were evaluated by Western analysis. The presence of IκB phosphorylation was found in all cell lines studied. There was no difference between cell lines in term of NF-κB abundance. Inhibition of PI 3-K with Wortmannin and LY294002 blocked IκB phosphorylation, reduced NF-κB nuclear activity, reduced COX-2 expression and induced apoptosis. Transfection studies with a dominant negative Akt vector blocked IκB phosphorylation and reduced COX-2 expression. On the opposite, constitutively active Akt transfections resulted in the induction of IκB phosphorylation and up-regulation of COX-2. These results demonstrate that Akt signals through NF-κB/IκB pathway to induce COX-2 expression in mutated PTEN endometrial cancer cells.

108 citations


Journal ArticleDOI
TL;DR: Correlation of promoter methylation with clinical characteristics and other genetic changes revealed that overall promotermethylation was higher in more advanced stage of the disease, and Promoter methylation was associated with gene silencing in GCT cell lines.
Abstract: Granulosa cell tumors (GCTs) are relatively rare and are subtypes of the sex-cord stromal neoplasms. Methylation induced silencing in the promoters of genes such as tumor suppressor genes, DNA repair genes and pro-apoptotic genes is recognised as a critical factor in cancer development. We examined the role of promoter hypermethylation, an epigenetic alteration that is associated with the silencing tumor suppressor genes in human cancer, by studying 5 gene promoters in 25 GCTs cases by methylation specific PCR and RT-PCR. In addition, the compatible tissues (normal tissues distant from lesion) from three non-astrocytoma patients were also included as the control. Frequencies of methylation in GCTs were 7/25 (28 % for FHIT), 6/25 (24% for FNACF), 3/25 (12% for Cyclin D2), 1/25 (4% for BRCA2) and 14/25 (56%) in RUNX3 genes. Correlation of promoter methylation with clinical characteristics and other genetic changes revealed that overall promoter methylation was higher in more advanced stage of the disease. Promoter methylation was associated with gene silencing in GCT cell lines. Treatment with methylation or histone deacetylation-inhibiting agents resulted in profound reactivation of gene expression. These results may have implications in better understanding the underlying epigenetic mechanisms in GCT development, provide prognostic indicators, and identify important gene targets for treatment.

97 citations


Journal ArticleDOI
TL;DR: An antagonistic effect of DXM on TMZ induced apoptosis is revealed, implying that treatment of glioblastoma patients with DXM prior to chemotherapy with TMZ might result in an undesirable clinical outcome.
Abstract: Glioblastoma is the deadliest and most prevalent brain tumor Dexamethasone (DXM) is a commonly used steroid for treating glioblastoma patients for alleviation of vasogenic edema and pain prior to treatment with chemotherapeutic drugs Temozolomide (TMZ), an alkylating agent, has recently been introduced in clinical trials for treating glioblastoma Here, we evaluated the modulatory effect of DXM on TMZ induced apoptosis in human glioblastoma U87MG cells Freshly grown cells were treated with different doses of DXM or TMZ for 6 h followed by incubation in a drug-free medium for 48 h Wright staining and ApopTag assay showed no apoptosis in cells treated with 40 μM DXM but considerable amounts of apoptosis in cells treated with 100 μM TMZ Apoptosis in TMZ treated cells was associated with an increase in intracellular free [Ca2+], as determined by fura-2 assay Western blot analyses showed alternations in the levels of Bax (pro-apoptotic) and Bcl-2 (anti-apoptotic) proteins resulting in increased Bax:Bcl-2 ratio in TMZ treated cells Western blot analyses also detected overexpression of calpain and caspase-3, which cleaved 270 kD α-spectrin at specific sites for generation of 145 and 120 kD spectrin break down products (SBDPs), respectively However, 1-h pretreatment of cells with 40 μM DXM dramatically decreased TMZ induced apoptosis, decreasing Bax:Bcl-2 ratio and SBDPs Our results revealed an antagonistic effect of DXM on TMZ induced apoptosis in human glioblastoma U87MG cells, implying that treatment of glioblastoma patients with DXM prior to chemotherapy with TMZ might result in an undesirable clinical outcome

Journal ArticleDOI
TL;DR: Overexpression of PTTG activates the expression of p53 and modulates its function, with this action of P TTG being mediated through the regulation of c-myc expression and up-regulates the activity of the bax promoter and increases the expressionof bax through modulation of p 53 expression.
Abstract: Pituitary tumor transforming gene (PTTG) is a novel oncogene that is expressed abundantly in most tumors. Overexpression of PTTG induces cellular transformation and promotes tumor formation in nude mice. PTTG has been implicated in various cellular processes including sister chromatid separation during cell division as well as induction of apoptosis through p53-dependent and p53-independent mechanisms. The relationship between PTTG and p53 remains unclear, however. Here we report the effects of overexpression of PTTG on the expression and function of p53. Our results indicate that overexpression of PTTG regulates the expression of the p53 gene at both the transcriptional and translational levels and that this ability of PTTG to activate the expression of p53 gene is dependent upon the p53 status of the cell. Deletion analysis of the p53 gene promoter revealed that only a small region of the p53 gene promoter is required for its activation by PTTG and further indicated that the activation of p53 gene by PTTG is an indirect effect that is mediated through the regulation of the expression of c-myc, which then interacts with the p53 gene promoter. Our results also indicate that overexpression of PTTG stimulates expression of the Bax gene, one of the known downstream targets of p53, and induces apoptosis in a human embryonic kidney cell line (HEK293). This stimulation of bax expression by PTTG is indirect and is mediated through modulation of p53 gene expression. Overexpression of PTTG activates the expression of p53 and modulates its function, with this action of PTTG being mediated through the regulation of c-myc expression. PTTG also up-regulates the activity of the bax promoter and increases the expression of bax through modulation of p53 expression.

Journal ArticleDOI
TL;DR: The results suggest that nutrient deprivation within the solid tumor microenvironment might contribute to the activation of a pro-angiogenic phenotype and the angiogenic switch may act to increase blood supply in response to nutrient deprivation as well as hypoxia.
Abstract: The expression of pro-angiogenic cytokines, such as vascular endothelial growth factor (VEGF) and interleukin-8/CXCL8 (IL-8), plays an important role in tumor growth and metastasis. Low oxygen tension within poorly-vascularized tumors is thought to be the prime stimulus causing the secretion of VEGF. The expression of IL-8 by solid tumors is thought to be primarily due to intrinsic influences, such as constitutive activation of nuclear factor kappa B (NF-κB). However, VEGF expression is responsive to glucose deprivation, suggesting that low concentrations of nutrients other than oxygen may play a role in triggering the pro-angiogenic phenotype. Glucose deprivation causes endoplasmic reticulum (ER) stress and alters gene expression through the unfolded protein response (UPR) signaling pathway. A branch of the UPR, known as the ER overload response (EOR), can cause NF-κB activation. Thus, we hypothesized that treatments that cause ER stress and deprivation of other nutrients, such as amino acids, would trigger the expression of angiogenic cytokines by breast cancer cell lines. We found that glutamine deprivation and treatment with a chemical inducer of ER stress (tunicamycin) caused a marked induction of the secretion of both VEGF and IL-8 protein by a human breast adenocarcinoma cell line (TSE cells). Glutamine deprivation, glucose deprivation and several chemical inducers of ER stress increased VEGF and IL-8 mRNA expression in TSE and other breast cancer cell lines cultured under both normoxic and hypoxic conditions, though hypoxia generally diminished the effects of glucose deprivation. Of all amino acids tested, ambient glutamine availability had the largest effect on VEGF and IL-8 mRNA expression. The induction of VEGF mRNA expression, but not IL-8, was sustained and closely corresponded with the upregulated expression of the ER stress-responsive genes glucose-regulated protein 78 (GRP78) and growth arrest and DNA damage inducible gene 153 (GADD153). These results suggest that nutrient deprivation within the solid tumor microenvironment might contribute to the activation of a pro-angiogenic phenotype. The angiogenic switch may act to increase blood supply in response to nutrient deprivation as well as hypoxia.

Journal ArticleDOI
TL;DR: Real-time quantitative RT-PCR data suggest that a limited number of signaling pathways, and particularly the Hedgehog-Gli signaling pathway, may be involved in malignant transformation of plexiform neurofibromas.
Abstract: Neurofibromatosis type 1 (NF1) is an autosomal dominant disorder with a complex range of clinical symptoms The hallmark of NF1 is the onset of heterogeneous (dermal or plexiform) benign neurofibromas Plexiform neurofibromas can give rise to malignant peripheral nerve sheath tumors (MPNSTs), and the underlying molecular mechanisms are largely unknown To obtain further insight into the molecular pathogenesis of MPNSTs, we used real-time quantitative RT-PCR to quantify the mRNA expression of 489 selected genes in MPNSTs, in comparison with plexiform neurofibromas The expression of 28 (57%) of the 489 genes was significantly different between MPNSTs and plexiform neurofibromas; 16 genes were upregulated and 12 were downregulated in MPNSTs The altered genes were mainly involved in cell proliferation (MKI67, TOP2A, CCNE2), senescence (TERT, TERC), apoptosis (BIRC5/Survivin, TP73) and extracellular matrix remodeling (MMP13, MMP9, TIMP4, ITGB4) More interestingly, other genes were involved in the Ras signaling pathway (RASSF2, HMMR/RHAMM) and the Hedgehog-Gli signaling pathway (DHH, PTCH2) Several of the down-regulated genes were Schwann cell-specific (L1CAM, MPZ, S100B, SOX10, ERBB3) or mast cell-specific (CMA1, TPSB), pointing to a depletion and/or dedifferentiation of Schwann cells and mast cells during malignant transformation of plexiform neurofibromas These data suggest that a limited number of signaling pathways, and particularly the Hedgehog-Gli signaling pathway, may be involved in malignant transformation of plexiform neurofibromas Some of the relevant genes or their products warrant further investigation as potential therapeutic targets in NF1

Journal ArticleDOI
TL;DR: Down-regulation ofCHK2 kinase expression by CHK2 gene silencing and methylation in non-small cell lung cancer suggest a critical role of CHK1 kinase in DNA damage induced apoptosis and a novel mechanism of the resistance of NSCLC to DNA damage based therapy.
Abstract: CHK2 kinase is a tumor suppressor that plays important role in DNA damage signaling, cell cycle regulation and DNA damage induced apoptosis. CHK2 kinase expression was known to be ubiquitous in mammalian cells. CHK2-/- cells were remarkably resistant to DNA damage induced apoptosis, mimicking the clinical behavior of non-small cell lung cancer to conventional chemo and radiation therapy. We reported that the CHK2 expression is diminished or absent in both non-small cell lung cancer (NSCLC) cell lines and clinical lung cancer tumor specimens. The absent CHK2 expression in NSCLC was due to hypermethylation of the CHK2 gene promoter, preventing from binding of a transcriptional factor, leading to silence of the CHK2 gene transcription. Since the CHK2 null mice showed a remarkable radioresistance, which bear significant similarity to clinical behavior of NSCLC, down-regulation of CHK2 kinase expression by CHK2 gene silencing and methylation in non-small cell lung cancer suggest a critical role of CHK2 kinase in DNA damage induced apoptosis and a novel mechanism of the resistance of NSCLC to DNA damage based therapy.

Journal ArticleDOI
TL;DR: Loss of heterozygosity of 10q and 9p was present in the original glioblastoma, in the neurospheres and in tumors grown into mice, suggesting that PTEN and CDKN2A alterations are key genetic events in tumor initiating cells with neural precursor properties.
Abstract: Pediatric brain tumors may originate from cells endowed with neural stem/precursor cell properties, growing in vitro as neurospheres. We have found that these cells can also be present in adult brain tumors and form highly infiltrating gliomas in the brain of immunodeficient mice. Neurospheres were grown from three adult brain tumors and two pediatric gliomas. Differentiation of the neurospheres from one adult glioblastoma decreased nestin expression and increased that of glial and neuronal markers. Loss of heterozygosity of 10q and 9p was present in the original glioblastoma, in the neurospheres and in tumors grown into mice, suggesting that PTEN and CDKN2A alterations are key genetic events in tumor initiating cells with neural precursor properties.

Journal ArticleDOI
TL;DR: The data published in this article and in a preceding article in Molecular Cancer were generated by myself, the corresponding author, with collaborators in Germany and were originally part of a manuscript on which my collaborators were authors and which remains unpublished.
Abstract: The data published in this article [1] and in a preceding article in Molecular Cancer [2] were generated by myself, the corresponding author, with collaborators in Germany. The data were originally part of a manuscript on which my collaborators were authors and which remains unpublished. When publishing the data in Molecular Cancer, I failed to obtain the agreement from my past collaborators or to acknowledge their contributions, resulting in an unfair representation of their ideas and thoughts. In light of this, I have decided to retract the two papers. I deeply apologize for any inconvenience this may have caused.

Journal ArticleDOI
TL;DR: Genetic changes that alter Complex I structure and function may alter a cell's ability to respond to oxygen deficit and consolidate hypoxia rescue mechanisms, and may contribute to resistance to chemotherapeutic agents that require redox cycling for activation.
Abstract: Hypoxia-tolerant human glioma cells reduce oxygen consumption rate in response to oxygen deficit, a defense mechanism that contributes to survival under moderately hypoxic conditions. In contrast, hypoxia-sensitive cells lack this ability. As it has been previously shown that hypoxia-tolerant (M006x, M006xLo, M059K) and -sensitive (M010b) glioma cells express differences in mitochondrial function, we investigated whether mitochondrial DNA-encoded mutations are associated with differences in the initial response to oxygen deficit. The mitochondrial genome was sequenced and 23 mtDNA alterations were identified, one of which was an unreported mutation (T-C transition in base pair 14634) in the hypoxia-sensitive cell line, M010b, that resulted in a single amino acid change in the gene encoding the ND6 subunit of NADH:ubiquinone oxidoreductase (Complex I). The T14634C mutation did not abrogate ND6 protein expression, however, M010b cells were more resistant to rotenone, an agent used to screen for Complex I mutations, and adriamycin, an agent activated by redox cycling. The specific function of mtDNA-encoded, membrane-embedded Complex I ND subunits is not known at present. Current models suggest that the transmembrane arm of Complex I may serve as a conformationally driven proton channel. As cellular respiration is regulated, in part, by proton flux, we used homology-based modeling and computational molecular biology to predict the 3D structure of the wild type and mutated ND6 proteins. These models predict that the T14634C mutation alters the structure and orientation of the trans-membrane helices of the ND6 protein. Complex I ND subunits are mutational hot spots in tumor mtDNA. Genetic changes that alter Complex I structure and function may alter a cell's ability to respond to oxygen deficit and consolidate hypoxia rescue mechanisms, and may contribute to resistance to chemotherapeutic agents that require redox cycling for activation.

Journal ArticleDOI
TL;DR: The findings indicate that gene expression profiling can reliably distinguish between benign and malignant ovarian tumours and expression profiles of samples from patients pre-treated with chemotherapy may be useful in predicting disease free survival and the likelihood of recurrence.
Abstract: Epithelial ovarian tumours exhibit a range of malignant potential, presenting distinct clinical phenotypes. Improved knowledge of gene expression changes and functional pathways associated with these clinical phenotypes may lead to new treatment targets, markers for early detection and a better understanding of disease progression. Gene expression profiling (Affymetrix, U95Av2) was carried out on 18 ovarian tumours including benign adenomas, borderline adenocarcinomas of low malignant potential and malignant adenocarcinomas. Clustering the expression profiles of samples from patients not treated with chemotherapy prior to surgery effectively classified 92% of samples into their proper histopathological group. Some cancer samples from patients treated with chemotherapy prior to surgery clustered with the benign adenomas. Chemotherapy patients whose tumours exhibited benign-like expression patterns remained disease free for the duration of this study as indicated by continued normal serum CA-125 levels. Statistical analysis identified 163 differentially expressed genes: 61 genes under-expressed in cancer and 102 genes over-expressed in cancer. Profiling the functional categories of co-ordinately expressed genes within this list revealed significant correlation between increased malignant potential and loss of both IGF binding proteins and cell adhesion molecules. Interestingly, in several instances co-ordinately expressed genes sharing biological function also shared chromosomal location. Our findings indicate that gene expression profiling can reliably distinguish between benign and malignant ovarian tumours. Expression profiles of samples from patients pre-treated with chemotherapy may be useful in predicting disease free survival and the likelihood of recurrence. Loss of expression of IGF binding proteins as well as specific cell adhesion molecules may be a significant mechanism of disease progression in ovarian cancer. Expression levels in borderline tumours were intermediate between benign adenomas and malignant adenocarcinomas for a significant portion of the differentially expressed genes, suggesting that borderline tumours are a transitional state between benign and malignant tumours. Finally, genes displaying coordinated changes in gene expression were often genetically linked, suggesting that changes in expression for these genes are the consequence of regional duplications, deletions or epigenetic events.

Journal ArticleDOI
TL;DR: Tpl2/Cot, a gene extensively studied in animal and tissue culture T-cell models may be also involved in the development of human LGL-PD and may have a role in the pathogenesis of immune manifestations associated with these diseases.
Abstract: Tpl2/Cot oncogene has been identified in murine T-cell lymphomas as a target of MoMuLV insertion. Animal and tissue culture studies have shown that Tpl2/Cot is involved in interleukin-2 (IL-2) and tumor necrosis factor-α (TNF-α) production by T-cells contributing to T-cell proliferation. In the present report we examined a series of 12 adult patients with various T-cell malignancies, all with predominant leukemic expression in the periphery, for the expression of Tpl2/Cot oncogene in order to determine a possible involvement of Tpl2/Cot in the pathogenesis of these neoplasms. Our results showed that Tpl2/Cot was overexpressed in all four patients with Large Granular Lymphocyte proliferative disorders (LGL-PDs) but in none of the remaining eight patients with other T-cell neoplasias. Interestingly, three of the LGL-PD patients displayed neutropenia, one in association with sarcoidosis. Serum TNF-α levels were increased in all Tpl2/Cot overexpressing patients while serum IL-2 was undetectable in all subjects studied. Genomic DNA analysis revealed no DNA amplification at the Tpl2/Cot locus in any of the samples analyzed. We conclude that Tpl2/Cot, a gene extensively studied in animal and tissue culture T-cell models may be also involved in the development of human LGL-PD and may have a role in the pathogenesis of immune manifestations associated with these diseases. This is the first report implicating Tpl2/Cot in human T-cell neoplasias and provides a novel molecular event in the development of LGL-PDs.

Journal ArticleDOI
TL;DR: It is demonstrated that the epitope-tagged RNA binding protein, PABP, expressed separately in tumor cells and endothelial cells can be used to discriminate their respective mRNA targets from mixtures of these cells without significant mRNA reassortment or exchange.
Abstract: Tumors and complex tissues consist of mixtures of communicating cells that differ significantly in their gene expression status. In order to understand how different cell types influence one another's gene expression, it will be necessary to monitor the mRNA profiles of each cell type independently and to dissect the mechanisms that regulate their gene expression outcomes. In order to approach these questions, we have used RNA-binding proteins such as ELAV/Hu, poly (A) binding protein (PABP) and cap-binding protein (eIF-4E) as reporters of gene expression. Here we demonstrate that the epitope-tagged RNA binding protein, PABP, expressed separately in tumor cells and endothelial cells can be used to discriminate their respective mRNA targets from mixtures of these cells without significant mRNA reassortment or exchange. Moreover, using this approach we identify a set of endothelial genes that respond to the presence of co-cultured breast tumor cells. RNA-binding proteins can be used as reporters to elucidate components of operational mRNA networks and operons involved in regulating cell-type specific gene expression in tissues and tumors.

Journal ArticleDOI
TL;DR: StaRT PCR is a reliable and sensitive technique that can be applied to medium-high throughput quantitative transcript measurement and correlates well with Taqman real time PCR in terms of quantitative and discriminatory ability.
Abstract: Probe based detection assays form the mainstay of transcript quantification. Problems with these assays include varying hybridization efficiencies of the probes used for transcript quantification and the expense involved. We examined the ability of a standardized competitive RT-PCR (StaRT PCR) assay to quantify transcripts of 4 cell cycle associated genes (RB, E2F1, CDKN2A and PCNA) in two cell lines (T24 & LD419) and compared its efficacy with the established Taqman real time quantitative RT-PCR assay. We also assessed the sensitivity, reproducibility and consistency of StaRT PCR. StaRT PCR assay is based on the incorporation of competitive templates (CT) in precisely standardized quantities along with the native template (NT) in a PCR reaction. This enables transcript quantification by comparing the NT and CT band intensities at the end of the PCR amplification. The CT serves as an ideal internal control. The transcript numbers are expressed as copies per million transcripts of a control gene such as β-actin (ACTB). The NT and CT were amplified at remarkably similar rates throughout the StaRT PCR amplification cycles, and the coefficient of variation was least (<3.8%) when the NT/CT ratio was kept as close to 1:1 as possible. The variability between the rates of amplification in different tubes subjected to the same StaRT PCR reaction was very low and within the range of experimental noise. Further, StaRT PCR was sensitive enough to detect variations as low as 10% in endogenous actin transcript quantity (p < 0.01 by the paired student's t-test). StaRT PCR correlated well with Taqman real time RT-PCR assay in terms of transcript quantification efficacy (p < 0.01 for all 4 genes by the Spearman Rank correlation method) and the ability to discriminate between cell types and confluence patterns. StaRT PCR is thus a reliable and sensitive technique that can be applied to medium-high throughput quantitative transcript measurement. Further, it correlates well with Taqman real time PCR in terms of quantitative and discriminatory ability. This label-free, inexpensive technique may provide the ability to generate prognostically important molecular signatures unique to individual tumors and may enable identification of novel therapeutic targets.

Journal ArticleDOI
TL;DR: This is the first genome profiling of local recurrences and carcinomatoses in CRC patients, and gains of 5p and 12p seem to be particularly important for the spread of the CRC cells within the peritoneal cavity.
Abstract: Background: Colorectal cancer (CRC) is one of the most common causes of cancer-related deaths in the Western world, and despite the fact that metastases are usually the ultimate cause of deaths, the knowledge of the genetics of advanced stages of this disease is limited In order to identify potential genetic abnormalities underlying the development of local and distant metastases in CRC patients, we have, by comparative genomic hybridization, compared the DNA copy number profiles of 10 primary carcinomas, 14 local recurrences, 7 peritoneal carcinomatoses, and 42 liver metastases from 61 CRC patients Results: The median number of aberrations among the primary carcinomas, local recurrences, carcinomatoses, and liver metastases was 10, 6, 13, and 14, respectively Several genetic imbalances, such as gains of 7, 8q, 13q, and 20, and losses of 4q, 8p, 17p, and 18, were common in all groups In contrast, gains of 5p and 12p were more common in the carcinomatoses than in other stages of the disease With hierarchical cluster analysis, liver metastases could be divided into two main subgroups according to clusters of chromosome changes Conclusions: Each stage of CRC progression is characterized by a particular genetic profile, and both carcinomatoses and liver metastases are more genetically complex than local recurrences and primary carcinomas This is the first genome profiling of local recurrences and carcinomatoses, and gains of 5p and 12p seem to be particularly important for the spread of the CRC cells within the peritoneal cavity

Journal ArticleDOI
TL;DR: It is postulate that as a mitogenic, survival, and anti-apoptotic factor for prostate cancer cells, saposin C or prosaposin may contribute to prostate carcinogenesis at its early androgen-dependent or metastatic AI state.
Abstract: Background In addition to androgens, growth factors are also implicated in the development and neoplastic growth of the prostate gland. Prosaposin is a potent neurotrophic molecule. Homozygous inactivation of prosaposin in mice has led to the development of a number of abnormalities in the male reproductive system, including atrophy of the prostate gland and inactivation of mitogen-activated protein kinase (MAPK) and Akt in prostate epithelial cells. We have recently reported that prosaposin is expressed at a higher level by androgen-independent (AI) prostate cancer cells as compared to androgen-sensitive prostate cancer cells or normal prostate epithelial and stromal cells. In addition, we have demonstrated that a synthetic peptide (prosaptide TX14A), derived from the trophic sequence of the saposin C domain of prosaposin, stimulated cell proliferation, migration and invasion and activated the MAPK signaling pathway in prostate cancer cells. The biological significances of saposin C and prosaposin in prostate cancer are not known.

Journal ArticleDOI
TL;DR: Overexpression or dysregulated expression of PLCδ4 may initiate oncogenesis in certain tissues through upregulation of ErbB expression and activation of ERK pathway, which leads to constitutive activation of extracellular signal-regulated kinases 1 and 2 pathway in MCF-7 cells.
Abstract: The expression of the rodent phosphoinositide-specific phospholipase C δ-4 (PLCδ4) has been found to be elevated upon mitogenic stimulation and expression analysis have linked the upregulation of PLCδ4 expression with rapid proliferation in certain rat transformed cell lines. The human homologue of PLCδ4 has not been extensively characterized. Accordingly, we investigate the effects of overexpression of human PLCδ4 on cell signaling and proliferation in this study. The cDNA for human PLCδ4 has been isolated and expressed ectopically in breast cancer MCF-7 cells. Overexpression of PLCδ4 selectively activates protein kinase C-φ and upregulates the expression of epidermal growth factor receptors EGFR/erbB1 and HER2/erbB2, leading to constitutive activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) pathway in MCF-7 cells. MCF-7 cells stably expressing PLCδ4 demonstrates several phenotypes of transformation, such as rapid proliferation in low serum, formation of colonies in soft agar, and capacity to form densely packed spheroids in low-attachment plates. The growth signaling responses induced by PLCδ4 are not reversible by siRNA. Overexpression or dysregulated expression of PLCδ4 may initiate oncogenesis in certain tissues through upregulation of ErbB expression and activation of ERK pathway. Since the growth responses induced by PLCδ4 are not reversible, PLCδ4 itself is not a suitable drug target, but enzymes in pathways activated by PLCδ4 are potential therapeutic targets for oncogenic intervention.

Journal ArticleDOI
TL;DR: The value of gene expression signatures in predicting the outcome of breast cancer is confirmed, with real-time quantitative RT-PCR assays confirmed.
Abstract: The clinical course of breast cancer is difficult to predict on the basis of established clinical and pathological prognostic criteria. Given the genetic complexity of breast carcinomas, it is not surprising that correlations with individual genetic abnormalities have also been disappointing. The use of gene expression profiles could result in more accurate and objective prognostication. To this end, we used real-time quantitative RT-PCR assays to quantify the mRNA expression of a large panel (n = 47) of genes previously identified as candidate prognostic molecular markers in a series of 100 ERα-positive breast tumor samples from patients with known long-term follow-up. We identified a three-gene expression signature (BRCA2, DNMT3B and CCNE1) as an independent prognostic marker (P = 0.007 by univariate analysis; P = 0.006 by multivariate analysis). This "poor prognosis" signature was then tested on an independent panel of ERα-positive breast tumors from a well-defined cohort of 104 postmenopausal breast cancer patients treated with primary surgery followed by adjuvant tamoxifen alone: although this "poor prognosis" signature was associated with shorter relapse-free survival in univariate analysis (P = 0.029), it did not persist as an independent prognostic factor in multivariate analysis (P = 0.27). Our results confirm the value of gene expression signatures in predicting the outcome of breast cancer.

Journal ArticleDOI
TL;DR: A small subset of genes or genes in specific pathways may be responsible for the aggressive nature of a tumour and could potentially serve as panels of prognostic markers for stage I squamous cell lung cancer.
Abstract: Background Lung cancer remains to be the leading cause of cancer death worldwide. Patients with similar lung cancer may experience quite different clinical outcomes. Reliable molecular prognostic markers are needed to characterize the disparity. In order to identify the genes responsible for the aggressiveness of squamous cell carcinoma of the lung, we applied DNA microarray technology to a case control study. Fifteen patients with surgically treated stage I squamous cell lung cancer were selected. Ten were one-to-one matched on tumour size and grade, age, gender, and smoking status; five died of lung cancer recurrence within 24 months (high-aggressive group), and five survived more than 54 months after surgery (low-aggressive group). Five additional tissues were included as test samples. Unsupervised and supervised approaches were used to explore the relationship among samples and identify differentially expressed genes. We also evaluated the gene markers' accuracy in segregating samples to their respective group. Functional gene networks for the significant genes were retrieved, and their association with survival was tested.

Journal ArticleDOI
TL;DR: Based on the results, mtDNA germline variants increased in prevalence with adenoma CRC progression, the first report to show an increased prevalence of mitochondrial gene variants in CRC tumorigenesis.
Abstract: To examine the relationship between mitochondrial DNA (mtDNA) alterations and colorectal tumorigenesis, we used high-resolution restriction endonucleases and sequencing to assess the mitochondrial genome from three histologic subtypes of colorectal adenomas (tubular = 8; tubulovillous = 9; and villous = 8), colorectal cancer (CRC) tissues = 27, and their matched surrounding normal tissue (MSNT) = 52. The mitochondrial genomes were amplified using 9 pairs of overlapping primers and systematically analyzed by means of high-resolution analysis. DNA fragments showing a shift in banding patterns between the three adenomas, CRC, in comparison to the MSNT were sequenced to identify the mtDNA alterations. A total of thirty-eight germ-line mtDNA variants were observed in this study. Twenty-two of the thirty-eight were identified as mutations and 59% (13 of 22) were silent mutations and one was a 1-bp insertion. Sixteen of thirty-eight were distinct SNPs in flanking regions of the restriction sites and, 6 of the 16 (37%) SNPs were not previously reported. Most of these mutations/SNPs were homoplasmic and distributed in various regions of mitochondrial genes including the 16S and 12S rRNA. Based on our results, mtDNA germline variants increased in prevalence with adenoma CRC progression. To the best of our knowledge, this is the first report to show an increased prevalence of mitochondrial gene variants in CRC tumorigenesis.

Journal ArticleDOI
TL;DR: In response to DNA alkylation damage the senescence-like arrest of HCT-116 cells was associated with decreased levels of APC protein, microtubular organization, and telomeric DNA, and hence, may not play a role in cell cycle arrest.
Abstract: Background Cellular senescence is a state in which mammalian cells enter into an irreversible growth arrest and altered biological functions. The senescence response in mammalian cells can be elicited by DNA-damaging agents. In the present study we report that the DNA-damaging agent N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) is able to induce senescence in the HCT-116 colon cancer cell line.

Journal ArticleDOI
TL;DR: Results show that hypoxia-induced apoptosis in oral carcinoma cell lines relies on both intrinsic (mitochondrial) and extrinsic (cell death receptor mediated) pathways, which will assist in designing more efficient combination chemotherapy approaches for the treatment of oral cancers.
Abstract: We are attempting to elucidate the mechanism of apoptotic cell death induced by hypoxia in oral cancer cells. Since hypoxia can render solid tumors more resistant to radiation and chemotherapy, understanding the pathways involved in hypoxia-induced apoptosis of oral cancer cells would be of significant therapeutic value. Here we showed that oral cancer cells from primary tumor and lymph node metastasis undergo apoptosis after 24 to 48 h of hypoxia. During hypoxic growth, an increase in caspase-3 proteolytic activity was observed, accompanied by the cleavage of PARP (poly (ADP-ribose) polymerase) indicative of caspase activity. In addition, hypoxic stress also lead to activation of caspase-8, -9, and -10 but not -1, elicited the release of cytochrome C into the cytosol, and resulted in internucleosomal DNA fragmentation. These results show that hypoxia-induced apoptosis in oral carcinoma cell lines relies on both intrinsic (mitochondrial) and extrinsic (cell death receptor mediated) pathways. This novel evidence will assist in designing more efficient combination chemotherapy approaches as promising strategy for the treatment of oral cancers.